mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2935 lines
		
	
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2935 lines
		
	
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* List object implementation */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #ifdef STDC_HEADERS
 | |
| #include <stddef.h>
 | |
| #else
 | |
| #include <sys/types.h>		/* For size_t */
 | |
| #endif
 | |
| 
 | |
| /* Ensure ob_item has room for at least newsize elements, and set
 | |
|  * ob_size to newsize.  If newsize > ob_size on entry, the content
 | |
|  * of the new slots at exit is undefined heap trash; it's the caller's
 | |
|  * responsiblity to overwrite them with sane values.
 | |
|  * The number of allocated elements may grow, shrink, or stay the same.
 | |
|  * Failure is impossible if newsize <= self.allocated on entry, although
 | |
|  * that partly relies on an assumption that the system realloc() never
 | |
|  * fails when passed a number of bytes <= the number of bytes last
 | |
|  * allocated (the C standard doesn't guarantee this, but it's hard to
 | |
|  * imagine a realloc implementation where it wouldn't be true).
 | |
|  * Note that self->ob_item may change, and even if newsize is less
 | |
|  * than ob_size on entry.
 | |
|  */
 | |
| static int
 | |
| list_resize(PyListObject *self, Py_ssize_t newsize)
 | |
| {
 | |
| 	PyObject **items;
 | |
| 	size_t new_allocated;
 | |
| 	Py_ssize_t allocated = self->allocated;
 | |
| 
 | |
| 	/* Bypass realloc() when a previous overallocation is large enough
 | |
| 	   to accommodate the newsize.  If the newsize falls lower than half
 | |
| 	   the allocated size, then proceed with the realloc() to shrink the list.
 | |
| 	*/
 | |
| 	if (allocated >= newsize && newsize >= (allocated >> 1)) {
 | |
| 		assert(self->ob_item != NULL || newsize == 0);
 | |
| 		Py_Size(self) = newsize;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* This over-allocates proportional to the list size, making room
 | |
| 	 * for additional growth.  The over-allocation is mild, but is
 | |
| 	 * enough to give linear-time amortized behavior over a long
 | |
| 	 * sequence of appends() in the presence of a poorly-performing
 | |
| 	 * system realloc().
 | |
| 	 * The growth pattern is:  0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
 | |
| 	 */
 | |
| 	new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6) + newsize;
 | |
| 	if (newsize == 0)
 | |
| 		new_allocated = 0;
 | |
| 	items = self->ob_item;
 | |
| 	if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *)))
 | |
| 		PyMem_RESIZE(items, PyObject *, new_allocated);
 | |
| 	else
 | |
| 		items = NULL;
 | |
| 	if (items == NULL) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	self->ob_item = items;
 | |
| 	Py_Size(self) = newsize;
 | |
| 	self->allocated = new_allocated;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Empty list reuse scheme to save calls to malloc and free */
 | |
| #define MAXFREELISTS 80
 | |
| static PyListObject *free_lists[MAXFREELISTS];
 | |
| static int num_free_lists = 0;
 | |
| 
 | |
| void
 | |
| PyList_Fini(void)
 | |
| {
 | |
| 	PyListObject *op;
 | |
| 
 | |
| 	while (num_free_lists) {
 | |
| 		num_free_lists--;
 | |
| 		op = free_lists[num_free_lists]; 
 | |
| 		assert(PyList_CheckExact(op));
 | |
| 		PyObject_GC_Del(op);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyList_New(Py_ssize_t size)
 | |
| {
 | |
| 	PyListObject *op;
 | |
| 	size_t nbytes;
 | |
| 
 | |
| 	if (size < 0) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	nbytes = size * sizeof(PyObject *);
 | |
| 	/* Check for overflow */
 | |
| 	if (nbytes / sizeof(PyObject *) != (size_t)size)
 | |
| 		return PyErr_NoMemory();
 | |
| 	if (num_free_lists) {
 | |
| 		num_free_lists--;
 | |
| 		op = free_lists[num_free_lists];
 | |
| 		_Py_NewReference((PyObject *)op);
 | |
| 	} else {
 | |
| 		op = PyObject_GC_New(PyListObject, &PyList_Type);
 | |
| 		if (op == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (size <= 0)
 | |
| 		op->ob_item = NULL;
 | |
| 	else {
 | |
| 		op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
 | |
| 		if (op->ob_item == NULL) {
 | |
| 			Py_DECREF(op);
 | |
| 			return PyErr_NoMemory();
 | |
| 		}
 | |
| 		memset(op->ob_item, 0, nbytes);
 | |
| 	}
 | |
| 	Py_Size(op) = size;
 | |
| 	op->allocated = size;
 | |
| 	_PyObject_GC_TRACK(op);
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| Py_ssize_t
 | |
| PyList_Size(PyObject *op)
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else
 | |
| 		return Py_Size(op);
 | |
| }
 | |
| 
 | |
| static PyObject *indexerr = NULL;
 | |
| 
 | |
| PyObject *
 | |
| PyList_GetItem(PyObject *op, Py_ssize_t i)
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (i < 0 || i >= Py_Size(op)) {
 | |
| 		if (indexerr == NULL)
 | |
| 			indexerr = PyUnicode_FromString(
 | |
| 				"list index out of range");
 | |
| 		PyErr_SetObject(PyExc_IndexError, indexerr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return ((PyListObject *)op) -> ob_item[i];
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_SetItem(register PyObject *op, register Py_ssize_t i,
 | |
|                register PyObject *newitem)
 | |
| {
 | |
| 	register PyObject *olditem;
 | |
| 	register PyObject **p;
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		Py_XDECREF(newitem);
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (i < 0 || i >= Py_Size(op)) {
 | |
| 		Py_XDECREF(newitem);
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 				"list assignment index out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	p = ((PyListObject *)op) -> ob_item + i;
 | |
| 	olditem = *p;
 | |
| 	*p = newitem;
 | |
| 	Py_XDECREF(olditem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
 | |
| {
 | |
| 	Py_ssize_t i, n = Py_Size(self);
 | |
| 	PyObject **items;
 | |
| 	if (v == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (n == PY_SSIZE_T_MAX) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			"cannot add more objects to list");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (list_resize(self, n+1) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (where < 0) {
 | |
| 		where += n;
 | |
| 		if (where < 0)
 | |
| 			where = 0;
 | |
| 	}
 | |
| 	if (where > n)
 | |
| 		where = n;
 | |
| 	items = self->ob_item;
 | |
| 	for (i = n; --i >= where; )
 | |
| 		items[i+1] = items[i];
 | |
| 	Py_INCREF(v);
 | |
| 	items[where] = v;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return ins1((PyListObject *)op, where, newitem);
 | |
| }
 | |
| 
 | |
| static int
 | |
| app1(PyListObject *self, PyObject *v)
 | |
| {
 | |
| 	Py_ssize_t n = PyList_GET_SIZE(self);
 | |
| 
 | |
| 	assert (v != NULL);
 | |
| 	if (n == PY_SSIZE_T_MAX) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			"cannot add more objects to list");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (list_resize(self, n+1) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	Py_INCREF(v);
 | |
| 	PyList_SET_ITEM(self, n, v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Append(PyObject *op, PyObject *newitem)
 | |
| {
 | |
| 	if (PyList_Check(op) && (newitem != NULL))
 | |
| 		return app1((PyListObject *)op, newitem);
 | |
| 	PyErr_BadInternalCall();
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| list_dealloc(PyListObject *op)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject_GC_UnTrack(op);
 | |
| 	Py_TRASHCAN_SAFE_BEGIN(op)
 | |
| 	if (op->ob_item != NULL) {
 | |
| 		/* Do it backwards, for Christian Tismer.
 | |
| 		   There's a simple test case where somehow this reduces
 | |
| 		   thrashing when a *very* large list is created and
 | |
| 		   immediately deleted. */
 | |
| 		i = Py_Size(op);
 | |
| 		while (--i >= 0) {
 | |
| 			Py_XDECREF(op->ob_item[i]);
 | |
| 		}
 | |
| 		PyMem_FREE(op->ob_item);
 | |
| 	}
 | |
| 	if (num_free_lists < MAXFREELISTS && PyList_CheckExact(op))
 | |
| 		free_lists[num_free_lists++] = op;
 | |
| 	else
 | |
| 		Py_Type(op)->tp_free((PyObject *)op);
 | |
| 	Py_TRASHCAN_SAFE_END(op)
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_repr(PyListObject *v)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject *s, *temp;
 | |
| 	PyObject *pieces = NULL, *result = NULL;
 | |
| 
 | |
| 	i = Py_ReprEnter((PyObject*)v);
 | |
| 	if (i != 0) {
 | |
| 		return i > 0 ? PyUnicode_FromString("[...]") : NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (Py_Size(v) == 0) {
 | |
| 		result = PyUnicode_FromString("[]");
 | |
| 		goto Done;
 | |
| 	}
 | |
| 
 | |
| 	pieces = PyList_New(0);
 | |
| 	if (pieces == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	/* Do repr() on each element.  Note that this may mutate the list,
 | |
| 	   so must refetch the list size on each iteration. */
 | |
| 	for (i = 0; i < Py_Size(v); ++i) {
 | |
| 		int status;
 | |
| 		s = PyObject_Repr(v->ob_item[i]);
 | |
| 		if (s == NULL)
 | |
| 			goto Done;
 | |
| 		status = PyList_Append(pieces, s);
 | |
| 		Py_DECREF(s);  /* append created a new ref */
 | |
| 		if (status < 0)
 | |
| 			goto Done;
 | |
| 	}
 | |
| 
 | |
| 	/* Add "[]" decorations to the first and last items. */
 | |
| 	assert(PyList_GET_SIZE(pieces) > 0);
 | |
| 	s = PyUnicode_FromString("[");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyList_GET_ITEM(pieces, 0);
 | |
| 	PyUnicode_AppendAndDel(&s, temp);
 | |
| 	PyList_SET_ITEM(pieces, 0, s);
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	s = PyUnicode_FromString("]");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
 | |
| 	PyUnicode_AppendAndDel(&temp, s);
 | |
| 	PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
 | |
| 	if (temp == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	/* Paste them all together with ", " between. */
 | |
| 	s = PyUnicode_FromString(", ");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	result = PyUnicode_Join(s, pieces);
 | |
| 	Py_DECREF(s);
 | |
| 
 | |
| Done:
 | |
| 	Py_XDECREF(pieces);
 | |
| 	Py_ReprLeave((PyObject *)v);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static Py_ssize_t
 | |
| list_length(PyListObject *a)
 | |
| {
 | |
| 	return Py_Size(a);
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_contains(PyListObject *a, PyObject *el)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	int cmp;
 | |
| 
 | |
| 	for (i = 0, cmp = 0 ; cmp == 0 && i < Py_Size(a); ++i)
 | |
| 		cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
 | |
| 						   Py_EQ);
 | |
| 	return cmp;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_item(PyListObject *a, Py_ssize_t i)
 | |
| {
 | |
| 	if (i < 0 || i >= Py_Size(a)) {
 | |
| 		if (indexerr == NULL)
 | |
| 			indexerr = PyUnicode_FromString(
 | |
| 				"list index out of range");
 | |
| 		PyErr_SetObject(PyExc_IndexError, indexerr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	Py_INCREF(a->ob_item[i]);
 | |
| 	return a->ob_item[i];
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
 | |
| {
 | |
| 	PyListObject *np;
 | |
| 	PyObject **src, **dest;
 | |
| 	Py_ssize_t i, len;
 | |
| 	if (ilow < 0)
 | |
| 		ilow = 0;
 | |
| 	else if (ilow > Py_Size(a))
 | |
| 		ilow = Py_Size(a);
 | |
| 	if (ihigh < ilow)
 | |
| 		ihigh = ilow;
 | |
| 	else if (ihigh > Py_Size(a))
 | |
| 		ihigh = Py_Size(a);
 | |
| 	len = ihigh - ilow;
 | |
| 	np = (PyListObject *) PyList_New(len);
 | |
| 	if (np == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	src = a->ob_item + ilow;
 | |
| 	dest = np->ob_item;
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		PyObject *v = src[i];
 | |
| 		Py_INCREF(v);
 | |
| 		dest[i] = v;
 | |
| 	}
 | |
| 	return (PyObject *)np;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
 | |
| {
 | |
| 	if (!PyList_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return list_slice((PyListObject *)a, ilow, ihigh);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_concat(PyListObject *a, PyObject *bb)
 | |
| {
 | |
| 	Py_ssize_t size;
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject **src, **dest;
 | |
| 	PyListObject *np;
 | |
| 	if (!PyList_Check(bb)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			  "can only concatenate list (not \"%.200s\") to list",
 | |
| 			  bb->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| #define b ((PyListObject *)bb)
 | |
| 	size = Py_Size(a) + Py_Size(b);
 | |
| 	if (size < 0)
 | |
| 		return PyErr_NoMemory();
 | |
| 	np = (PyListObject *) PyList_New(size);
 | |
| 	if (np == NULL) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	src = a->ob_item;
 | |
| 	dest = np->ob_item;
 | |
| 	for (i = 0; i < Py_Size(a); i++) {
 | |
| 		PyObject *v = src[i];
 | |
| 		Py_INCREF(v);
 | |
| 		dest[i] = v;
 | |
| 	}
 | |
| 	src = b->ob_item;
 | |
| 	dest = np->ob_item + Py_Size(a);
 | |
| 	for (i = 0; i < Py_Size(b); i++) {
 | |
| 		PyObject *v = src[i];
 | |
| 		Py_INCREF(v);
 | |
| 		dest[i] = v;
 | |
| 	}
 | |
| 	return (PyObject *)np;
 | |
| #undef b
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_repeat(PyListObject *a, Py_ssize_t n)
 | |
| {
 | |
| 	Py_ssize_t i, j;
 | |
| 	Py_ssize_t size;
 | |
| 	PyListObject *np;
 | |
| 	PyObject **p, **items;
 | |
| 	PyObject *elem;
 | |
| 	if (n < 0)
 | |
| 		n = 0;
 | |
| 	size = Py_Size(a) * n;
 | |
| 	if (size == 0)
 | |
|               return PyList_New(0);
 | |
| 	if (n && size/n != Py_Size(a))
 | |
| 		return PyErr_NoMemory();
 | |
| 	np = (PyListObject *) PyList_New(size);
 | |
| 	if (np == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	items = np->ob_item;
 | |
| 	if (Py_Size(a) == 1) {
 | |
| 		elem = a->ob_item[0];
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			items[i] = elem;
 | |
| 			Py_INCREF(elem);
 | |
| 		}
 | |
| 		return (PyObject *) np;
 | |
| 	}
 | |
| 	p = np->ob_item;
 | |
| 	items = a->ob_item;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		for (j = 0; j < Py_Size(a); j++) {
 | |
| 			*p = items[j];
 | |
| 			Py_INCREF(*p);
 | |
| 			p++;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *) np;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_clear(PyListObject *a)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject **item = a->ob_item;
 | |
| 	if (item != NULL) {
 | |
| 		/* Because XDECREF can recursively invoke operations on
 | |
| 		   this list, we make it empty first. */
 | |
| 		i = Py_Size(a);
 | |
| 		Py_Size(a) = 0;
 | |
| 		a->ob_item = NULL;
 | |
| 		a->allocated = 0;
 | |
| 		while (--i >= 0) {
 | |
| 			Py_XDECREF(item[i]);
 | |
| 		}
 | |
| 		PyMem_FREE(item);
 | |
| 	}
 | |
| 	/* Never fails; the return value can be ignored.
