cpython/Tools/ftscalingbench/ftscalingbench.py
Edward Xu ce79154176
gh-139103: fix free-threading dataclass.__init__ perf issue (gh-141596)
The dataclasses `__init__` function is generated dynamically by a call to `exec()` and so doesn't have deferred reference counting enabled. Enable deferred reference counting on functions when assigned as an attribute to type objects to avoid reference count contention when creating dataclass instances.
2025-11-19 00:57:59 +00:00

370 lines
9.1 KiB
Python

# This script runs a set of small benchmarks to help identify scaling
# bottlenecks in the free-threaded interpreter. The benchmarks consist
# of patterns that ought to scale well, but haven't in the past. This is
# typically due to reference count contention or lock contention.
#
# This is not intended to be a general multithreading benchmark suite, nor
# are the benchmarks intended to be representative of real-world workloads.
#
# On Linux, to avoid confounding hardware effects, the script attempts to:
# * Use a single CPU socket (to avoid NUMA effects)
# * Use distinct physical cores (to avoid hyperthreading/SMT effects)
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and
# efficiency cores
#
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost")
#
# Intel:
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
#
# AMD:
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost
#
import math
import os
import queue
import sys
import threading
import time
from dataclasses import dataclass
from operator import methodcaller
# The iterations in individual benchmarks are scaled by this factor.
WORK_SCALE = 100
ALL_BENCHMARKS = {}
threads = []
in_queues = []
out_queues = []
def register_benchmark(func):
ALL_BENCHMARKS[func.__name__] = func
return func
@register_benchmark
def object_cfunction():
accu = 0
tab = [1] * 100
for i in range(1000 * WORK_SCALE):
tab.pop(0)
tab.append(i)
accu += tab[50]
return accu
@register_benchmark
def cmodule_function():
N = 1000 * WORK_SCALE
for i in range(N):
math.cos(i / N)
@register_benchmark
def object_lookup_special():
# round() uses `_PyObject_LookupSpecial()` internally.
N = 1000 * WORK_SCALE
for i in range(N):
round(i / N)
class MyContextManager:
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
pass
@register_benchmark
def context_manager():
N = 1000 * WORK_SCALE
for i in range(N):
with MyContextManager():
pass
@register_benchmark
def mult_constant():
x = 1.0
for i in range(3000 * WORK_SCALE):
x *= 1.01
def simple_gen():
for i in range(10):
yield i
@register_benchmark
def generator():
accu = 0
for i in range(100 * WORK_SCALE):
for v in simple_gen():
accu += v
return accu
class Counter:
def __init__(self):
self.i = 0
def next_number(self):
self.i += 1
return self.i
@register_benchmark
def pymethod():
c = Counter()
for i in range(1000 * WORK_SCALE):
c.next_number()
return c.i
def next_number(i):
return i + 1
@register_benchmark
def pyfunction():
accu = 0
for i in range(1000 * WORK_SCALE):
accu = next_number(i)
return accu
def double(x):
return x + x
module = sys.modules[__name__]
@register_benchmark
def module_function():
total = 0
for i in range(1000 * WORK_SCALE):
total += module.double(i)
return total
class MyObject:
pass
@register_benchmark
def load_string_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == 'a string':
accu += 7
else:
accu += 1
return accu
@register_benchmark
def load_tuple_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == (1, 2):
accu += 7
else:
accu += 1
return accu
@register_benchmark
def create_pyobject():
for i in range(1000 * WORK_SCALE):
o = MyObject()
@register_benchmark
def create_closure():
for i in range(1000 * WORK_SCALE):
def foo(x):
return x
foo(i)
@register_benchmark
def create_dict():
for i in range(1000 * WORK_SCALE):
d = {
"key": "value",
}
thread_local = threading.local()
@register_benchmark
def thread_local_read():
tmp = thread_local
tmp.x = 10
for i in range(500 * WORK_SCALE):
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
class MyClass:
__slots__ = ()
def func(self):
pass
