mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	 62e54ddc05
			
		
	
	
		62e54ddc05
		
			
		
	
	
	
	
		
			
			* [3.13] gh-121039: add Floats/ComplexesAreIdenticalMixin to test.support.testcase (GH-121071)
(cherry picked from commit 8ef8354ef1)
Co-authored-by: Sergey B Kirpichev <skirpichev@gmail.com>
* +1
		
	
			
		
			
				
	
	
		
			593 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from test.support import requires_IEEE_754, cpython_only, import_helper
 | |
| from test.support.testcase import ComplexesAreIdenticalMixin
 | |
| from test.test_math import parse_testfile, test_file
 | |
| import test.test_math as test_math
 | |
| import unittest
 | |
| import cmath, math
 | |
| from cmath import phase, polar, rect, pi
 | |
| import platform
 | |
| import sys
 | |
| 
 | |
| 
 | |
| INF = float('inf')
 | |
| NAN = float('nan')
 | |
| 
 | |
| complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
 | |
| complex_infinities = [complex(x, y) for x, y in [
 | |
|         (INF, 0.0),  # 1st quadrant
 | |
|         (INF, 2.3),
 | |
|         (INF, INF),
 | |
|         (2.3, INF),
 | |
|         (0.0, INF),
 | |
|         (-0.0, INF), # 2nd quadrant
 | |
|         (-2.3, INF),
 | |
|         (-INF, INF),
 | |
|         (-INF, 2.3),
 | |
|         (-INF, 0.0),
 | |
|         (-INF, -0.0), # 3rd quadrant
 | |
|         (-INF, -2.3),
 | |
|         (-INF, -INF),
 | |
|         (-2.3, -INF),
 | |
|         (-0.0, -INF),
 | |
|         (0.0, -INF), # 4th quadrant
 | |
|         (2.3, -INF),
 | |
|         (INF, -INF),
 | |
|         (INF, -2.3),
 | |
|         (INF, -0.0)
 | |
|         ]]
 | |
| complex_nans = [complex(x, y) for x, y in [
 | |
|         (NAN, -INF),
 | |
|         (NAN, -2.3),
 | |
|         (NAN, -0.0),
 | |
|         (NAN, 0.0),
 | |
|         (NAN, 2.3),
 | |
|         (NAN, INF),
 | |
|         (-INF, NAN),
 | |
|         (-2.3, NAN),
 | |
|         (-0.0, NAN),
 | |
|         (0.0, NAN),
 | |
|         (2.3, NAN),
 | |
|         (INF, NAN)
 | |
|         ]]
 | |
| 
 | |
| class CMathTests(ComplexesAreIdenticalMixin, unittest.TestCase):
 | |
|     # list of all functions in cmath
 | |
|     test_functions = [getattr(cmath, fname) for fname in [
 | |
|             'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
 | |
|             'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
 | |
|             'sqrt', 'tan', 'tanh']]
 | |
|     # test first and second arguments independently for 2-argument log
 | |
|     test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
 | |
|     test_functions.append(lambda x : cmath.log(14.-27j, x))
 | |
| 
 | |
|     def setUp(self):
 | |
|         self.test_values = open(test_file, encoding="utf-8")
 | |
| 
 | |
|     def tearDown(self):
 | |
|         self.test_values.close()
 | |
| 
 | |
|     def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
 | |
|                            msg=None):
 | |
|         """Fail if the two floating-point numbers are not almost equal.
 | |
| 
 | |
|         Determine whether floating-point values a and b are equal to within
 | |
|         a (small) rounding error.  The default values for rel_err and
 | |
|         abs_err are chosen to be suitable for platforms where a float is
 | |
|         represented by an IEEE 754 double.  They allow an error of between
 | |
|         9 and 19 ulps.