 | |
| 	   Note that there is no guarantee that the list is actually empty
 | |
| 	   at this point, because XDECREF may have populated it again! */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* a[ilow:ihigh] = v if v != NULL.
 | |
|  * del a[ilow:ihigh] if v == NULL.
 | |
|  *
 | |
|  * Special speed gimmick:  when v is NULL and ihigh - ilow <= 8, it's
 | |
|  * guaranteed the call cannot fail.
 | |
|  */
 | |
| static int
 | |
| list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
 | |
| {
 | |
| 	/* Because [X]DECREF can recursively invoke list operations on
 | |
| 	   this list, we must postpone all [X]DECREF activity until
 | |
| 	   after the list is back in its canonical shape.  Therefore
 | |
| 	   we must allocate an additional array, 'recycle', into which
 | |
| 	   we temporarily copy the items that are deleted from the
 | |
| 	   list. :-( */
 | |
| 	PyObject *recycle_on_stack[8];
 | |
| 	PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
 | |
| 	PyObject **item;
 | |
| 	PyObject **vitem = NULL;
 | |
| 	PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
 | |
| 	Py_ssize_t n; /* # of elements in replacement list */
 | |
| 	Py_ssize_t norig; /* # of elements in list getting replaced */
 | |
| 	Py_ssize_t d; /* Change in size */
 | |
| 	Py_ssize_t k;
 | |
| 	size_t s;
 | |
| 	int result = -1;	/* guilty until proved innocent */
 | |
| #define b ((PyListObject *)v)
 | |
| 	if (v == NULL)
 | |
| 		n = 0;
 | |
| 	else {
 | |
| 		if (a == b) {
 | |
| 			/* Special case "a[i:j] = a" -- copy b first */
 | |
| 			v = list_slice(b, 0, Py_Size(b));
 | |
| 			if (v == NULL)
 | |
| 				return result;
 | |
| 			result = list_ass_slice(a, ilow, ihigh, v);
 | |
| 			Py_DECREF(v);
 | |
| 			return result;
 | |
| 		}
 | |
| 		v_as_SF = PySequence_Fast(v, "can only assign an iterable");
 | |
| 		if(v_as_SF == NULL)
 | |
| 			goto Error;
 | |
| 		n = PySequence_Fast_GET_SIZE(v_as_SF);
 | |
| 		vitem = PySequence_Fast_ITEMS(v_as_SF);
 | |
| 	}
 | |
| 	if (ilow < 0)
 | |
| 		ilow = 0;
 | |
| 	else if (ilow > Py_Size(a))
 | |
| 		ilow = Py_Size(a);
 | |
| 
 | |
| 	if (ihigh < ilow)
 | |
| 		ihigh = ilow;
 | |
| 	else if (ihigh > Py_Size(a))
 | |
| 		ihigh = Py_Size(a);
 | |
| 
 | |
| 	norig = ihigh - ilow;
 | |
| 	assert(norig >= 0);
 | |
| 	d = n - norig;
 | |
| 	if (Py_Size(a) + d == 0) {
 | |
| 		Py_XDECREF(v_as_SF);
 | |
| 		return list_clear(a);
 | |
| 	}
 | |
| 	item = a->ob_item;
 | |
| 	/* recycle the items that we are about to remove */
 | |
| 	s = norig * sizeof(PyObject *);
 | |
| 	if (s > sizeof(recycle_on_stack)) {
 | |
| 		recycle = (PyObject **)PyMem_MALLOC(s);
 | |
| 		if (recycle == NULL) {
 | |
| 			PyErr_NoMemory();
 | |
| 			goto Error;
 | |
| 		}
 | |
| 	}
 | |
| 	memcpy(recycle, &item[ilow], s);
 | |
| 
 | |
| 	if (d < 0) { /* Delete -d items */
 | |
| 		memmove(&item[ihigh+d], &item[ihigh],
 | |
| 			(Py_Size(a) - ihigh)*sizeof(PyObject *));
 | |
| 		list_resize(a, Py_Size(a) + d);
 | |
| 		item = a->ob_item;
 | |
| 	}
 | |
| 	else if (d > 0) { /* Insert d items */
 | |
| 		k = Py_Size(a);
 | |
| 		if (list_resize(a, k+d) < 0)
 | |
| 			goto Error;
 | |
| 		item = a->ob_item;
 | |
| 		memmove(&item[ihigh+d], &item[ihigh],
 | |
| 			(k - ihigh)*sizeof(PyObject *));
 | |
| 	}
 | |
| 	for (k = 0; k < n; k++, ilow++) {
 | |
| 		PyObject *w = vitem[k];
 | |
| 		Py_XINCREF(w);
 | |
| 		item[ilow] = w;
 | |
| 	}
 | |
| 	for (k = norig - 1; k >= 0; --k)
 | |
| 		Py_XDECREF(recycle[k]);
 | |
| 	result = 0;
 | |
|  Error:
 | |
| 	if (recycle != recycle_on_stack)
 | |
| 		PyMem_FREE(recycle);
 | |
| 	Py_XDECREF(v_as_SF);
 | |
| 	return result;
 | |
| #undef b
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
 | |
| {
 | |
| 	if (!PyList_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_inplace_repeat(PyListObject *self, Py_ssize_t n)
 | |
| {
 | |
| 	PyObject **items;
 | |
| 	Py_ssize_t size, i, j, p;
 | |
| 
 | |
| 
 | |
| 	size = PyList_GET_SIZE(self);
 | |
| 	if (size == 0) {
 | |
| 		Py_INCREF(self);
 | |
| 		return (PyObject *)self;
 | |
| 	}
 | |
| 
 | |
| 	if (n < 1) {
 | |
| 		(void)list_clear(self);
 | |
| 		Py_INCREF(self);
 | |
| 		return (PyObject *)self;
 | |
| 	}
 | |
| 
 | |
| 	if (list_resize(self, size*n) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = size;
 | |
| 	items = self->ob_item;
 | |
| 	for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
 | |
| 		for (j = 0; j < size; j++) {
 | |
| 			PyObject *o = items[j];
 | |
| 			Py_INCREF(o);
 | |
| 			items[p++] = o;
 | |
| 		}
 | |
| 	}
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v)
 | |
| {
 | |
| 	PyObject *old_value;
 | |
| 	if (i < 0 || i >= Py_Size(a)) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 				"list assignment index out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (v == NULL)
 | |
| 		return list_ass_slice(a, i, i+1, v);
 | |
| 	Py_INCREF(v);
 | |
| 	old_value = a->ob_item[i];
 | |
| 	a->ob_item[i] = v;
 | |
| 	Py_DECREF(old_value);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listinsert(PyListObject *self, PyObject *args)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject *v;
 | |
| 	if (!PyArg_ParseTuple(args, "nO:insert", &i, &v))
 | |
| 		return NULL;
 | |
| 	if (ins1(self, i, v) == 0)
 | |
| 		Py_RETURN_NONE;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listappend(PyListObject *self, PyObject *v)
 | |
| {
 | |
| 	if (app1(self, v) == 0)
 | |
| 		Py_RETURN_NONE;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listextend(PyListObject *self, PyObject *b)
 | |
| {
 | |
| 	PyObject *it;      /* iter(v) */
 | |
| 	Py_ssize_t m;		   /* size of self */
 | |
| 	Py_ssize_t n;		   /* guess for size of b */
 | |
| 	Py_ssize_t mn;		   /* m + n */
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject *(*iternext)(PyObject *);
 | |
| 
 | |
| 	/* Special cases:
 | |
| 	   1) lists and tuples which can use PySequence_Fast ops
 | |
| 	   2) extending self to self requires making a copy first
 | |
| 	*/
 | |
| 	if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) {
 | |
| 		PyObject **src, **dest;
 | |
| 		b = PySequence_Fast(b, "argument must be iterable");
 | |
| 		if (!b)
 | |
| 			return NULL;
 | |
| 		n = PySequence_Fast_GET_SIZE(b);
 | |
| 		if (n == 0) {
 | |
| 			/* short circuit when b is empty */
 | |
| 			Py_DECREF(b);
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		m = Py_Size(self);
 | |
| 		if (list_resize(self, m + n) == -1) {
 | |
| 			Py_DECREF(b);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/* note that we may still have self == b here for the
 | |
| 		 * situation a.extend(a), but the following code works
 | |
| 		 * in that case too.  Just make sure to resize self
 | |
| 		 * before calling PySequence_Fast_ITEMS.
 | |
| 		 */
 | |
| 		/* populate the end of self with b's items */
 | |
| 		src = PySequence_Fast_ITEMS(b);
 | |
| 		dest = self->ob_item + m;
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			PyObject *o = src[i];
 | |
| 			Py_INCREF(o);
 | |
| 			dest[i] = o;
 | |
| 		}
 | |
| 		Py_DECREF(b);
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	it = PyObject_GetIter(b);
 | |
| 	if (it == NULL)
 | |
| 		return NULL;
 | |
| 	iternext = *it->ob_type->tp_iternext;
 | |
| 
 | |
| 	/* Guess a result list size. */
 | |
| 	n = _PyObject_LengthHint(b);
 | |
| 	if (n < 0) {
 | |
| 		if (!PyErr_ExceptionMatches(PyExc_TypeError)  &&
 | |
| 		    !PyErr_ExceptionMatches(PyExc_AttributeError)) {
 | |
| 			Py_DECREF(it);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		PyErr_Clear();
 | |
| 		n = 8;	/* arbitrary */
 | |
| 	}
 | |
| 	m = Py_Size(self);
 | |
| 	mn = m + n;
 | |
| 	if (mn >= m) {
 | |
| 		/* Make room. */
 | |
| 		if (list_resize(self, mn) == -1)
 | |
| 			goto error;
 | |
| 		/* Make the list sane again. */
 | |
| 		Py_Size(self) = m;
 | |
| 	}
 | |
| 	/* Else m + n overflowed; on the chance that n lied, and there really
 | |
| 	 * is enough room, ignore it.  If n was telling the truth, we'll
 | |
| 	 * eventually run out of memory during the loop.