@register_benchmark
def method_caller():
mc = methodcaller("func")
obj = MyClass()
for i in range(1000 * WORK_SCALE):
mc(obj)
@dataclass
class MyDataClass:
x: int
y: int
z: int
@register_benchmark
def instantiate_dataclass():
for _ in range(1000 * WORK_SCALE):
obj = MyDataClass(x=1, y=2, z=3)
def bench_one_thread(func):
t0 = time.perf_counter_ns()
func()
t1 = time.perf_counter_ns()
return t1 - t0
def bench_parallel(func):
t0 = time.perf_counter_ns()
for inq in in_queues:
inq.put(func)
for outq in out_queues:
outq.get()
t1 = time.perf_counter_ns()
return t1 - t0
def benchmark(func):
delta_one_thread = bench_one_thread(func)
delta_many_threads = bench_parallel(func)
speedup = delta_one_thread * len(threads) / delta_many_threads
if speedup >= 1:
factor = speedup
direction = "faster"
else:
factor = 1 / speedup
direction = "slower"
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()
color = reset_color = ""
if use_color:
if speedup <= 1.1:
color = "\x1b[31m" # red
elif speedup < len(threads)/2:
color = "\x1b[33m" # yellow
reset_color = "\x1b[0m"
print(f"{color}{func.__name__:<25} {round(factor, 1):>4}x {direction}{reset_color}")
def determine_num_threads_and_affinity():
if sys.platform != "linux":
return [None] * os.cpu_count()
# Try to use `lscpu -p` on Linux
import subprocess
try:
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"],
text=True, env={"LC_NUMERIC": "C"})
except (FileNotFoundError, subprocess.CalledProcessError):
return [None] * os.cpu_count()
table = []
for line in output.splitlines():
if line.startswith("#"):
continue
cpu, node, core, maxhz = line.split(",")
if maxhz == "":
maxhz = "0"
table.append((int(cpu), int(node), int(core), float(maxhz)))
cpus = []
cores = set()
max_mhz_all = max(row[3] for row in table)
for cpu, node, core, maxmhz in table:
# Choose only CPUs on the same node, unique cores, and try to avoid
# "efficiency" cores.
if node == 0 and core not in cores and maxmhz == max_mhz_all:
cpus.append(cpu)
cores.add(core)
return cpus
def thread_run(cpu, in_queue, out_queue):
if cpu is not None and hasattr(os, "sched_setaffinity"):
# Set the affinity for the current thread
os.sched_setaffinity(0, (cpu,))
while True:
func = in_queue.get()
if func is None:
break
func()
out_queue.put(None)
def initialize_threads(opts):
if opts.threads == -1:
cpus = determine_num_threads_and_affinity()
else:
cpus = [None] * opts.threads # don't set affinity
print(f"Running benchmarks with {len(cpus)} threads")
for cpu in cpus:
inq = queue.Queue()
outq = queue.Queue()
in_queues.append(inq)
out_queues.append(outq)
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True)
threads.append(t)
t.start()
def main(opts):
global WORK_SCALE
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled():
sys.stderr.write("expected to be run with the GIL disabled\n")
benchmark_names = opts.benchmarks
if benchmark_names:
for name in benchmark_names:
if name not in ALL_BENCHMARKS:
sys.stderr.write(f"Unknown benchmark: {name}\n")
sys.exit(1)
else:
benchmark_names = ALL_BENCHMARKS.keys()
WORK_SCALE = opts.scale
if not opts.baseline_only:
initialize_threads(opts)
do_bench = not opts.baseline_only and not opts.parallel_only
for name in benchmark_names:
func = ALL_BENCHMARKS[name]
if do_bench:
benchmark(func)
continue
if opts.parallel_only:
delta_ns = bench_parallel(func)
else:
delta_ns = bench_one_thread(func)
time_ms = delta_ns / 1_000_000
print(f"{func.__name__:<18} {time_ms:.1f} ms")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--threads", type=int, default=-1,
help="number of threads to use")
parser.add_argument("--scale", type=int, default=100,
help="work scale factor for the benchmark (default=100)")
parser.add_argument("--baseline-only", default=False, action="store_true",
help="only run the baseline benchmarks (single thread)")
parser.add_argument("--parallel-only", default=False, action="store_true",
help="only run the parallel benchmark (many threads)")
parser.add_argument("benchmarks", nargs="*",
help="benchmarks to run")
options = parser.parse_args()
main(options)