 | |
|         """
 | |
| 
 | |
|         # special values testing
 | |
|         if math.isnan(a):
 | |
|             if math.isnan(b):
 | |
|                 return
 | |
|             self.fail(msg or '{!r} should be nan'.format(b))
 | |
| 
 | |
|         if math.isinf(a):
 | |
|             if a == b:
 | |
|                 return
 | |
|             self.fail(msg or 'finite result where infinity expected: '
 | |
|                       'expected {!r}, got {!r}'.format(a, b))
 | |
| 
 | |
|         # if both a and b are zero, check whether they have the same sign
 | |
|         # (in theory there are examples where it would be legitimate for a
 | |
|         # and b to have opposite signs; in practice these hardly ever
 | |
|         # occur).
 | |
|         if not a and not b:
 | |
|             if math.copysign(1., a) != math.copysign(1., b):
 | |
|                 self.fail(msg or 'zero has wrong sign: expected {!r}, '
 | |
|                           'got {!r}'.format(a, b))
 | |
| 
 | |
|         # if a-b overflows, or b is infinite, return False.  Again, in
 | |
|         # theory there are examples where a is within a few ulps of the
 | |
|         # max representable float, and then b could legitimately be
 | |
|         # infinite.  In practice these examples are rare.
 | |
|         try:
 | |
|             absolute_error = abs(b-a)
 | |
|         except OverflowError:
 | |
|             pass
 | |
|         else:
 | |
|             # test passes if either the absolute error or the relative
 | |
|             # error is sufficiently small.  The defaults amount to an
 | |
|             # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
 | |
|             # machine.
 | |
|             if absolute_error <= max(abs_err, rel_err * abs(a)):
 | |
|                 return
 | |
|         self.fail(msg or
 | |
|                   '{!r} and {!r} are not sufficiently close'.format(a, b))
 | |
| 
 | |
|     def test_constants(self):
 | |
|         e_expected = 2.71828182845904523536
 | |
|         pi_expected = 3.14159265358979323846
 | |
|         self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
 | |
|             msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
 | |
|         self.assertAlmostEqual(cmath.e, e_expected, places=9,
 | |
|             msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
 | |
| 
 | |
|     def test_infinity_and_nan_constants(self):
 | |
|         self.assertEqual(cmath.inf.real, math.inf)
 | |
|         self.assertEqual(cmath.inf.imag, 0.0)
 | |
|         self.assertEqual(cmath.infj.real, 0.0)
 | |
|         self.assertEqual(cmath.infj.imag, math.inf)
 | |
| 
 | |
|         self.assertTrue(math.isnan(cmath.nan.real))
 | |
|         self.assertEqual(cmath.nan.imag, 0.0)
 | |
|         self.assertEqual(cmath.nanj.real, 0.0)
 | |
|         self.assertTrue(math.isnan(cmath.nanj.imag))
 | |
|         # Also check that the sign of all of these is positive:
 | |
|         self.assertEqual(math.copysign(1., cmath.nan.real), 1.)
 | |
|         self.assertEqual(math.copysign(1., cmath.nan.imag), 1.)
 | |
|         self.assertEqual(math.copysign(1., cmath.nanj.real), 1.)
 | |
|         self.assertEqual(math.copysign(1., cmath.nanj.imag), 1.)
 | |
| 
 | |
|         # Check consistency with reprs.