 | |
| 	 */
 | |
| 
 | |
| 	/* Run iterator to exhaustion. */
 | |
| 	for (;;) {
 | |
| 		PyObject *item = iternext(it);
 | |
| 		if (item == NULL) {
 | |
| 			if (PyErr_Occurred()) {
 | |
| 				if (PyErr_ExceptionMatches(PyExc_StopIteration))
 | |
| 					PyErr_Clear();
 | |
| 				else
 | |
| 					goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		if (Py_Size(self) < self->allocated) {
 | |
| 			/* steals ref */
 | |
| 			PyList_SET_ITEM(self, Py_Size(self), item);
 | |
| 			++Py_Size(self);
 | |
| 		}
 | |
| 		else {
 | |
| 			int status = app1(self, item);
 | |
| 			Py_DECREF(item);  /* append creates a new ref */
 | |
| 			if (status < 0)
 | |
| 				goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Cut back result list if initial guess was too large. */
 | |
| 	if (Py_Size(self) < self->allocated)
 | |
| 		list_resize(self, Py_Size(self));  /* shrinking can't fail */
 | |
| 
 | |
| 	Py_DECREF(it);
 | |
| 	Py_RETURN_NONE;
 | |
| 
 | |
|   error:
 | |
| 	Py_DECREF(it);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyList_Extend(PyListObject *self, PyObject *b)
 | |
| {
 | |
| 	return listextend(self, b);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_inplace_concat(PyListObject *self, PyObject *other)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	result = listextend(self, other);
 | |
| 	if (result == NULL)
 | |
| 		return result;
 | |
| 	Py_DECREF(result);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listpop(PyListObject *self, PyObject *args)
 | |
| {
 | |
| 	Py_ssize_t i = -1;
 | |
| 	PyObject *v;
 | |
| 	int status;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "|n:pop", &i))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (Py_Size(self) == 0) {
 | |
| 		/* Special-case most common failure cause */
 | |
| 		PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (i < 0)
 | |
| 		i += Py_Size(self);
 | |
| 	if (i < 0 || i >= Py_Size(self)) {
 | |
| 		PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	v = self->ob_item[i];
 | |
| 	if (i == Py_Size(self) - 1) {
 | |
| 		status = list_resize(self, Py_Size(self) - 1);
 | |
| 		assert(status >= 0);
 | |
| 		return v; /* and v now owns the reference the list had */
 | |
| 	}
 | |
| 	Py_INCREF(v);
 | |
| 	status = list_ass_slice(self, i, i+1, (PyObject *)NULL);
 | |
| 	assert(status >= 0);
 | |
| 	/* Use status, so that in a release build compilers don't
 | |
| 	 * complain about the unused name.
 | |
| 	 */
 | |
| 	(void) status;
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
 | |
| static void
 | |
| reverse_slice(PyObject **lo, PyObject **hi)
 | |
| {
 | |
| 	assert(lo && hi);
 | |
| 
 | |
| 	--hi;
 | |
| 	while (lo < hi) {
 | |
| 		PyObject *t = *lo;
 | |
| 		*lo = *hi;
 | |
| 		*hi = t;
 | |
| 		++lo;
 | |
| 		--hi;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Lots of code for an adaptive, stable, natural mergesort.  There are many
 | |
|  * pieces to this algorithm; read listsort.txt for overviews and details.
 | |
|  */
 | |
| 
 | |
| /* Comparison function.  Takes care of calling a user-supplied
 | |
|  * comparison function (any callable Python object), which must not be
 | |
|  * NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
 | |
|  * with Py_LT if you know it's NULL).
 | |
|  * Returns -1 on error, 1 if x < y, 0 if x >= y.
 | |
|  */
 | |
| static int
 | |
| islt(PyObject *x, PyObject *y, PyObject *compare)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	PyObject *args;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	assert(compare != NULL);
 | |
| 	/* Call the user's comparison function and translate the 3-way
 | |
| 	 * result into true or false (or error).
 | |
| 	 */
 | |
| 	args = PyTuple_New(2);
 | |
| 	if (args == NULL)
 | |
| 		return -1;
 | |
| 	Py_INCREF(x);
 | |
| 	Py_INCREF(y);
 | |
| 	PyTuple_SET_ITEM(args, 0, x);
 | |
| 	PyTuple_SET_ITEM(args, 1, y);
 | |
| 	res = PyObject_Call(compare, args, NULL);
 | |
| 	Py_DECREF(args);
 | |
| 	if (res == NULL)
 | |
| 		return -1;
 | |
| 	if (!PyInt_CheckExact(res)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "comparison function must return int, not %.200s",
 | |
| 			     res->ob_type->tp_name);
 | |
| 		Py_DECREF(res);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	i = PyInt_AsLong(res);
 | |
| 	Py_DECREF(res);
 | |
| 	return i < 0;
 | |
| }
 | |
| 
 | |
| /* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
 | |
|  * islt.  This avoids a layer of function call in the usual case, and
 | |
|  * sorting does many comparisons.
 | |
|  * Returns -1 on error, 1 if x < y, 0 if x >= y.
 | |
|  */
 | |
| #define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ?			\
 | |
| 			     PyObject_RichCompareBool(X, Y, Py_LT) :	\
 | |
| 			     islt(X, Y, COMPARE))
 | |
| 
 | |
| /* Compare X to Y via "<".  Goto "fail" if the comparison raises an
 | |
|    error.  Else "k" is set to true iff X<Y, and an "if (k)" block is
 | |
|    started.  It makes more sense in context <wink>.  X and Y are PyObject*s.
 | |
| */
 | |
| #define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail;  \
 | |
| 		   if (k)
 | |
| 
 | |
| /* binarysort is the best method for sorting small arrays: it does
 | |
|    few compares, but can do data movement quadratic in the number of
 | |
|    elements.
 | |
|    [lo, hi) is a contiguous slice of a list, and is sorted via
 | |
|    binary insertion.  This sort is stable.
 | |
|    On entry, must have lo <= start <= hi, and that [lo, start) is already
 | |
|    sorted (pass start == lo if you don't know!).
 | |
|    If islt() complains return -1, else 0.
 | |
|    Even in case of error, the output slice will be some permutation of
 | |
|    the input (nothing is lost or duplicated).
 | |
| */
 | |
| static int
 | |
| binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
 | |
|      /* compare -- comparison function object, or NULL for default */
 | |
| {
 | |
| 	register Py_ssize_t k;
 | |
| 	register PyObject **l, **p, **r;
 | |
| 	register PyObject *pivot;
 | |
| 
 | |
| 	assert(lo <= start && start <= hi);
 | |
| 	/* assert [lo, start) is sorted */
 | |
| 	if (lo == start)
 | |
| 		++start;
 | |
| 	for (; start < hi; ++start) {
 | |
| 		/* set l to where *start belongs */
 | |
| 		l = lo;
 | |
| 		r = start;
 | |
| 		pivot = *r;
 | |
| 		/* Invariants:
 | |
| 		 * pivot >= all in [lo, l).
 | |
| 		 * pivot  < all in [r, start).
 | |
| 		 * The second is vacuously true at the start.
 | |
| 		 */
 | |
| 		assert(l < r);
 | |
| 		do {
 | |
| 			p = l + ((r - l) >> 1);
 | |
| 			IFLT(pivot, *p)
 | |
| 				r = p;
 | |
| 			else
 | |
| 				l = p+1;
 | |
| 		} while (l < r);
 | |
| 		assert(l == r);
 | |
| 		/* The invariants still hold, so pivot >= all in [lo, l) and
 | |
| 		   pivot < all in [l, start), so pivot belongs at l.  Note
 | |
| 		   that if there are elements equal to pivot, l points to the
 | |
| 		   first slot after them -- that's why this sort is stable.
 | |
| 		   Slide over to make room.
 | |
| 		   Caution: using memmove is much slower under MSVC 5;
 | |
| 		   we're not usually moving many slots. */
 | |
| 		for (p = start; p > l; --p)
 | |
| 			*p = *(p-1);
 | |
| 		*l = pivot;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Return the length of the run beginning at lo, in the slice [lo, hi).  lo < hi
 | |
| is required on entry.  "A run" is the longest ascending sequence, with
 | |
| 
 | |
|     lo[0] <= lo[1] <= lo[2] <= ...
 | |
| 
 | |
| or the longest descending sequence, with
 | |
| 
 | |
|     lo[0] > lo[1] > lo[2] > ...
 | |
| 
 | |
| Boolean *descending is set to 0 in the former case, or to 1 in the latter.
 | |
| For its intended use in a stable mergesort, the strictness of the defn of
 | |
| "descending" is needed so that the caller can safely reverse a descending
 | |
| sequence without violating stability (strict > ensures there are no equal
 | |
| elements to get out of order).
 | |
| 
 | |
| Returns -1 in case of error.
 | |
| */
 | |
| static Py_ssize_t
 | |
| count_run(PyObject **lo, PyObject **hi, PyObject *compare, int *descending)
 | |
| {
 | |
| 	Py_ssize_t k;
 | |
| 	Py_ssize_t n;
 | |
| 
 | |
| 	assert(lo < hi);
 | |
| 	*descending = 0;
 | |
| 	++lo;
 | |
| 	if (lo == hi)
 | |
| 		return 1;
 | |
| 
 | |
| 	n = 2;
 | |
| 	IFLT(*lo, *(lo-1)) {
 | |
| 		*descending = 1;
 | |
| 		for (lo = lo+1; lo < hi; ++lo, ++n) {
 | |
| 			IFLT(*lo, *(lo-1))
 | |
| 				;
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		for (lo = lo+1; lo < hi; ++lo, ++n) {
 | |
| 			IFLT(*lo, *(lo-1))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Locate the proper position of key in a sorted vector; if the vector contains
 | |
| an element equal to key, return the position immediately to the left of
 | |
| the leftmost equal element.  [gallop_right() does the same except returns
 | |
| the position to the right of the rightmost equal element (if any).]
 | |
| 
 | |
| "a" is a sorted vector with n elements, starting at a[0].  n must be > 0.
 | |
| 
 | |
| "hint" is an index at which to begin the search, 0 <= hint < n.  The closer
 | |
| hint is to the final result, the faster this runs.
 | |
| 
 | |
| The return value is the int k in 0..n such that
 | |
| 
 | |
|     a[k-1] < key <= a[k]
 | |
| 
 | |
| pretending that *(a-1) is minus infinity and a[n] is plus infinity.  IOW,
 | |
| key belongs at index k; or, IOW, the first k elements of a should precede
 | |
| key, and the last n-k should follow key.
 | |
| 
 | |
| Returns -1 on error.  See listsort.txt for info on the method.
 | |
| */
 | |
| static Py_ssize_t
 | |
| gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint, PyObject *compare)
 | |
| {
 | |
| 	Py_ssize_t ofs;
 | |
| 	Py_ssize_t lastofs;
 | |
| 	Py_ssize_t k;
 | |
| 
 | |
| 	assert(key && a && n > 0 && hint >= 0 && hint < n);
 | |
| 
 | |
| 	a += hint;
 | |
| 	lastofs = 0;
 | |
| 	ofs = 1;
 | |
| 	IFLT(*a, key) {
 | |
| 		/* a[hint] < key -- gallop right, until
 | |
| 		 * a[hint + lastofs] < key <= a[hint + ofs]
 | |
| 		 */
 | |
| 		const Py_ssize_t maxofs = n - hint;	/* &a[n-1] is highest */
 | |
| 		while (ofs < maxofs) {
 | |
| 			IFLT(a[ofs], key) {
 | |
| 				lastofs = ofs;
 | |
| 				ofs = (ofs << 1) + 1;
 | |
| 				if (ofs <= 0)	/* int overflow */
 | |
| 					ofs = maxofs;
 | |
| 			}
 | |
|  			else	/* key <= a[hint + ofs] */
 | |
| 				break;
 | |
| 		}
 | |
| 		if (ofs > maxofs)
 | |
| 			ofs = maxofs;
 | |
| 		/* Translate back to offsets relative to &a[0]. */
 | |
| 		lastofs += hint;
 | |
| 		ofs += hint;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* key <= a[hint] -- gallop left, until
 | |
| 		 * a[hint - ofs] < key <= a[hint - lastofs]
 | |
| 		 */
 | |
| 		const Py_ssize_t maxofs = hint + 1;	/* &a[0] is lowest */
 | |
| 		while (ofs < maxofs) {
 | |
| 			IFLT(*(a-ofs), key)
 | |
| 				break;
 | |
| 			/* key <= a[hint - ofs] */
 | |
| 			lastofs = ofs;
 | |
| 			ofs = (ofs << 1) + 1;
 | |
| 			if (ofs <= 0)	/* int overflow */
 | |
| 				ofs = maxofs;
 | |
| 		}
 | |
| 		if (ofs > maxofs)
 | |
| 			ofs = maxofs;
 | |
| 		/* Translate back to positive offsets relative to &a[0]. */
 | |
| 		k = lastofs;
 | |
| 		lastofs = hint - ofs;
 | |
| 		ofs = hint - k;
 | |
| 	}
 | |
| 	a -= hint;
 | |
| 
 | |
| 	assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | |
| 	/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
 | |
| 	 * right of lastofs but no farther right than ofs.  Do a binary
 | |
| 	 * search, with invariant a[lastofs-1] < key <= a[ofs].
