mirror of
https://github.com/python/cpython.git
synced 2025-12-08 06:10:17 +00:00
The dataclasses `__init__` function is generated dynamically by a call to `exec()` and so doesn't have deferred reference counting enabled. Enable deferred reference counting on functions when assigned as an attribute to type objects to avoid reference count contention when creating dataclass instances.
370 lines
9.1 KiB
Python
370 lines
9.1 KiB
Python
# This script runs a set of small benchmarks to help identify scaling
|
|
# bottlenecks in the free-threaded interpreter. The benchmarks consist
|
|
# of patterns that ought to scale well, but haven't in the past. This is
|
|
# typically due to reference count contention or lock contention.
|
|
#
|
|
# This is not intended to be a general multithreading benchmark suite, nor
|
|
# are the benchmarks intended to be representative of real-world workloads.
|
|
#
|
|
# On Linux, to avoid confounding hardware effects, the script attempts to:
|
|
# * Use a single CPU socket (to avoid NUMA effects)
|
|
# * Use distinct physical cores (to avoid hyperthreading/SMT effects)
|
|
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and
|
|
# efficiency cores
|
|
#
|
|
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost")
|
|
#
|
|
# Intel:
|
|
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
|
|
#
|
|
# AMD:
|
|
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost
|
|
#
|
|
|
|
import math
|
|
import os
|
|
import queue
|
|
import sys
|
|
import threading
|
|
import time
|
|
from dataclasses import dataclass
|
|
from operator import methodcaller
|
|
|
|
# The iterations in individual benchmarks are scaled by this factor.
|
|
WORK_SCALE = 100
|
|
|
|
ALL_BENCHMARKS = {}
|
|
|
|
threads = []
|
|
in_queues = []
|
|
out_queues = []
|
|
|
|
|
|
def register_benchmark(func):
|
|
ALL_BENCHMARKS[func.__name__] = func
|
|
return func
|
|
|
|
@register_benchmark
|
|
def object_cfunction():
|
|
accu = 0
|
|
tab = [1] * 100
|
|
for i in range(1000 * WORK_SCALE):
|
|
tab.pop(0)
|
|
tab.append(i)
|
|
accu += tab[50]
|
|
return accu
|
|
|
|
@register_benchmark
|
|
def cmodule_function():
|
|
N = 1000 * WORK_SCALE
|
|
for i in range(N):
|
|
math.cos(i / N)
|
|
|
|
@register_benchmark
|
|
def object_lookup_special():
|
|
# round() uses `_PyObject_LookupSpecial()` internally.
|
|
N = 1000 * WORK_SCALE
|
|
for i in range(N):
|
|
round(i / N)
|
|
|
|
class MyContextManager:
|
|
def __enter__(self):
|
|
pass
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
pass
|
|
|
|
@register_benchmark
|
|
def context_manager():
|
|
N = 1000 * WORK_SCALE
|
|
for i in range(N):
|
|
with MyContextManager():
|
|
pass
|
|
|
|
@register_benchmark
|
|
def mult_constant():
|
|
x = 1.0
|
|
for i in range(3000 * WORK_SCALE):
|
|
x *= 1.01
|
|
|
|
def simple_gen():
|
|
for i in range(10):
|
|
yield i
|
|
|
|
@register_benchmark
|
|
def generator():
|
|
accu = 0
|
|
for i in range(100 * WORK_SCALE):
|
|
for v in simple_gen():
|
|
accu += v
|
|
return accu
|
|
|
|
class Counter:
|
|
def __init__(self):
|
|
self.i = 0
|
|
|
|
def next_number(self):
|
|
self.i += 1
|
|
return self.i
|
|
|
|
@register_benchmark
|
|
def pymethod():
|
|
c = Counter()
|
|
for i in range(1000 * WORK_SCALE):
|
|
c.next_number()
|
|
return c.i
|
|
|
|
def next_number(i):
|
|
return i + 1
|
|
|
|
@register_benchmark
|
|
def pyfunction():
|
|
accu = 0
|
|
for i in range(1000 * WORK_SCALE):
|
|
accu = next_number(i)
|
|
return accu
|
|