 | |
|         self.assertEqual(repr(cmath.inf), "inf")
 | |
|         self.assertEqual(repr(cmath.infj), "infj")
 | |
|         self.assertEqual(repr(cmath.nan), "nan")
 | |
|         self.assertEqual(repr(cmath.nanj), "nanj")
 | |
| 
 | |
|     def test_user_object(self):
 | |
|         # Test automatic calling of __complex__ and __float__ by cmath
 | |
|         # functions
 | |
| 
 | |
|         # some random values to use as test values; we avoid values
 | |
|         # for which any of the functions in cmath is undefined
 | |
|         # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
 | |
|         cx_arg = 4.419414439 + 1.497100113j
 | |
|         flt_arg = -6.131677725
 | |
| 
 | |
|         # a variety of non-complex numbers, used to check that
 | |
|         # non-complex return values from __complex__ give an error
 | |
|         non_complexes = ["not complex", 1, 5, 2., None,
 | |
|                          object(), NotImplemented]
 | |
| 
 | |
|         # Now we introduce a variety of classes whose instances might
 | |
|         # end up being passed to the cmath functions
 | |
| 
 | |
|         # usual case: new-style class implementing __complex__
 | |
|         class MyComplex:
 | |
|             def __init__(self, value):
 | |
|                 self.value = value
 | |
|             def __complex__(self):
 | |
|                 return self.value
 | |
| 
 | |
|         # classes for which __complex__ raises an exception
 | |
|         class SomeException(Exception):
 | |
|             pass
 | |
|         class MyComplexException:
 | |
|             def __complex__(self):
 | |
|                 raise SomeException
 | |
| 
 | |
|         # some classes not providing __float__ or __complex__
 | |
|         class NeitherComplexNorFloat(object):
 | |
|             pass
 | |
|         class Index:
 | |
|             def __int__(self): return 2
 | |
|             def __index__(self): return 2
 | |
|         class MyInt:
 | |
|             def __int__(self): return 2
 | |
| 
 | |
|         # other possible combinations of __float__ and __complex__
 | |
|         # that should work
 | |
|         class FloatAndComplex:
 | |
|             def __float__(self):
 | |
|                 return flt_arg
 | |
|             def __complex__(self):
 | |
|                 return cx_arg
 | |
|         class JustFloat:
 | |
|             def __float__(self):
 | |
|                 return flt_arg
 | |
| 
 | |
|         for f in self.test_functions:
 | |
|             # usual usage
 | |
|             self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
 | |
|             # other combinations of __float__ and __complex__
 | |
|             self.assertEqual(f(FloatAndComplex()), f(cx_arg))
 | |
|             self.assertEqual(f(JustFloat()), f(flt_arg))
 | |
|             self.assertEqual(f(Index()), f(int(Index())))
 | |
|             # TypeError should be raised for classes not providing
 | |
|             # either __complex__ or __float__, even if they provide
 | |
|             # __int__ or __index__:
 | |
|             self.assertRaises(TypeError, f, NeitherComplexNorFloat())
 | |
|             self.assertRaises(TypeError, f, MyInt())
 | |
|             # non-complex return value from __complex__ -> TypeError
 | |
|             for bad_complex in non_complexes:
 | |
|                 self.assertRaises(TypeError, f, MyComplex(bad_complex))
 | |
|             # exceptions in __complex__ should be propagated correctly
 | |
|             self.assertRaises(SomeException, f, MyComplexException())
 | |
| 
 | |
|     def test_input_type(self):
 | |
|         # ints should be acceptable inputs to all cmath
 | |
|         # functions, by virtue of providing a __float__ method
 | |
|         for f in self.test_functions:
 | |
|             for arg in [2, 2.]:
 | |
|                 self.assertEqual(f(arg), f(arg.__float__()))
 | |
| 
 | |
|         # but strings should give a TypeError
 | |
|         for f in self.test_functions:
 | |
|             for arg in ["a", "long_string", "0", "1j", ""]:
 | |
|                 self.assertRaises(TypeError, f, arg)
 | |
| 
 | |
|     def test_cmath_matches_math(self):
 | |
|         # check that corresponding cmath and math functions are equal
 | |
|         # for floats in the appropriate range
 | |
| 
 | |
|         # test_values in (0, 1)
 | |
|         test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
 | |
| 
 | |
|         # test_values for functions defined on [-1., 1.]
 | |
|         unit_interval = test_values + [-x for x in test_values] + \
 | |
|             [0., 1., -1.]