 | |
| 	 */
 | |
| 	++lastofs;
 | |
| 	while (lastofs < ofs) {
 | |
| 		Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
 | |
| 
 | |
| 		IFLT(a[m], key)
 | |
| 			lastofs = m+1;	/* a[m] < key */
 | |
| 		else
 | |
| 			ofs = m;	/* key <= a[m] */
 | |
| 	}
 | |
| 	assert(lastofs == ofs);		/* so a[ofs-1] < key <= a[ofs] */
 | |
| 	return ofs;
 | |
| 
 | |
| fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Exactly like gallop_left(), except that if key already exists in a[0:n],
 | |
| finds the position immediately to the right of the rightmost equal value.
 | |
| 
 | |
| The return value is the int k in 0..n such that
 | |
| 
 | |
|     a[k-1] <= key < a[k]
 | |
| 
 | |
| or -1 if error.
 | |
| 
 | |
| The code duplication is massive, but this is enough different given that
 | |
| we're sticking to "<" comparisons that it's much harder to follow if
 | |
| written as one routine with yet another "left or right?" flag.
 | |
| */
 | |
| static Py_ssize_t
 | |
| gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint, PyObject *compare)
 | |
| {
 | |
| 	Py_ssize_t ofs;
 | |
| 	Py_ssize_t lastofs;
 | |
| 	Py_ssize_t k;
 | |
| 
 | |
| 	assert(key && a && n > 0 && hint >= 0 && hint < n);
 | |
| 
 | |
| 	a += hint;
 | |
| 	lastofs = 0;
 | |
| 	ofs = 1;
 | |
| 	IFLT(key, *a) {
 | |
| 		/* key < a[hint] -- gallop left, until
 | |
| 		 * a[hint - ofs] <= key < a[hint - lastofs]
 | |
| 		 */
 | |
| 		const Py_ssize_t maxofs = hint + 1;	/* &a[0] is lowest */
 | |
| 		while (ofs < maxofs) {
 | |
| 			IFLT(key, *(a-ofs)) {
 | |
| 				lastofs = ofs;
 | |
| 				ofs = (ofs << 1) + 1;
 | |
| 				if (ofs <= 0)	/* int overflow */
 | |
| 					ofs = maxofs;
 | |
| 			}
 | |
| 			else	/* a[hint - ofs] <= key */
 | |
| 				break;
 | |
| 		}
 | |
| 		if (ofs > maxofs)
 | |
| 			ofs = maxofs;
 | |
| 		/* Translate back to positive offsets relative to &a[0]. */
 | |
| 		k = lastofs;
 | |
| 		lastofs = hint - ofs;
 | |
| 		ofs = hint - k;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* a[hint] <= key -- gallop right, until
 | |
| 		 * a[hint + lastofs] <= key < a[hint + ofs]
 | |
| 		*/
 | |
| 		const Py_ssize_t maxofs = n - hint;	/* &a[n-1] is highest */
 | |
| 		while (ofs < maxofs) {
 | |
| 			IFLT(key, a[ofs])
 | |
| 				break;
 | |
| 			/* a[hint + ofs] <= key */
 | |
| 			lastofs = ofs;
 | |
| 			ofs = (ofs << 1) + 1;
 | |
| 			if (ofs <= 0)	/* int overflow */
 | |
| 				ofs = maxofs;
 | |
| 		}
 | |
| 		if (ofs > maxofs)
 | |
| 			ofs = maxofs;
 | |
| 		/* Translate back to offsets relative to &a[0]. */
 | |
| 		lastofs += hint;
 | |
| 		ofs += hint;
 | |
| 	}
 | |
| 	a -= hint;
 | |
| 
 | |
| 	assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | |
| 	/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
 | |
| 	 * right of lastofs but no farther right than ofs.  Do a binary
 | |
| 	 * search, with invariant a[lastofs-1] <= key < a[ofs].
 | |
| 	 */
 | |
| 	++lastofs;
 | |
| 	while (lastofs < ofs) {
 | |
| 		Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
 | |
| 
 | |
| 		IFLT(key, a[m])
 | |
| 			ofs = m;	/* key < a[m] */
 | |
| 		else
 | |
| 			lastofs = m+1;	/* a[m] <= key */
 | |
| 	}
 | |
| 	assert(lastofs == ofs);		/* so a[ofs-1] <= key < a[ofs] */
 | |
| 	return ofs;
 | |
| 
 | |
| fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* The maximum number of entries in a MergeState's pending-runs stack.
 | |
|  * This is enough to sort arrays of size up to about
 | |
|  *     32 * phi ** MAX_MERGE_PENDING
 | |
|  * where phi ~= 1.618.  85 is ridiculouslylarge enough, good for an array
 | |
|  * with 2**64 elements.
 | |
|  */
 | |
| #define MAX_MERGE_PENDING 85
 | |
| 
 | |
| /* When we get into galloping mode, we stay there until both runs win less
 | |
|  * often than MIN_GALLOP consecutive times.  See listsort.txt for more info.
 | |
|  */
 | |
| #define MIN_GALLOP 7
 | |
| 
 | |
| /* Avoid malloc for small temp arrays. */
 | |
| #define MERGESTATE_TEMP_SIZE 256
 | |
| 
 | |
| /* One MergeState exists on the stack per invocation of mergesort.  It's just
 | |
|  * a convenient way to pass state around among the helper functions.
 | |
|  */
 | |
| struct s_slice {
 | |
| 	PyObject **base;
 | |
| 	Py_ssize_t len;
 | |
| };
 | |
| 
 | |
| typedef struct s_MergeState {
 | |
| 	/* The user-supplied comparison function. or NULL if none given. */
 | |
| 	PyObject *compare;
 | |
| 
 | |
| 	/* This controls when we get *into* galloping mode.  It's initialized
 | |
| 	 * to MIN_GALLOP.  merge_lo and merge_hi tend to nudge it higher for
 | |
| 	 * random data, and lower for highly structured data.
 | |
| 	 */
 | |
| 	Py_ssize_t min_gallop;
 | |
| 
 | |
| 	/* 'a' is temp storage to help with merges.  It contains room for
 | |
| 	 * alloced entries.
 | |
| 	 */
 | |
| 	PyObject **a;	/* may point to temparray below */
 | |
| 	Py_ssize_t alloced;
 | |
| 
 | |
| 	/* A stack of n pending runs yet to be merged.  Run #i starts at
 | |
| 	 * address base[i] and extends for len[i] elements.  It's always
 | |
| 	 * true (so long as the indices are in bounds) that
 | |
| 	 *
 | |
| 	 *     pending[i].base + pending[i].len == pending[i+1].base
 | |
| 	 *
 | |
| 	 * so we could cut the storage for this, but it's a minor amount,
 | |
| 	 * and keeping all the info explicit simplifies the code.
 | |
| 	 */
 | |
| 	int n;
 | |
| 	struct s_slice pending[MAX_MERGE_PENDING];
 | |
| 
 | |
| 	/* 'a' points to this when possible, rather than muck with malloc. */
 | |
| 	PyObject *temparray[MERGESTATE_TEMP_SIZE];
 | |
| } MergeState;
 | |
| 
 | |
| /* Conceptually a MergeState's constructor. */
 | |
| static void
 | |
| merge_init(MergeState *ms, PyObject *compare)
 | |
| {
 | |
| 	assert(ms != NULL);
 | |
| 	ms->compare = compare;
 | |
| 	ms->a = ms->temparray;
 | |
| 	ms->alloced = MERGESTATE_TEMP_SIZE;
 | |
| 	ms->n = 0;
 | |
| 	ms->min_gallop = MIN_GALLOP;
 | |
| }
 | |
| 
 | |
| /* Free all the temp memory owned by the MergeState.  This must be called
 | |
|  * when you're done with a MergeState, and may be called before then if
 | |
|  * you want to free the temp memory early.
 | |
|  */
 | |
| static void
 | |
| merge_freemem(MergeState *ms)
 | |
| {
 | |
| 	assert(ms != NULL);
 | |
| 	if (ms->a != ms->temparray)
 | |
| 		PyMem_Free(ms->a);
 | |
| 	ms->a = ms->temparray;
 | |
| 	ms->alloced = MERGESTATE_TEMP_SIZE;
 | |
| }
 | |
| 
 | |
| /* Ensure enough temp memory for 'need' array slots is available.
 | |
|  * Returns 0 on success and -1 if the memory can't be gotten.
 | |
|  */
 | |
| static int
 | |
| merge_getmem(MergeState *ms, Py_ssize_t need)
 | |
| {
 | |
| 	assert(ms != NULL);
 | |
| 	if (need <= ms->alloced)
 | |
| 		return 0;
 | |
| 	/* Don't realloc!  That can cost cycles to copy the old data, but
 | |
| 	 * we don't care what's in the block.
 | |
| 	 */
 | |
| 	merge_freemem(ms);
 | |
| 	ms->a = (PyObject **)PyMem_Malloc(need * sizeof(PyObject*));
 | |
| 	if (ms->a) {
 | |
| 		ms->alloced = need;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	PyErr_NoMemory();
 | |
| 	merge_freemem(ms);	/* reset to sane state */
 | |
| 	return -1;
 | |
| }
 | |
| #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 :	\
 | |
| 				merge_getmem(MS, NEED))
 | |
| 
 | |
| /* Merge the na elements starting at pa with the nb elements starting at pb
 | |
|  * in a stable way, in-place.  na and nb must be > 0, and pa + na == pb.
 | |
|  * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
 | |
|  * merge, and should have na <= nb.  See listsort.txt for more info.
 | |
|  * Return 0 if successful, -1 if error.
 | |
|  */
 | |
| static Py_ssize_t
 | |
| merge_lo(MergeState *ms, PyObject **pa, Py_ssize_t na,
 | |
|                          PyObject **pb, Py_ssize_t nb)
 | |
| {
 | |
| 	Py_ssize_t k;
 | |
| 	PyObject *compare;
 | |
| 	PyObject **dest;
 | |
| 	int result = -1;	/* guilty until proved innocent */
 | |
| 	Py_ssize_t min_gallop;
 | |
| 
 | |
| 	assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
 | |
| 	if (MERGE_GETMEM(ms, na) < 0)
 | |
| 		return -1;
 | |
| 	memcpy(ms->a, pa, na * sizeof(PyObject*));
 | |
| 	dest = pa;
 | |
| 	pa = ms->a;
 | |
| 
 | |
| 	*dest++ = *pb++;
 | |
| 	--nb;
 | |
| 	if (nb == 0)
 | |
| 		goto Succeed;
 | |
| 	if (na == 1)
 | |
| 		goto CopyB;
 | |
| 
 | |
| 	min_gallop = ms->min_gallop;
 | |
| 	compare = ms->compare;
 | |
| 	for (;;) {
 | |
| 		Py_ssize_t acount = 0;	/* # of times A won in a row */
 | |
| 		Py_ssize_t bcount = 0;	/* # of times B won in a row */
 | |
| 
 | |
| 		/* Do the straightforward thing until (if ever) one run
 | |
| 		 * appears to win consistently.
 | |
| 		 */
 | |
|  		for (;;) {
 | |
|  			assert(na > 1 && nb > 0);
 | |
| 	 		k = ISLT(*pb, *pa, compare);
 | |
| 			if (k) {
 | |
| 				if (k < 0)
 | |
| 					goto Fail;
 | |
| 				*dest++ = *pb++;
 | |
| 				++bcount;
 | |
| 				acount = 0;
 | |
| 				--nb;
 | |
| 				if (nb == 0)
 | |
| 					goto Succeed;
 | |
| 				if (bcount >= min_gallop)
 | |
| 					break;
 | |
| 			}
 | |
| 			else {
 | |
| 				*dest++ = *pa++;
 | |
| 				++acount;
 | |
| 				bcount = 0;
 | |
| 				--na;
 | |
| 				if (na == 1)
 | |
| 					goto CopyB;
 | |
| 				if (acount >= min_gallop)
 | |
| 					break;
 | |
| 			}
 | |
|  		}
 | |
| 
 | |
| 		/* One run is winning so consistently that galloping may
 | |
| 		 * be a huge win.  So try that, and continue galloping until
 | |
| 		 * (if ever) neither run appears to be winning consistently
 | |
| 		 * anymore.