|
|
def double(x):
|
|
return x + x
|
|
|
|
module = sys.modules[__name__]
|
|
|
|
@register_benchmark
|
|
def module_function():
|
|
total = 0
|
|
for i in range(1000 * WORK_SCALE):
|
|
total += module.double(i)
|
|
return total
|
|
|
|
class MyObject:
|
|
pass
|
|
|
|
@register_benchmark
|
|
def load_string_const():
|
|
accu = 0
|
|
for i in range(1000 * WORK_SCALE):
|
|
if i == 'a string':
|
|
accu += 7
|
|
else:
|
|
accu += 1
|
|
return accu
|
|
|
|
@register_benchmark
|
|
def load_tuple_const():
|
|
accu = 0
|
|
for i in range(1000 * WORK_SCALE):
|
|
if i == (1, 2):
|
|
accu += 7
|
|
else:
|
|
accu += 1
|
|
return accu
|
|
|
|
@register_benchmark
|
|
def create_pyobject():
|
|
for i in range(1000 * WORK_SCALE):
|
|
o = MyObject()
|
|
|
|
@register_benchmark
|
|
def create_closure():
|
|
for i in range(1000 * WORK_SCALE):
|
|
def foo(x):
|
|
return x
|
|
foo(i)
|
|
|
|
@register_benchmark
|
|
def create_dict():
|
|
for i in range(1000 * WORK_SCALE):
|
|
d = {
|
|
"key": "value",
|
|
}
|
|
|
|
thread_local = threading.local()
|
|
|
|
@register_benchmark
|
|
def thread_local_read():
|
|
tmp = thread_local
|
|
tmp.x = 10
|
|
for i in range(500 * WORK_SCALE):
|
|
_ = tmp.x
|
|
_ = tmp.x
|
|
_ = tmp.x
|
|
_ = tmp.x
|
|
_ = tmp.x
|
|
|
|
class MyClass:
|
|
__slots__ = ()
|
|
|
|
def func(self):
|
|
pass
|
|
|
|
@register_benchmark
|
|
def method_caller():
|
|
mc = methodcaller("func")
|
|
obj = MyClass()
|
|
for i in range(1000 * WORK_SCALE):
|
|
mc(obj)
|
|
|
|
@dataclass
|
|
class MyDataClass:
|
|
x: int
|
|
y: int
|
|
z: int
|
|
|
|
@register_benchmark
|
|
def instantiate_dataclass():
|
|
for _ in range(1000 * WORK_SCALE):
|
|
obj = MyDataClass(x=1, y=2, z=3)
|
|
|
|
def bench_one_thread(func):
|
|
t0 = time.perf_counter_ns()
|
|
func()
|
|
t1 = time.perf_counter_ns()
|
|
return t1 - t0
|
|
|
|
|
|
def bench_parallel(func):
|
|
t0 = time.perf_counter_ns()
|
|
for inq in in_queues:
|
|
inq.put(func)
|
|
for outq in out_queues:
|
|
outq.get()
|
|
t1 = time.perf_counter_ns()
|
|
return t1 - t0
|
|
|
|
|
|
def benchmark(func):
|
|
delta_one_thread = bench_one_thread(func)
|
|
delta_many_threads = bench_parallel(func)
|
|
|
|
speedup = delta_one_thread * len(threads) / delta_many_threads
|
|
if speedup >= 1:
|
|
factor = speedup
|
|
direction = "faster"
|
|
else:
|
|
factor = 1 / speedup
|
|
direction = "slower"
|
|
|
|
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()
|
|
color = reset_color = ""
|
|
if use_color:
|
|
if speedup <= 1.1:
|
|
color = "\x1b[31m" # red
|
|
elif speedup < len(threads)/2:
|
|
color = "\x1b[33m" # yellow
|
|
reset_color = "\x1b[0m"
|
|
|
|
print(f"{color}{func.__name__:<25} {round(factor, 1):>4}x {direction}{reset_color}")
|
|
|
|
def determine_num_threads_and_affinity():
|
|
if sys.platform != "linux":
|
|
return [None] * os.cpu_count()
|
|
|
|
# Try to use `lscpu -p` on Linux
|
|
import subprocess
|
|
try:
|
|
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"],
|
|
text=True, env={"LC_NUMERIC": "C"})
|
|
except (FileNotFoundError, subprocess.CalledProcessError):
|
|
return [None] * os.cpu_count()
|
|
|
|
table = []
|
|
for line in output.splitlines():
|
|
if line.startswith("#"):
|
|
continue
|
|
cpu, node, core, maxhz = line.split(",")
|
|
if maxhz == "":
|
|
maxhz = "0"
|
|
table.append((int(cpu), int(node), int(core), float(maxhz)))
|
|
|
|
cpus = []
|
|
cores = set()
|
|
max_mhz_all = max(row[3] for row in table)
|
|
for cpu, node, core, maxmhz in table:
|
|
# Choose only CPUs on the same node, unique cores, and try to avoid
|
|
# "efficiency" cores.
|
|
if node == 0 and core not in cores and maxmhz == max_mhz_all:
|
|
cpus.append(cpu)
|
|
cores.add(core)
|
|
return cpus
|
|
|
|
|
|
def thread_run(cpu, in_queue, out_queue):
|
|
if cpu is not None and hasattr(os, "sched_setaffinity"):
|
|
# Set the affinity for the current thread
|
|
os.sched_setaffinity(0, (cpu,))
|
|
|
|
while True:
|
|
func = in_queue.get()
|
|
if func is None:
|
|
break
|
|
func()
|
|
out_queue.put(None)
|
|
|
|
|
|
def initialize_threads(opts):
|
|
if opts.threads == -1:
|
|
cpus = determine_num_threads_and_affinity()
|
|
else:
|
|
cpus = [None] * opts.threads # don't set affinity
|
|
|
|
print(f"Running benchmarks with {len(cpus)} threads")
|
|
for cpu in cpus:
|
|
inq = queue.Queue()
|
|
outq = queue.Queue()
|
|
in_queues.append(inq)
|
|
out_queues.append(outq)
|
|
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True)
|
|
threads.append(t)
|
|
t.start()
|
|
|
|
|
|
def main(opts):
|
|
global WORK_SCALE
|
|
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled():
|
|
sys.stderr.write("expected to be run with the GIL disabled\n")
|
|
|
|
benchmark_names = opts.benchmarks
|
|
if benchmark_names:
|
|
for name in benchmark_names:
|
|
if name not in ALL_BENCHMARKS:
|
|
sys.stderr.write(f"Unknown benchmark: {name}\n")
|
|
sys.exit(1)
|
|
else:
|
|
benchmark_names = ALL_BENCHMARKS.keys()
|
|
|
|
WORK_SCALE = opts.scale
|
|
|
|
if not opts.baseline_only:
|
|
initialize_threads(opts)
|
|
|
|
do_bench = not opts.baseline_only and not opts.parallel_only
|
|
for name in benchmark_names:
|
|
func = ALL_BENCHMARKS[name]
|
|
if do_bench:
|
|
benchmark(func)
|
|
continue
|
|
|
|
if opts.parallel_only:
|
|
delta_ns = bench_parallel(func)
|
|
else:
|
|
delta_ns = bench_one_thread(func)
|
|
|
|
time_ms = delta_ns / 1_000_000
|
|
print(f"{func.__name__:<18} {time_ms:.1f} ms")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-t", "--threads", type=int, default=-1,
|
|
help="number of threads to use")
|
|
parser.add_argument("--scale", type=int, default=100,
|
|
help="work scale factor for the benchmark (default=100)")
|
|
parser.add_argument("--baseline-only", default=False, action="store_true",
|
|
help="only run the baseline benchmarks (single thread)")
|
|
parser.add_argument("--parallel-only", default=False, action="store_true",
|
|
help="only run the parallel benchmark (many threads)")
|
|
parser.add_argument("benchmarks", nargs="*",
|
|
help="benchmarks to run")
|
|
options = parser.parse_args()
|
|
main(options)
|