 | |
| 
 | |
|         # test_values for log, log10, sqrt
 | |
|         positive = test_values + [1.] + [1./x for x in test_values]
 | |
|         nonnegative = [0.] + positive
 | |
| 
 | |
|         # test_values for functions defined on the whole real line
 | |
|         real_line = [0.] + positive + [-x for x in positive]
 | |
| 
 | |
|         test_functions = {
 | |
|             'acos' : unit_interval,
 | |
|             'asin' : unit_interval,
 | |
|             'atan' : real_line,
 | |
|             'cos' : real_line,
 | |
|             'cosh' : real_line,
 | |
|             'exp' : real_line,
 | |
|             'log' : positive,
 | |
|             'log10' : positive,
 | |
|             'sin' : real_line,
 | |
|             'sinh' : real_line,
 | |
|             'sqrt' : nonnegative,
 | |
|             'tan' : real_line,
 | |
|             'tanh' : real_line}
 | |
| 
 | |
|         for fn, values in test_functions.items():
 | |
|             float_fn = getattr(math, fn)
 | |
|             complex_fn = getattr(cmath, fn)
 | |
|             for v in values:
 | |
|                 z = complex_fn(v)
 | |
|                 self.rAssertAlmostEqual(float_fn(v), z.real)
 | |
|                 self.assertEqual(0., z.imag)
 | |
| 
 | |
|         # test two-argument version of log with various bases
 | |
|         for base in [0.5, 2., 10.]:
 | |
|             for v in positive:
 | |
|                 z = cmath.log(v, base)
 | |
|                 self.rAssertAlmostEqual(math.log(v, base), z.real)
 | |
|                 self.assertEqual(0., z.imag)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_specific_values(self):
 | |
|         # Some tests need to be skipped on ancient OS X versions.
 | |
|         # See issue #27953.
 | |
|         SKIP_ON_TIGER = {'tan0064'}
 | |
| 
 | |
|         osx_version = None
 | |
|         if sys.platform == 'darwin':
 | |
|             version_txt = platform.mac_ver()[0]
 | |
|             try:
 | |
|                 osx_version = tuple(map(int, version_txt.split('.')))
 | |
|             except ValueError:
 | |
|                 pass
 | |
| 
 | |
|         def rect_complex(z):
 | |
|             """Wrapped version of rect that accepts a complex number instead of
 | |
|             two float arguments."""
 | |
|             return cmath.rect(z.real, z.imag)
 | |
| 
 | |
|         def polar_complex(z):
 | |
|             """Wrapped version of polar that returns a complex number instead of
 | |
|             two floats."""
 | |
|             return complex(*polar(z))
 | |
| 
 | |
|         for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
 | |
|             arg = complex(ar, ai)
 | |
|             expected = complex(er, ei)
 | |
| 
 | |
|             # Skip certain tests on OS X 10.4.
 | |
|             if osx_version is not None and osx_version < (10, 5):
 | |
|                 if id in SKIP_ON_TIGER:
 | |
|                     continue
 | |
| 
 | |
|             if fn == 'rect':
 | |
|                 function = rect_complex
 | |
|             elif fn == 'polar':
 | |
|                 function = polar_complex
 | |
|             else:
 | |
|                 function = getattr(cmath, fn)
 | |
|             if 'divide-by-zero' in flags or 'invalid' in flags:
 | |
|                 try:
 | |
|                     actual = function(arg)
 | |
|                 except ValueError:
 | |
|                     continue
 | |
|                 else:
 | |
|                     self.fail('ValueError not raised in test '
 | |
|                           '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
 | |
| 
 | |
|             if 'overflow' in flags:
 | |
|                 try:
 | |
|                     actual = function(arg)
 | |
|                 except OverflowError:
 | |
|                     continue
 | |
|                 else:
 | |
|                     self.fail('OverflowError not raised in test '
 | |
|                           '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
 | |
| 
 | |
|             actual = function(arg)
 | |
| 
 | |
|             if 'ignore-real-sign' in flags:
 | |
|                 actual = complex(abs(actual.real), actual.imag)
 | |
|                 expected = complex(abs(expected.real), expected.imag)
 | |
|             if 'ignore-imag-sign' in flags:
 | |
|                 actual = complex(actual.real, abs(actual.imag))
 | |
|                 expected = complex(expected.real, abs(expected.imag))
 | |
| 
 | |
|             # for the real part of the log function, we allow an
 | |
|             # absolute error of up to 2e-15.