 | |
| 		 */
 | |
| 		++min_gallop;
 | |
| 		do {
 | |
|  			assert(na > 1 && nb > 0);
 | |
| 			min_gallop -= min_gallop > 1;
 | |
| 	 		ms->min_gallop = min_gallop;
 | |
| 			k = gallop_right(*pb, pa, na, 0, compare);
 | |
| 			acount = k;
 | |
| 			if (k) {
 | |
| 				if (k < 0)
 | |
| 					goto Fail;
 | |
| 				memcpy(dest, pa, k * sizeof(PyObject *));
 | |
| 				dest += k;
 | |
| 				pa += k;
 | |
| 				na -= k;
 | |
| 				if (na == 1)
 | |
| 					goto CopyB;
 | |
| 				/* na==0 is impossible now if the comparison
 | |
| 				 * function is consistent, but we can't assume
 | |
| 				 * that it is.
 | |
| 				 */
 | |
| 				if (na == 0)
 | |
| 					goto Succeed;
 | |
| 			}
 | |
| 			*dest++ = *pb++;
 | |
| 			--nb;
 | |
| 			if (nb == 0)
 | |
| 				goto Succeed;
 | |
| 
 | |
|  			k = gallop_left(*pa, pb, nb, 0, compare);
 | |
|  			bcount = k;
 | |
| 			if (k) {
 | |
| 				if (k < 0)
 | |
| 					goto Fail;
 | |
| 				memmove(dest, pb, k * sizeof(PyObject *));
 | |
| 				dest += k;
 | |
| 				pb += k;
 | |
| 				nb -= k;
 | |
| 				if (nb == 0)
 | |
| 					goto Succeed;
 | |
| 			}
 | |
| 			*dest++ = *pa++;
 | |
| 			--na;
 | |
| 			if (na == 1)
 | |
| 				goto CopyB;
 | |
|  		} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | |
|  		++min_gallop;	/* penalize it for leaving galloping mode */
 | |
|  		ms->min_gallop = min_gallop;
 | |
|  	}
 | |
| Succeed:
 | |
| 	result = 0;
 | |
| Fail:
 | |
| 	if (na)
 | |
| 		memcpy(dest, pa, na * sizeof(PyObject*));
 | |
| 	return result;
 | |
| CopyB:
 | |
| 	assert(na == 1 && nb > 0);
 | |
| 	/* The last element of pa belongs at the end of the merge. */
 | |
| 	memmove(dest, pb, nb * sizeof(PyObject *));
 | |
| 	dest[nb] = *pa;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Merge the na elements starting at pa with the nb elements starting at pb
 | |
|  * in a stable way, in-place.  na and nb must be > 0, and pa + na == pb.
 | |
|  * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
 | |
|  * merge, and should have na >= nb.  See listsort.txt for more info.
 | |
|  * Return 0 if successful, -1 if error.
 | |
|  */
 | |
| static Py_ssize_t
 | |
| merge_hi(MergeState *ms, PyObject **pa, Py_ssize_t na, PyObject **pb, Py_ssize_t nb)
 | |
| {
 | |
| 	Py_ssize_t k;
 | |
| 	PyObject *compare;
 | |
| 	PyObject **dest;
 | |
| 	int result = -1;	/* guilty until proved innocent */
 | |
| 	PyObject **basea;
 | |
| 	PyObject **baseb;
 | |
| 	Py_ssize_t min_gallop;
 | |
| 
 | |
| 	assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
 | |
| 	if (MERGE_GETMEM(ms, nb) < 0)
 | |
| 		return -1;
 | |
| 	dest = pb + nb - 1;
 | |
| 	memcpy(ms->a, pb, nb * sizeof(PyObject*));
 | |
| 	basea = pa;
 | |
| 	baseb = ms->a;
 | |
| 	pb = ms->a + nb - 1;
 | |
| 	pa += na - 1;
 | |
| 
 | |
| 	*dest-- = *pa--;
 | |
| 	--na;
 | |
| 	if (na == 0)
 | |
| 		goto Succeed;
 | |
| 	if (nb == 1)
 | |
| 		goto CopyA;
 | |
| 
 | |
| 	min_gallop = ms->min_gallop;
 | |
| 	compare = ms->compare;
 | |
| 	for (;;) {
 | |
| 		Py_ssize_t acount = 0;	/* # of times A won in a row */
 | |
| 		Py_ssize_t bcount = 0;	/* # of times B won in a row */
 | |
| 
 | |
| 		/* Do the straightforward thing until (if ever) one run
 | |
| 		 * appears to win consistently.
 | |
| 		 */
 | |
|  		for (;;) {
 | |
|  			assert(na > 0 && nb > 1);
 | |
| 	 		k = ISLT(*pb, *pa, compare);
 | |
| 			if (k) {
 | |
| 				if (k < 0)
 | |
| 					goto Fail;
 | |
| 				*dest-- = *pa--;
 | |
| 				++acount;
 | |
| 				bcount = 0;
 | |
| 				--na;
 | |
| 				if (na == 0)
 | |
| 					goto Succeed;
 | |
| 				if (acount >= min_gallop)
 | |
| 					break;
 | |
| 			}
 | |
| 			else {
 | |
| 				*dest-- = *pb--;
 | |
| 				++bcount;
 | |
| 				acount = 0;
 | |
| 				--nb;
 | |
| 				if (nb == 1)
 | |
| 					goto CopyA;
 | |
| 				if (bcount >= min_gallop)
 | |
| 					break;
 | |
| 			}
 | |
|  		}
 | |
| 
 | |
| 		/* One run is winning so consistently that galloping may
 | |
| 		 * be a huge win.  So try that, and continue galloping until
 | |
| 		 * (if ever) neither run appears to be winning consistently
 | |
| 		 * anymore.
 | |
| 		 */
 | |
| 		++min_gallop;
 | |
| 		do {
 | |
|  			assert(na > 0 && nb > 1);
 | |
| 			min_gallop -= min_gallop > 1;
 | |
| 	 		ms->min_gallop = min_gallop;
 | |
| 			k = gallop_right(*pb, basea, na, na-1, compare);
 | |
| 			if (k < 0)
 | |
| 				goto Fail;
 | |
| 			k = na - k;
 | |
| 			acount = k;
 | |
| 			if (k) {
 | |
| 				dest -= k;
 | |
| 				pa -= k;
 | |
| 				memmove(dest+1, pa+1, k * sizeof(PyObject *));
 | |
| 				na -= k;
 | |
| 				if (na == 0)
 | |
| 					goto Succeed;
 | |
| 			}
 | |
| 			*dest-- = *pb--;
 | |
| 			--nb;
 | |
| 			if (nb == 1)
 | |
| 				goto CopyA;
 | |
| 
 | |
|  			k = gallop_left(*pa, baseb, nb, nb-1, compare);
 | |
| 			if (k < 0)
 | |
| 				goto Fail;
 | |
| 			k = nb - k;
 | |
| 			bcount = k;
 | |
| 			if (k) {
 | |
| 				dest -= k;
 | |
| 				pb -= k;
 | |
| 				memcpy(dest+1, pb+1, k * sizeof(PyObject *));
 | |
| 				nb -= k;
 | |
| 				if (nb == 1)
 | |
| 					goto CopyA;
 | |
| 				/* nb==0 is impossible now if the comparison
 | |
| 				 * function is consistent, but we can't assume
 | |
| 				 * that it is.
 | |
| 				 */
 | |
| 				if (nb == 0)
 | |
| 					goto Succeed;
 | |
| 			}
 | |
| 			*dest-- = *pa--;
 | |
| 			--na;
 | |
| 			if (na == 0)
 | |
| 				goto Succeed;
 | |
|  		} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | |
|  		++min_gallop;	/* penalize it for leaving galloping mode */
 | |
|  		ms->min_gallop = min_gallop;
 | |
|  	}
 | |
| Succeed:
 | |
| 	result = 0;
 | |
| Fail:
 | |
| 	if (nb)
 | |
| 		memcpy(dest-(nb-1), baseb, nb * sizeof(PyObject*));
 | |
| 	return result;
 | |
| CopyA:
 | |
| 	assert(nb == 1 && na > 0);
 | |
| 	/* The first element of pb belongs at the front of the merge. */
 | |
| 	dest -= na;
 | |
| 	pa -= na;
 | |
| 	memmove(dest+1, pa+1, na * sizeof(PyObject *));
 | |
| 	*dest = *pb;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Merge the two runs at stack indices i and i+1.
 | |
|  * Returns 0 on success, -1 on error.
 | |
|  */
 | |
| static Py_ssize_t
 | |
| merge_at(MergeState *ms, Py_ssize_t i)
 | |
| {
 | |
| 	PyObject **pa, **pb;
 | |
| 	Py_ssize_t na, nb;
 | |
| 	Py_ssize_t k;
 | |
| 	PyObject *compare;
 | |
| 
 | |
| 	assert(ms != NULL);
 | |
| 	assert(ms->n >= 2);
 | |
| 	assert(i >= 0);
 | |
| 	assert(i == ms->n - 2 || i == ms->n - 3);
 | |
| 
 | |
| 	pa = ms->pending[i].base;
 | |
| 	na = ms->pending[i].len;
 | |
| 	pb = ms->pending[i+1].base;
 | |
| 	nb = ms->pending[i+1].len;
 | |
| 	assert(na > 0 && nb > 0);
 | |
| 	assert(pa + na == pb);
 | |
| 
 | |
| 	/* Record the length of the combined runs; if i is the 3rd-last
 | |
| 	 * run now, also slide over the last run (which isn't involved
 | |
| 	 * in this merge).  The current run i+1 goes away in any case.
 | |
| 	 */
 | |
| 	ms->pending[i].len = na + nb;
 | |
| 	if (i == ms->n - 3)
 | |
| 		ms->pending[i+1] = ms->pending[i+2];
 | |
| 	--ms->n;
 | |
| 
 | |
| 	/* Where does b start in a?  Elements in a before that can be
 | |
| 	 * ignored (already in place).
 | |
| 	 */
 | |
| 	compare = ms->compare;
 | |
| 	k = gallop_right(*pb, pa, na, 0, compare);
 | |
| 	if (k < 0)
 | |
| 		return -1;
 | |
| 	pa += k;
 | |
| 	na -= k;
 | |
| 	if (na == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Where does a end in b?  Elements in b after that can be
 | |
| 	 * ignored (already in place).
 | |
| 	 */
 | |
| 	nb = gallop_left(pa[na-1], pb, nb, nb-1, compare);
 | |
| 	if (nb <= 0)
 | |
| 		return nb;
 | |
| 
 | |
| 	/* Merge what remains of the runs, using a temp array with
 | |
| 	 * min(na, nb) elements.
 | |
| 	 */
 | |
| 	if (na <= nb)
 | |
| 		return merge_lo(ms, pa, na, pb, nb);
 | |
| 	else
 | |
| 		return merge_hi(ms, pa, na, pb, nb);
 | |
| }
 | |
| 
 | |
| /* Examine the stack of runs waiting to be merged, merging adjacent runs
 | |
|  * until the stack invariants are re-established:
 | |
|  *
 | |
|  * 1. len[-3] > len[-2] + len[-1]
 | |
|  * 2. len[-2] > len[-1]
 | |
|  *
 | |
|  * See listsort.txt for more info.
 | |
|  *
 | |
|  * Returns 0 on success, -1 on error.
 | |
|  */
 | |
| static int
 | |
| merge_collapse(MergeState *ms)
 | |
| {
 | |
| 	struct s_slice *p = ms->pending;
 | |
| 
 | |
| 	assert(ms);
 | |
| 	while (ms->n > 1) {
 | |
| 		Py_ssize_t n = ms->n - 2;
 | |
| 		if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) {
 | |
| 		    	if (p[n-1].len < p[n+1].len)
 | |
| 		    		--n;
 | |
| 			if (merge_at(ms, n) < 0)
 | |
| 				return -1;
 | |
| 		}
 | |
| 		else if (p[n].len <= p[n+1].len) {
 | |
| 			 if (merge_at(ms, n) < 0)
 | |
| 			 	return -1;
 | |
| 		}
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Regardless of invariants, merge all runs on the stack until only one
 | |
|  * remains.  This is used at the end of the mergesort.
 | |
|  *
 | |
|  * Returns 0 on success, -1 on error.
 | |
|  */
 | |
| static int
 | |
| merge_force_collapse(MergeState *ms)
 | |
| {
 | |
| 	struct s_slice *p = ms->pending;
 | |
| 
 | |
| 	assert(ms);
 | |
| 	while (ms->n > 1) {
 | |
| 		Py_ssize_t n = ms->n - 2;
 | |
| 		if (n > 0 && p[n-1].len < p[n+1].len)
 | |
| 			--n;
 | |
| 		if (merge_at(ms, n) < 0)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Compute a good value for the minimum run length; natural runs shorter
 | |
|  * than this are boosted artificially via binary insertion.
 | |
|  *
 | |
|  * If n < 64, return n (it's too small to bother with fancy stuff).
 | |
|  * Else if n is an exact power of 2, return 32.
 | |
|  * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
 | |
|  * strictly less than, an exact power of 2.
 | |
|  *
 | |
|  * See listsort.txt for more info.
 | |
|  */
 | |
| static Py_ssize_t
 | |
| merge_compute_minrun(Py_ssize_t n)
 | |
| {
 | |
| 	Py_ssize_t r = 0;	/* becomes 1 if any 1 bits are shifted off */
 | |
| 
 | |
| 	assert(n >= 0);
 | |
| 	while (n >= 64) {
 | |
| 		r |= n & 1;
 | |
| 		n >>= 1;
 | |
| 	}
 | |
| 	return n + r;
 | |
| }
 | |
| 
 | |
| /* Special wrapper to support stable sorting using the decorate-sort-undecorate
 | |
|    pattern.  Holds a key which is used for comparisons and the original record
 | |
|    which is returned during the undecorate phase.  By exposing only the key
 | |
|    during comparisons, the underlying sort stability characteristics are left
 | |
|    unchanged.  Also, if a custom comparison function is used, it will only see
 | |
|    the key instead of a full record. */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	PyObject *key;
 | |
| 	PyObject *value;
 | |
| } sortwrapperobject;
 | |
| 
 | |
| PyDoc_STRVAR(sortwrapper_doc, "Object wrapper with a custom sort key.");
 | |
| static PyObject *
 | |
| sortwrapper_richcompare(sortwrapperobject *, sortwrapperobject *, int);
 | |
| static void
 | |
| sortwrapper_dealloc(sortwrapperobject *);
 | |
| 
 | |
| static PyTypeObject sortwrapper_type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"sortwrapper",				/* tp_name */
 | |
| 	sizeof(sortwrapperobject),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)sortwrapper_dealloc,	/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,	 		/* tp_flags */
 | |
| 	sortwrapper_doc,			/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	(richcmpfunc)sortwrapper_richcompare,	/* tp_richcompare */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| sortwrapper_richcompare(sortwrapperobject *a, sortwrapperobject *b, int op)
 | |
| {
 | |
| 	if (!PyObject_TypeCheck(b, &sortwrapper_type)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"expected a sortwrapperobject");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyObject_RichCompare(a->key, b->key, op);
 | |
| }
 | |
| 
 | |
| static void
 | |
| sortwrapper_dealloc(sortwrapperobject *so)
 | |
| {
 | |
| 	Py_XDECREF(so->key);
 | |
| 	Py_XDECREF(so->value);
 | |
| 	PyObject_Del(so);
 | |
| }
 | |
| 
 | |
| /* Returns a new reference to a sortwrapper.
 | |
|    Consumes the references to the two underlying objects. */
 | |
| 
 | |
| static PyObject *
 | |
| build_sortwrapper(PyObject *key, PyObject *value)
 | |
| {
 | |
| 	sortwrapperobject *so;
 | |
| 
 | |
| 	so = PyObject_New(sortwrapperobject, &sortwrapper_type);
 | |
| 	if (so == NULL)
 | |
| 		return NULL;
 | |
| 	so->key = key;
 | |
| 	so->value = value;
 | |
| 	return (PyObject *)so;
 | |
| }
 | |
| 
 | |
| /* Returns a new reference to the value underlying the wrapper. */
 | |
| static PyObject *
 | |
| sortwrapper_getvalue(PyObject *so)
 | |
| {
 | |
| 	PyObject *value;
 | |
| 
 | |
| 	if (!PyObject_TypeCheck(so, &sortwrapper_type)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"expected a sortwrapperobject");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	value = ((sortwrapperobject *)so)->value;
 | |
| 	Py_INCREF(value);
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| /* Wrapper for user specified cmp functions in combination with a
 | |
|    specified key function.  Makes sure the cmp function is presented
 | |
|    with the actual key instead of the sortwrapper */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	PyObject *func;
 | |
| } cmpwrapperobject;
 | |
| 
 | |
| static void
 | |
| cmpwrapper_dealloc(cmpwrapperobject *co)
 | |
| {
 | |
| 	Py_XDECREF(co->func);
 | |
| 	PyObject_Del(co);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| cmpwrapper_call(cmpwrapperobject *co, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x, *y, *xx, *yy;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "", 2, 2, &x, &y))
 | |
| 		return NULL;
 | |
| 	if (!PyObject_TypeCheck(x, &sortwrapper_type) ||
 | |
| 	    !PyObject_TypeCheck(y, &sortwrapper_type)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"expected a sortwrapperobject");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	xx = ((sortwrapperobject *)x)->key;
 | |
| 	yy = ((sortwrapperobject *)y)->key;
 | |
| 	return PyObject_CallFunctionObjArgs(co->func, xx, yy, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmpwrapper_doc, "cmp() wrapper for sort with custom keys.");
 | |
| 
 | |
| static PyTypeObject cmpwrapper_type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"cmpwrapper",				/* tp_name */
 | |
| 	sizeof(cmpwrapperobject),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)cmpwrapper_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	(ternaryfunc)cmpwrapper_call,		/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
| 	cmpwrapper_doc,				/* tp_doc */
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| build_cmpwrapper(PyObject *cmpfunc)
 | |
| {
 | |
| 	cmpwrapperobject *co;
 | |
| 
 | |
| 	co = PyObject_New(cmpwrapperobject, &cmpwrapper_type);
 | |
| 	if (co == NULL)
 | |
| 		return NULL;
 | |
| 	Py_INCREF(cmpfunc);
 | |
| 	co->func = cmpfunc;
 | |
| 	return (PyObject *)co;
 | |
| }
 | |
| 
 | |
| static int
 | |
| is_default_cmp(PyObject *cmpfunc)
 | |
| {
 | |
| 	PyCFunctionObject *f;
 | |
| 	const char *module;
 | |
| 	if (cmpfunc == NULL || cmpfunc == Py_None)
 | |
| 		return 1;
 | |
| 	if (!PyCFunction_Check(cmpfunc))
 | |
| 		return 0;
 | |
| 	f = (PyCFunctionObject *)cmpfunc;
 | |
| 	if (f->m_self != NULL)
 | |
| 		return 0;
 | |
| 	if (!PyUnicode_Check(f->m_module))
 | |
| 		return 0;
 | |
| 	module = PyUnicode_AsString(f->m_module);
 | |
| 	if (module == NULL)
 | |
| 		return 0;
 | |
| 	if (strcmp(module, "__builtin__") != 0)
 | |
| 		return 0;
 | |
| 	if (strcmp(f->m_ml->ml_name, "cmp") != 0)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* An adaptive, stable, natural mergesort.  See listsort.txt.
 | |
|  * Returns Py_None on success, NULL on error.  Even in case of error, the
 | |
|  * list will be some permutation of its input state (nothing is lost or
 | |
|  * duplicated).
 | |
|  */
 | |
| static PyObject *
 | |
| listsort(PyListObject *self, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	MergeState ms;
 | |
| 	PyObject **lo, **hi;
 | |
| 	Py_ssize_t nremaining;
 | |
| 	Py_ssize_t minrun;
 | |
| 	Py_ssize_t saved_ob_size, saved_allocated;
 | |
| 	PyObject **saved_ob_item;
 | |
| 	PyObject **final_ob_item;
 | |
| 	PyObject *compare = NULL;
 | |
| 	PyObject *result = NULL;	/* guilty until proved innocent */
 | |
| 	int reverse = 0;
 | |
| 	PyObject *keyfunc = NULL;
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject *key, *value, *kvpair;
 | |
| 	static char *kwlist[] = {"cmp", "key", "reverse", 0};
 | |
| 
 | |
| 	assert(self != NULL);
 | |
| 	assert (PyList_Check(self));
 | |
| 	if (args != NULL) {
 | |
| 		if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi:sort",
 | |
| 			kwlist, &compare, &keyfunc, &reverse))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (is_default_cmp(compare))
 | |
| 		compare = NULL;
 | |
| 	if (keyfunc == Py_None)
 | |
| 		keyfunc = NULL;
 | |
| 	if (compare != NULL && keyfunc != NULL) {
 | |
| 		compare = build_cmpwrapper(compare);
 | |
| 		if (compare == NULL)
 | |
| 			return NULL;
 | |
| 	} else
 | |
| 		Py_XINCREF(compare);
 | |
| 
 | |
| 	/* The list is temporarily made empty, so that mutations performed
 | |
| 	 * by comparison functions can't affect the slice of memory we're
 | |
| 	 * sorting (allowing mutations during sorting is a core-dump
 | |
| 	 * factory, since ob_item may change).
 | |
| 	 */
 | |
| 	saved_ob_size = Py_Size(self);
 | |
| 	saved_ob_item = self->ob_item;
 | |
| 	saved_allocated = self->allocated;
 | |
| 	Py_Size(self) = 0;
 | |
| 	self->ob_item = NULL;
 | |
| 	self->allocated = -1; /* any operation will reset it to >= 0 */
 | |
| 
 | |
| 	if (keyfunc != NULL) {
 | |
| 		for (i=0 ; i < saved_ob_size ; i++) {
 | |
| 			value = saved_ob_item[i];
 | |
| 			key = PyObject_CallFunctionObjArgs(keyfunc, value,
 | |
| 							   NULL);
 | |
| 			if (key == NULL) {
 | |
| 				for (i=i-1 ; i>=0 ; i--) {
 | |
| 					kvpair = saved_ob_item[i];
 | |
| 					value = sortwrapper_getvalue(kvpair);
 | |
| 					saved_ob_item[i] = value;
 | |
| 					Py_DECREF(kvpair);
 | |
| 				}
 | |
| 				goto dsu_fail;
 | |
| 			}
 | |
| 			kvpair = build_sortwrapper(key, value);
 | |
| 			if (kvpair == NULL)
 | |
| 				goto dsu_fail;
 | |
| 			saved_ob_item[i] = kvpair;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reverse sort stability achieved by initially reversing the list,
 | |
| 	applying a stable forward sort, then reversing the final result. */
 | |
| 	if (reverse && saved_ob_size > 1)
 | |
| 		reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
 | |
| 
 | |
| 	merge_init(&ms, compare);
 | |
| 
 | |
| 	nremaining = saved_ob_size;
 | |
| 	if (nremaining < 2)
 | |
| 		goto succeed;
 | |
| 
 | |
| 	/* March over the array once, left to right, finding natural runs,
 | |
| 	 * and extending short natural runs to minrun elements.
 | |
| 	 */
 | |
| 	lo = saved_ob_item;
 | |
| 	hi = lo + nremaining;
 | |
| 	minrun = merge_compute_minrun(nremaining);
 | |
| 	do {
 | |
| 		int descending;
 | |
| 		Py_ssize_t n;
 | |
| 
 | |
| 		/* Identify next run. */
 | |
| 		n = count_run(lo, hi, compare, &descending);
 | |
| 		if (n < 0)
 | |
| 			goto fail;
 | |
| 		if (descending)
 | |
| 			reverse_slice(lo, lo + n);
 | |
| 		/* If short, extend to min(minrun, nremaining). */
 | |
| 		if (n < minrun) {
 | |
| 			const Py_ssize_t force = nremaining <= minrun ?
 | |
| 	 			  	  nremaining : minrun;
 | |
| 			if (binarysort(lo, lo + force, lo + n, compare) < 0)
 | |
| 				goto fail;
 | |
| 			n = force;
 | |
| 		}
 | |
| 		/* Push run onto pending-runs stack, and maybe merge. */
 | |
| 		assert(ms.n < MAX_MERGE_PENDING);
 | |
| 		ms.pending[ms.n].base = lo;
 | |
| 		ms.pending[ms.n].len = n;
 | |
| 		++ms.n;
 | |
| 		if (merge_collapse(&ms) < 0)
 | |
| 			goto fail;
 | |
| 		/* Advance to find next run. */
 | |
| 		lo += n;
 | |
| 		nremaining -= n;
 | |
| 	} while (nremaining);
 | |
| 	assert(lo == hi);
 | |
| 
 | |
| 	if (merge_force_collapse(&ms) < 0)
 | |
| 		goto fail;
 | |
| 	assert(ms.n == 1);
 | |
| 	assert(ms.pending[0].base == saved_ob_item);
 | |
| 	assert(ms.pending[0].len == saved_ob_size);
 | |
| 
 | |
| succeed:
 | |
| 	result = Py_None;
 | |
| fail:
 | |
| 	if (keyfunc != NULL) {
 | |
| 		for (i=0 ; i < saved_ob_size ; i++) {
 | |
| 			kvpair = saved_ob_item[i];
 | |
| 			value = sortwrapper_getvalue(kvpair);
 | |
| 			saved_ob_item[i] = value;
 | |
| 			Py_DECREF(kvpair);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (self->allocated != -1 && result != NULL) {
 | |
| 		/* The user mucked with the list during the sort,
 | |
| 		 * and we don't already have another error to report.