 | |
|             if fn in ('log', 'log10'):
 | |
|                 real_abs_err = 2e-15
 | |
|             else:
 | |
|                 real_abs_err = 5e-323
 | |
| 
 | |
|             error_message = (
 | |
|                 '{}: {}(complex({!r}, {!r}))\n'
 | |
|                 'Expected: complex({!r}, {!r})\n'
 | |
|                 'Received: complex({!r}, {!r})\n'
 | |
|                 'Received value insufficiently close to expected value.'
 | |
|                 ).format(id, fn, ar, ai,
 | |
|                      expected.real, expected.imag,
 | |
|                      actual.real, actual.imag)
 | |
|             self.rAssertAlmostEqual(expected.real, actual.real,
 | |
|                                         abs_err=real_abs_err,
 | |
|                                         msg=error_message)
 | |
|             self.rAssertAlmostEqual(expected.imag, actual.imag,
 | |
|                                         msg=error_message)
 | |
| 
 | |
|     def check_polar(self, func):
 | |
|         def check(arg, expected):
 | |
|             got = func(arg)
 | |
|             for e, g in zip(expected, got):
 | |
|                 self.rAssertAlmostEqual(e, g)
 | |
|         check(0, (0., 0.))
 | |
|         check(1, (1., 0.))
 | |
|         check(-1, (1., pi))
 | |
|         check(1j, (1., pi / 2))
 | |
|         check(-3j, (3., -pi / 2))
 | |
|         inf = float('inf')
 | |
|         check(complex(inf, 0), (inf, 0.))
 | |
|         check(complex(-inf, 0), (inf, pi))
 | |
|         check(complex(3, inf), (inf, pi / 2))
 | |
|         check(complex(5, -inf), (inf, -pi / 2))
 | |
|         check(complex(inf, inf), (inf, pi / 4))
 | |
|         check(complex(inf, -inf), (inf, -pi / 4))
 | |
|         check(complex(-inf, inf), (inf, 3 * pi / 4))
 | |
|         check(complex(-inf, -inf), (inf, -3 * pi / 4))
 | |
|         nan = float('nan')
 | |
|         check(complex(nan, 0), (nan, nan))
 | |
|         check(complex(0, nan), (nan, nan))
 | |
|         check(complex(nan, nan), (nan, nan))
 | |
|         check(complex(inf, nan), (inf, nan))
 | |
|         check(complex(-inf, nan), (inf, nan))
 | |
|         check(complex(nan, inf), (inf, nan))
 | |
|         check(complex(nan, -inf), (inf, nan))
 | |
| 
 | |
|     def test_polar(self):
 | |
|         self.check_polar(polar)
 | |
| 
 | |
|     @cpython_only
 | |
|     def test_polar_errno(self):
 | |
|         # Issue #24489: check a previously set C errno doesn't disturb polar()
 | |
|         _testcapi = import_helper.import_module('_testcapi')
 | |
|         def polar_with_errno_set(z):
 | |
|             _testcapi.set_errno(11)
 | |
|             try:
 | |
|                 return polar(z)
 | |
|             finally:
 | |
|                 _testcapi.set_errno(0)
 | |
|         self.check_polar(polar_with_errno_set)
 | |
| 
 | |
|     def test_phase(self):
 | |
|         self.assertAlmostEqual(phase(0), 0.)
 | |
|         self.assertAlmostEqual(phase(1.), 0.)
 | |
|         self.assertAlmostEqual(phase(-1.), pi)
 | |
|         self.assertAlmostEqual(phase(-1.+1E-300j), pi)
 | |
|         self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
 | |
|         self.assertAlmostEqual(phase(1j), pi/2)
 | |
|         self.assertAlmostEqual(phase(-1j), -pi/2)
 | |
| 
 | |
|         # zeros
 | |
|         self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
 | |
|         self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
 | |
|         self.assertEqual(phase(complex(-0.0, 0.0)), pi)
 | |
|         self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
 | |
| 
 | |
|         # infinities
 | |
|         self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
 | |
|         self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
 | |
|         self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
 | |
|         self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
 | |
|         self.assertEqual(phase(complex(INF, -2.3)), -0.0)
 | |
|         self.assertEqual(phase(complex(INF, -0.0)), -0.0)
 | |
|         self.assertEqual(phase(complex(INF, 0.0)), 0.0)
 | |
|         self.assertEqual(phase(complex(INF, 2.3)), 0.0)
 | |
|         self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
 | |
|         self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
 | |
|         self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
 | |
|         self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
 | |
|         self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
 | |
| 
 | |
|         # real or imaginary part NaN
 | |
|         for z in complex_nans:
 | |
|             self.assertTrue(math.isnan(phase(z)))
 | |
| 
 | |
|     def test_abs(self):
 | |
|         # zeros
 | |
|         for z in complex_zeros:
 | |
|             self.assertEqual(abs(z), 0.0)
 | |
| 
 | |
|         # infinities
 | |
|         for z in complex_infinities:
 | |
|             self.assertEqual(abs(z), INF)
 | |
| 
 | |
|         # real or imaginary part NaN
 | |
|         self.assertEqual(abs(complex(NAN, -INF)), INF)
 | |
|         self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
 | |
|         self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
 | |
|         self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
 | |
|         self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
 | |
|         self.assertEqual(abs(complex(NAN, INF)), INF)
 | |
|         self.assertEqual(abs(complex(-INF, NAN)), INF)
 | |
|         self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
 | |
|         self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
 | |
|         self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
 | |
|         self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
 | |
|         self.assertEqual(abs(complex(INF, NAN)), INF)
 | |
|         self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
 | |
| 
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_abs_overflows(self):
 | |
|         # result overflows
 | |
|         self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
 | |
| 
 | |
|     def assertCEqual(self, a, b):
 | |
|         eps = 1E-7
 | |
|         if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
 | |
|             self.fail((a ,b))
 | |
| 
 | |
|     def test_rect(self):
 | |
|         self.assertCEqual(rect(0, 0), (0, 0))
 | |
|         self.assertCEqual(rect(1, 0), (1., 0))
 | |
|         self.assertCEqual(rect(1, -pi), (-1., 0))
 | |
|         self.assertCEqual(rect(1, pi/2), (0, 1.))
 | |
|         self.assertCEqual(rect(1, -pi/2), (0, -1.))
 | |
| 
 | |
|     def test_isfinite(self):
 | |
|         real_vals = [float('-inf'), -2.3, -0.0,
 | |
|                      0.0, 2.3, float('inf'), float('nan')]
 | |
|         for x in real_vals:
 | |
|             for y in real_vals:
 | |
|                 z = complex(x, y)
 | |
|                 self.assertEqual(cmath.isfinite(z),
 | |
|                                   math.isfinite(x) and math.isfinite(y))
 | |
| 
 | |
|     def test_isnan(self):
 | |
|         self.assertFalse(cmath.isnan(1))
 | |
|         self.assertFalse(cmath.isnan(1j))
 | |
|         self.assertFalse(cmath.isnan(INF))
 | |
|         self.assertTrue(cmath.isnan(NAN))
 | |
|         self.assertTrue(cmath.isnan(complex(NAN, 0)))
 | |
|         self.assertTrue(cmath.isnan(complex(0, NAN)))
 | |
|         self.assertTrue(cmath.isnan(complex(NAN, NAN)))
 | |
|         self.assertTrue(cmath.isnan(complex(NAN, INF)))
 | |
|         self.assertTrue(cmath.isnan(complex(INF, NAN)))
 | |
| 
 | |
|     def test_isinf(self):
 | |
|         self.assertFalse(cmath.isinf(1))
 | |
|         self.assertFalse(cmath.isinf(1j))
 | |
|         self.assertFalse(cmath.isinf(NAN))
 | |
|         self.assertTrue(cmath.isinf(INF))
 | |
|         self.assertTrue(cmath.isinf(complex(INF, 0)))
 | |
|         self.assertTrue(cmath.isinf(complex(0, INF)))
 | |
|         self.assertTrue(cmath.isinf(complex(INF, INF)))
 | |
|         self.assertTrue(cmath.isinf(complex(NAN, INF)))
 | |
|         self.assertTrue(cmath.isinf(complex(INF, NAN)))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testTanhSign(self):
 | |
|         for z in complex_zeros:
 | |
|             self.assertComplexesAreIdentical(cmath.tanh(z), z)
 | |
| 
 | |
|     # The algorithm used for atan and atanh makes use of the system
 | |
|     # log1p function; If that system function doesn't respect the sign
 | |
|     # of zero, then atan and atanh will also have difficulties with
 | |
|     # the sign of complex zeros.