 | |
| 		 */
 | |
| 		PyErr_SetString(PyExc_ValueError, "list modified during sort");
 | |
| 		result = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (reverse && saved_ob_size > 1)
 | |
| 		reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
 | |
| 
 | |
| 	merge_freemem(&ms);
 | |
| 
 | |
| dsu_fail:
 | |
| 	final_ob_item = self->ob_item;
 | |
| 	i = Py_Size(self);
 | |
| 	Py_Size(self) = saved_ob_size;
 | |
| 	self->ob_item = saved_ob_item;
 | |
| 	self->allocated = saved_allocated;
 | |
| 	if (final_ob_item != NULL) {
 | |
| 		/* we cannot use list_clear() for this because it does not
 | |
| 		   guarantee that the list is really empty when it returns */
 | |
| 		while (--i >= 0) {
 | |
| 			Py_XDECREF(final_ob_item[i]);
 | |
| 		}
 | |
| 		PyMem_FREE(final_ob_item);
 | |
| 	}
 | |
| 	Py_XDECREF(compare);
 | |
| 	Py_XINCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| #undef IFLT
 | |
| #undef ISLT
 | |
| 
 | |
| int
 | |
| PyList_Sort(PyObject *v)
 | |
| {
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL);
 | |
| 	if (v == NULL)
 | |
| 		return -1;
 | |
| 	Py_DECREF(v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listreverse(PyListObject *self)
 | |
| {
 | |
| 	if (Py_Size(self) > 1)
 | |
| 		reverse_slice(self->ob_item, self->ob_item + Py_Size(self));
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Reverse(PyObject *v)
 | |
| {
 | |
| 	PyListObject *self = (PyListObject *)v;
 | |
| 
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (Py_Size(self) > 1)
 | |
| 		reverse_slice(self->ob_item, self->ob_item + Py_Size(self));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyList_AsTuple(PyObject *v)
 | |
| {
 | |
| 	PyObject *w;
 | |
| 	PyObject **p;
 | |
| 	Py_ssize_t n;
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	n = Py_Size(v);
 | |
| 	w = PyTuple_New(n);
 | |
| 	if (w == NULL)
 | |
| 		return NULL;
 | |
| 	p = ((PyTupleObject *)w)->ob_item;
 | |
| 	memcpy((void *)p,
 | |
| 	       (void *)((PyListObject *)v)->ob_item,
 | |
| 	       n*sizeof(PyObject *));
 | |
| 	while (--n >= 0) {
 | |
| 		Py_INCREF(*p);
 | |
| 		p++;
 | |
| 	}
 | |
| 	return w;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listindex(PyListObject *self, PyObject *args)
 | |
| {
 | |
| 	Py_ssize_t i, start=0, stop=Py_Size(self);
 | |
| 	PyObject *v;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O|O&O&:index", &v,
 | |
| 	                            _PyEval_SliceIndex, &start,
 | |
| 	                            _PyEval_SliceIndex, &stop))
 | |
| 		return NULL;
 | |
| 	if (start < 0) {
 | |
| 		start += Py_Size(self);
 | |
| 		if (start < 0)
 | |
| 			start = 0;
 | |
| 	}
 | |
| 	if (stop < 0) {
 | |
| 		stop += Py_Size(self);
 | |
| 		if (stop < 0)
 | |
| 			stop = 0;
 | |
| 	}
 | |
| 	for (i = start; i < stop && i < Py_Size(self); i++) {
 | |
| 		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | |
| 		if (cmp > 0)
 | |
| 			return PyInt_FromSsize_t(i);
 | |
| 		else if (cmp < 0)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listcount(PyListObject *self, PyObject *v)
 | |
| {
 | |
| 	Py_ssize_t count = 0;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	for (i = 0; i < Py_Size(self); i++) {
 | |
| 		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | |
| 		if (cmp > 0)
 | |
| 			count++;
 | |
| 		else if (cmp < 0)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	return PyInt_FromSsize_t(count);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listremove(PyListObject *self, PyObject *v)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	for (i = 0; i < Py_Size(self); i++) {
 | |
| 		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | |
| 		if (cmp > 0) {
 | |
| 			if (list_ass_slice(self, i, i+1,
 | |
| 					   (PyObject *)NULL) == 0)
 | |
| 				Py_RETURN_NONE;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		else if (cmp < 0)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_traverse(PyListObject *o, visitproc visit, void *arg)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	for (i = Py_Size(o); --i >= 0; )
 | |
| 		Py_VISIT(o->ob_item[i]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	PyListObject *vl, *wl;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (!PyList_Check(v) || !PyList_Check(w)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	vl = (PyListObject *)v;
 | |
| 	wl = (PyListObject *)w;
 | |
| 
 | |
| 	if (Py_Size(vl) != Py_Size(wl) && (op == Py_EQ || op == Py_NE)) {
 | |
| 		/* Shortcut: if the lengths differ, the lists differ */
 | |
| 		PyObject *res;
 | |
| 		if (op == Py_EQ)
 | |
| 			res = Py_False;
 | |
| 		else
 | |
| 			res = Py_True;
 | |
| 		Py_INCREF(res);
 | |
| 		return res;
 | |
| 	}
 | |
| 
 | |
| 	/* Search for the first index where items are different */
 | |
| 	for (i = 0; i < Py_Size(vl) && i < Py_Size(wl); i++) {
 | |
| 		int k = PyObject_RichCompareBool(vl->ob_item[i],
 | |
| 						 wl->ob_item[i], Py_EQ);
 | |
| 		if (k < 0)
 | |
| 			return NULL;
 | |
| 		if (!k)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (i >= Py_Size(vl) || i >= Py_Size(wl)) {
 | |
| 		/* No more items to compare -- compare sizes */
 | |
| 		Py_ssize_t vs = Py_Size(vl);
 | |
| 		Py_ssize_t ws = Py_Size(wl);
 | |
| 		int cmp;
 | |
| 		PyObject *res;
 | |
| 		switch (op) {
 | |
| 		case Py_LT: cmp = vs <  ws; break;
 | |
| 		case Py_LE: cmp = vs <= ws; break;
 | |
| 		case Py_EQ: cmp = vs == ws; break;
 | |
| 		case Py_NE: cmp = vs != ws; break;
 | |
| 		case Py_GT: cmp = vs >  ws; break;
 | |
| 		case Py_GE: cmp = vs >= ws; break;
 | |
| 		default: return NULL; /* cannot happen */
 | |
| 		}
 | |
| 		if (cmp)
 | |
| 			res = Py_True;
 | |
| 		else
 | |
| 			res = Py_False;
 | |
| 		Py_INCREF(res);
 | |
| 		return res;
 | |
| 	}
 | |
| 
 | |
| 	/* We have an item that differs -- shortcuts for EQ/NE */
 | |
| 	if (op == Py_EQ) {
 | |
| 		Py_INCREF(Py_False);
 | |
| 		return Py_False;
 | |
| 	}
 | |
| 	if (op == Py_NE) {
 | |
| 		Py_INCREF(Py_True);
 | |
| 		return Py_True;
 | |
| 	}
 | |
| 
 | |
| 	/* Compare the final item again using the proper operator */
 | |
| 	return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_init(PyListObject *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *arg = NULL;
 | |
| 	static char *kwlist[] = {"sequence", 0};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Verify list invariants established by PyType_GenericAlloc() */
 | |
| 	assert(0 <= Py_Size(self));
 | |
| 	assert(Py_Size(self) <= self->allocated || self->allocated == -1);
 | |
| 	assert(self->ob_item != NULL ||
 | |
| 	       self->allocated == 0 || self->allocated == -1);
 | |
| 
 | |
| 	/* Empty previous contents */
 | |
| 	if (self->ob_item != NULL) {
 | |
| 		(void)list_clear(self);
 | |
| 	}
 | |
| 	if (arg != NULL) {
 | |
| 		PyObject *rv = listextend(self, arg);
 | |
| 		if (rv == NULL)
 | |
| 			return -1;
 | |
| 		Py_DECREF(rv);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *list_iter(PyObject *seq);
 | |
| static PyObject *list_reversed(PyListObject* seq, PyObject* unused);
 | |
| 
 | |
| PyDoc_STRVAR(getitem_doc,
 | |
| "x.__getitem__(y) <==> x[y]");
 | |
| PyDoc_STRVAR(reversed_doc,
 | |
| "L.__reversed__() -- return a reverse iterator over the list");
 | |
| PyDoc_STRVAR(append_doc,
 | |
| "L.append(object) -- append object to end");
 | |
| PyDoc_STRVAR(extend_doc,
 | |
| "L.extend(iterable) -- extend list by appending elements from the iterable");
 | |
| PyDoc_STRVAR(insert_doc,
 | |
| "L.insert(index, object) -- insert object before index");
 | |
| PyDoc_STRVAR(pop_doc,
 | |
| "L.pop([index]) -> item -- remove and return item at index (default last)");
 | |
| PyDoc_STRVAR(remove_doc,
 | |
| "L.remove(value) -- remove first occurrence of value");
 | |
| PyDoc_STRVAR(index_doc,
 | |
| "L.index(value, [start, [stop]]) -> integer -- return first index of value");
 | |
| PyDoc_STRVAR(count_doc,
 | |
| "L.count(value) -> integer -- return number of occurrences of value");
 | |
| PyDoc_STRVAR(reverse_doc,
 | |
| "L.reverse() -- reverse *IN PLACE*");
 | |
| PyDoc_STRVAR(sort_doc,
 | |
| "L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;\n\
 | |
| cmp(x, y) -> -1, 0, 1");
 | |
| 
 | |
| static PyObject *list_subscript(PyListObject*, PyObject*);
 | |
| 
 | |
| static PyMethodDef list_methods[] = {
 | |
| 	{"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc},
 | |
| 	{"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc},
 | |
| 	{"append",	(PyCFunction)listappend,  METH_O, append_doc},
 | |
| 	{"insert",	(PyCFunction)listinsert,  METH_VARARGS, insert_doc},
 | |
| 	{"extend",      (PyCFunction)listextend,  METH_O, extend_doc},
 | |
| 	{"pop",		(PyCFunction)listpop, 	  METH_VARARGS, pop_doc},
 | |
| 	{"remove",	(PyCFunction)listremove,  METH_O, remove_doc},
 | |
| 	{"index",	(PyCFunction)listindex,   METH_VARARGS, index_doc},
 | |
| 	{"count",	(PyCFunction)listcount,   METH_O, count_doc},
 | |
| 	{"reverse",	(PyCFunction)listreverse, METH_NOARGS, reverse_doc},
 | |
| 	{"sort",	(PyCFunction)listsort, 	  METH_VARARGS | METH_KEYWORDS, sort_doc},
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PySequenceMethods list_as_sequence = {
 | |
| 	(lenfunc)list_length,			/* sq_length */
 | |
| 	(binaryfunc)list_concat,		/* sq_concat */
 | |
| 	(ssizeargfunc)list_repeat,		/* sq_repeat */
 | |
| 	(ssizeargfunc)list_item,		/* sq_item */
 | |
| 	0,					/* sq_slice */
 | |
| 	(ssizeobjargproc)list_ass_item,		/* sq_ass_item */
 | |
| 	0,					/* sq_ass_slice */
 | |
| 	(objobjproc)list_contains,		/* sq_contains */
 | |
| 	(binaryfunc)list_inplace_concat,	/* sq_inplace_concat */
 | |
| 	(ssizeargfunc)list_inplace_repeat,	/* sq_inplace_repeat */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(list_doc,
 | |
| "list() -> new list\n"
 | |
| "list(sequence) -> new list initialized from sequence's items");
 | |
| 
 | |
| static PyObject *
 | |
| list_subscript(PyListObject* self, PyObject* item)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (i < 0)
 | |
| 			i += PyList_GET_SIZE(self);
 | |
| 		return list_item(self, i);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength, cur, i;
 | |
| 		PyObject* result;
 | |
| 		PyObject* it;
 | |
| 		PyObject **src, **dest;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, Py_Size(self),
 | |
| 				 &start, &stop, &step, &slicelength) < 0) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyList_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return list_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			result = PyList_New(slicelength);
 | |
| 			if (!result) return NULL;
 | |
| 
 | |
| 			src = self->ob_item;
 | |
| 			dest = ((PyListObject *)result)->ob_item;
 | |
| 			for (cur = start, i = 0; i < slicelength;
 | |
| 			     cur += step, i++) {
 | |
| 				it = src[cur];
 | |
| 				Py_INCREF(it);
 | |
| 				dest[i] = it;
 | |
| 			}
 | |
| 
 | |
| 			return result;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "list indices must be integers, not %.200s",
 | |
| 			     item->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		if (i < 0)
 | |
| 			i += PyList_GET_SIZE(self);
 | |
| 		return list_ass_item(self, i, value);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, Py_Size(self),
 | |