 | |
|     @requires_IEEE_754
 | |
|     def testAtanSign(self):
 | |
|         for z in complex_zeros:
 | |
|             self.assertComplexesAreIdentical(cmath.atan(z), z)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testAtanhSign(self):
 | |
|         for z in complex_zeros:
 | |
|             self.assertComplexesAreIdentical(cmath.atanh(z), z)
 | |
| 
 | |
| 
 | |
| class IsCloseTests(test_math.IsCloseTests):
 | |
|     isclose = cmath.isclose
 | |
| 
 | |
|     def test_reject_complex_tolerances(self):
 | |
|         with self.assertRaises(TypeError):
 | |
|             self.isclose(1j, 1j, rel_tol=1j)
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             self.isclose(1j, 1j, abs_tol=1j)
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             self.isclose(1j, 1j, rel_tol=1j, abs_tol=1j)
 | |
| 
 | |
|     def test_complex_values(self):
 | |
|         # test complex values that are close to within 12 decimal places
 | |
|         complex_examples = [(1.0+1.0j, 1.000000000001+1.0j),
 | |
|                             (1.0+1.0j, 1.0+1.000000000001j),
 | |
|                             (-1.0+1.0j, -1.000000000001+1.0j),
 | |
|                             (1.0-1.0j, 1.0-0.999999999999j),
 | |
|                             ]
 | |
| 
 | |
|         self.assertAllClose(complex_examples, rel_tol=1e-12)
 | |
|         self.assertAllNotClose(complex_examples, rel_tol=1e-13)
 | |
| 
 | |
|     def test_complex_near_zero(self):
 | |
|         # test values near zero that are near to within three decimal places
 | |
|         near_zero_examples = [(0.001j, 0),
 | |
|                               (0.001, 0),
 | |
|                               (0.001+0.001j, 0),
 | |
|                               (-0.001+0.001j, 0),
 | |
|                               (0.001-0.001j, 0),
 | |
|                               (-0.001-0.001j, 0),
 | |
|                               ]
 | |
| 
 | |
|         self.assertAllClose(near_zero_examples, abs_tol=1.5e-03)
 | |
|         self.assertAllNotClose(near_zero_examples, abs_tol=0.5e-03)
 | |
| 
 | |
|         self.assertIsClose(0.001-0.001j, 0.001+0.001j, abs_tol=2e-03)
 | |
|         self.assertIsNotClose(0.001-0.001j, 0.001+0.001j, abs_tol=1e-03)
 | |
| 
 | |
|     def test_complex_special(self):
 | |
|         self.assertIsNotClose(INF, INF*1j)
 | |
|         self.assertIsNotClose(INF*1j, INF)
 | |
|         self.assertIsNotClose(INF, -INF)
 | |
|         self.assertIsNotClose(-INF, INF)
 | |
|         self.assertIsNotClose(0, INF)
 | |
|         self.assertIsNotClose(0, INF*1j)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 |