| 				 &start, &stop, &step, &slicelength) < 0) {
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (step == 1)
 | |
| 			return list_ass_slice(self, start, stop, value);
 | |
| 
 | |
| 		/* Make sure s[5:2] = [..] inserts at the right place:
 | |
| 		   before 5, not before 2. */
 | |
| 		if ((step < 0 && start < stop) ||
 | |
| 		    (step > 0 && start > stop))
 | |
| 			stop = start;
 | |
| 
 | |
| 		if (value == NULL) {
 | |
| 			/* delete slice */
 | |
| 			PyObject **garbage;
 | |
| 			Py_ssize_t cur, i;
 | |
| 
 | |
| 			if (slicelength <= 0)
 | |
| 				return 0;
 | |
| 
 | |
| 			if (step < 0) {
 | |
| 				stop = start + 1;
 | |
| 				start = stop + step*(slicelength - 1) - 1;
 | |
| 				step = -step;
 | |
| 			}
 | |
| 
 | |
| 			garbage = (PyObject**)
 | |
| 				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | |
| 			if (!garbage) {
 | |
| 				PyErr_NoMemory();
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			/* drawing pictures might help understand these for
 | |
| 			   loops. Basically, we memmove the parts of the
 | |
| 			   list that are *not* part of the slice: step-1
 | |
| 			   items for each item that is part of the slice,
 | |
| 			   and then tail end of the list that was not
 | |
| 			   covered by the slice */
 | |
| 			for (cur = start, i = 0;
 | |
| 			     cur < stop;
 | |
| 			     cur += step, i++) {
 | |
| 				Py_ssize_t lim = step - 1;
 | |
| 
 | |
| 				garbage[i] = PyList_GET_ITEM(self, cur);
 | |
| 
 | |
| 				if (cur + step >= Py_Size(self)) {
 | |
| 					lim = Py_Size(self) - cur - 1;
 | |
| 				}
 | |
| 
 | |
| 				memmove(self->ob_item + cur - i,
 | |
| 					self->ob_item + cur + 1,
 | |
| 					lim * sizeof(PyObject *));
 | |
| 			}
 | |
| 			cur = start + slicelength*step;
 | |
| 			if (cur < Py_Size(self)) {
 | |
| 				memmove(self->ob_item + cur - slicelength,
 | |
| 					self->ob_item + cur,
 | |
| 					(Py_Size(self) - cur) * 
 | |
| 					 sizeof(PyObject *));
 | |
| 			}
 | |
| 
 | |
| 			Py_Size(self) -= slicelength;
 | |
| 			list_resize(self, Py_Size(self));
 | |
| 
 | |
| 			for (i = 0; i < slicelength; i++) {
 | |
| 				Py_DECREF(garbage[i]);
 | |
| 			}
 | |
| 			PyMem_FREE(garbage);
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* assign slice */
 | |
| 			PyObject *ins, *seq;
 | |
| 			PyObject **garbage, **seqitems, **selfitems;
 | |
| 			Py_ssize_t cur, i;
 | |
| 
 | |
| 			/* protect against a[::-1] = a */
 | |
| 			if (self == (PyListObject*)value) {
 | |
| 				seq = list_slice((PyListObject*)value, 0,
 | |
| 						   PyList_GET_SIZE(value));
 | |
| 			}
 | |
| 			else {
 | |
| 				seq = PySequence_Fast(value,
 | |
| 						      "must assign iterable "
 | |
| 						      "to extended slice");
 | |
| 			}
 | |
| 			if (!seq)
 | |
| 				return -1;
 | |
| 
 | |
| 			if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
 | |
| 				PyErr_Format(PyExc_ValueError,
 | |
| 					"attempt to assign sequence of "
 | |
| 					"size %zd to extended slice of "
 | |
| 					"size %zd",
 | |
| 					     PySequence_Fast_GET_SIZE(seq),
 | |
| 					     slicelength);
 | |
| 				Py_DECREF(seq);
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			if (!slicelength) {
 | |
| 				Py_DECREF(seq);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			garbage = (PyObject**)
 | |
| 				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | |
| 			if (!garbage) {
 | |
| 				Py_DECREF(seq);
 | |
| 				PyErr_NoMemory();
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			selfitems = self->ob_item;
 | |
| 			seqitems = PySequence_Fast_ITEMS(seq);
 | |
| 			for (cur = start, i = 0; i < slicelength;
 | |
| 			     cur += step, i++) {
 | |
| 				garbage[i] = selfitems[cur];
 | |
| 				ins = seqitems[i];
 | |
| 				Py_INCREF(ins);
 | |
| 				selfitems[cur] = ins;
 | |
| 			}
 | |
| 
 | |
| 			for (i = 0; i < slicelength; i++) {
 | |
| 				Py_DECREF(garbage[i]);
 | |
| 			}
 | |
| 
 | |
| 			PyMem_FREE(garbage);
 | |
| 			Py_DECREF(seq);
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "list indices must be integers, not %.200s",
 | |
| 			     item->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyMappingMethods list_as_mapping = {
 | |
| 	(lenfunc)list_length,
 | |
| 	(binaryfunc)list_subscript,
 | |
| 	(objobjargproc)list_ass_subscript
 | |
| };
 | |
| 
 | |
| PyTypeObject PyList_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"list",
 | |
| 	sizeof(PyListObject),
 | |
| 	0,
 | |
| 	(destructor)list_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	(reprfunc)list_repr,			/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&list_as_sequence,			/* tp_as_sequence */
 | |
| 	&list_as_mapping,			/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
 | |
| 		Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS,	/* tp_flags */
 | |
|  	list_doc,				/* tp_doc */
 | |
|  	(traverseproc)list_traverse,		/* tp_traverse */
 | |
|  	(inquiry)list_clear,			/* tp_clear */
 | |
| 	list_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	list_iter,				/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	list_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	(initproc)list_init,			/* tp_init */
 | |
| 	PyType_GenericAlloc,			/* tp_alloc */
 | |
| 	PyType_GenericNew,			/* tp_new */
 | |
| 	PyObject_GC_Del,			/* tp_free */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*********************** List Iterator **************************/
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	long it_index;
 | |
| 	PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | |
| } listiterobject;
 | |
| 
 | |
| static PyObject *list_iter(PyObject *);
 | |
| static void listiter_dealloc(listiterobject *);
 | |
| static int listiter_traverse(listiterobject *, visitproc, void *);
 | |
| static PyObject *listiter_next(listiterobject *);
 | |
| static PyObject *listiter_len(listiterobject *);
 | |
| 
 | |
| PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
 | |
| 
 | |
| static PyMethodDef listiter_methods[] = {
 | |
| 	{"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc},
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyListIter_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"listiterator",				/* tp_name */
 | |
| 	sizeof(listiterobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)listiter_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | |
| 	0,					/* tp_doc */
 | |
| 	(traverseproc)listiter_traverse,	/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	PyObject_SelfIter,			/* tp_iter */
 | |
| 	(iternextfunc)listiter_next,		/* tp_iternext */
 | |
| 	listiter_methods,			/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| list_iter(PyObject *seq)
 | |
| {
 | |
| 	listiterobject *it;
 | |
| 
 | |
| 	if (!PyList_Check(seq)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	it = PyObject_GC_New(listiterobject, &PyListIter_Type);
 | |
| 	if (it == NULL)
 | |
| 		return NULL;
 | |
| 	it->it_index = 0;
 | |
| 	Py_INCREF(seq);
 | |
| 	it->it_seq = (PyListObject *)seq;
 | |
| 	_PyObject_GC_TRACK(it);
 | |
| 	return (PyObject *)it;
 | |
| }
 | |
| 
 | |
| static void
 | |
| listiter_dealloc(listiterobject *it)
 | |
| {
 | |
| 	_PyObject_GC_UNTRACK(it);
 | |
| 	Py_XDECREF(it->it_seq);
 | |
| 	PyObject_GC_Del(it);
 | |
| }
 | |
| 
 | |
| static int
 | |
| listiter_traverse(listiterobject *it, visitproc visit, void *arg)
 | |
| {
 | |
| 	Py_VISIT(it->it_seq);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listiter_next(listiterobject *it)
 | |
| {
 | |
| 	PyListObject *seq;
 | |
| 	PyObject *item;
 | |
| 
 | |
| 	assert(it != NULL);
 | |
| 	seq = it->it_seq;
 | |
| 	if (seq == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyList_Check(seq));
 | |
| 
 | |
| 	if (it->it_index < PyList_GET_SIZE(seq)) {
 | |
| 		item = PyList_GET_ITEM(seq, it->it_index);
 | |
| 		++it->it_index;
 | |
| 		Py_INCREF(item);
 | |
| 		return item;
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(seq);
 | |
| 	it->it_seq = NULL;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listiter_len(listiterobject *it)
 | |
| {
 | |
| 	Py_ssize_t len;
 | |
| 	if (it->it_seq) {
 | |
| 		len = PyList_GET_SIZE(it->it_seq) - it->it_index;
 | |
| 		if (len >= 0)
 | |
| 			return PyInt_FromSsize_t(len);
 | |
| 	}
 | |
| 	return PyInt_FromLong(0);
 | |
| }
 | |
| /*********************** List Reverse Iterator **************************/
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	Py_ssize_t it_index;
 | |
| 	PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | |
| } listreviterobject;
 | |
| 
 | |
| static PyObject *list_reversed(PyListObject *, PyObject *);
 | |
| static void listreviter_dealloc(listreviterobject *);
 | |
| static int listreviter_traverse(listreviterobject *, visitproc, void *);
 | |
| static PyObject *listreviter_next(listreviterobject *);
 | |
| static Py_ssize_t listreviter_len(listreviterobject *);
 | |
| 
 | |
| static PySequenceMethods listreviter_as_sequence = {
 | |
| 	(lenfunc)listreviter_len,	/* sq_length */
 | |
| 	0,				/* sq_concat */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyListRevIter_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"listreverseiterator",			/* tp_name */
 | |
| 	sizeof(listreviterobject),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)listreviter_dealloc,	/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&listreviter_as_sequence,		/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | |
| 	0,					/* tp_doc */
 | |
| 	(traverseproc)listreviter_traverse,	/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	PyObject_SelfIter,			/* tp_iter */
 | |
| 	(iternextfunc)listreviter_next,		/* tp_iternext */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| list_reversed(PyListObject *seq, PyObject *unused)
 | |
| {
 | |
| 	listreviterobject *it;
 | |
| 
 | |
| 	it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
 | |
| 	if (it == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyList_Check(seq));
 | |
| 	it->it_index = PyList_GET_SIZE(seq) - 1;
 | |
| 	Py_INCREF(seq);
 | |
| 	it->it_seq = seq;
 | |
| 	PyObject_GC_Track(it);
 | |
| 	return (PyObject *)it;
 | |
| }
 | |
| 
 | |
| static void
 | |
| listreviter_dealloc(listreviterobject *it)
 | |
| {
 | |
| 	PyObject_GC_UnTrack(it);
 | |
| 	Py_XDECREF(it->it_seq);
 | |
| 	PyObject_GC_Del(it);
 | |
| }
 | |
| 
 | |
| static int
 | |
| listreviter_traverse(listreviterobject *it, visitproc visit, void *arg)
 | |
| {
 | |
| 	Py_VISIT(it->it_seq);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listreviter_next(listreviterobject *it)
 | |
| {
 | |
| 	PyObject *item;
 | |
| 	Py_ssize_t index = it->it_index;
 | |
| 	PyListObject *seq = it->it_seq;
 | |
| 
 | |
| 	if (index>=0 && index < PyList_GET_SIZE(seq)) {
 | |
| 		item = PyList_GET_ITEM(seq, index);
 | |
| 		it->it_index--;
 | |
| 		Py_INCREF(item);
 | |
| 		return item;
 | |
| 	}
 | |
| 	it->it_index = -1;
 | |
| 	if (seq != NULL) {
 | |
| 		it->it_seq = NULL;
 | |
| 		Py_DECREF(seq);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static Py_ssize_t
 | |
| listreviter_len(listreviterobject *it)
 | |
| {
 | |
| 	Py_ssize_t len = it->it_index + 1;
 | |
| 	if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
 | |
| 		return 0;
 | |
| 	return len;
 | |
| }
 | |
| 
 | 
