mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	It is now allowed to add new fields at the end of the PyTypeObject struct without having to allocate a dedicated compatibility flag in tp_flags. This will reduce the risk of running out of bits in the 32-bit tp_flags value.
		
			
				
	
	
		
			2029 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2029 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 | 
						|
  Reference Cycle Garbage Collection
 | 
						|
  ==================================
 | 
						|
 | 
						|
  Neil Schemenauer <nas@arctrix.com>
 | 
						|
 | 
						|
  Based on a post on the python-dev list.  Ideas from Guido van Rossum,
 | 
						|
  Eric Tiedemann, and various others.
 | 
						|
 | 
						|
  http://www.arctrix.com/nas/python/gc/
 | 
						|
 | 
						|
  The following mailing list threads provide a historical perspective on
 | 
						|
  the design of this module.  Note that a fair amount of refinement has
 | 
						|
  occurred since those discussions.
 | 
						|
 | 
						|
  http://mail.python.org/pipermail/python-dev/2000-March/002385.html
 | 
						|
  http://mail.python.org/pipermail/python-dev/2000-March/002434.html
 | 
						|
  http://mail.python.org/pipermail/python-dev/2000-March/002497.html
 | 
						|
 | 
						|
  For a highlevel view of the collection process, read the collect
 | 
						|
  function.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_context.h"
 | 
						|
#include "pycore_object.h"
 | 
						|
#include "pycore_pymem.h"
 | 
						|
#include "pycore_pystate.h"
 | 
						|
#include "frameobject.h"        /* for PyFrame_ClearFreeList */
 | 
						|
#include "pydtrace.h"
 | 
						|
#include "pytime.h"             /* for _PyTime_GetMonotonicClock() */
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
module gc
 | 
						|
[clinic start generated code]*/
 | 
						|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/
 | 
						|
 | 
						|
#define GC_DEBUG (0)  /* Enable more asserts */
 | 
						|
 | 
						|
#define GC_NEXT _PyGCHead_NEXT
 | 
						|
#define GC_PREV _PyGCHead_PREV
 | 
						|
 | 
						|
// update_refs() set this bit for all objects in current generation.
 | 
						|
// subtract_refs() and move_unreachable() uses this to distinguish
 | 
						|
// visited object is in GCing or not.
 | 
						|
//
 | 
						|
// move_unreachable() removes this flag from reachable objects.
 | 
						|
// Only unreachable objects have this flag.
 | 
						|
//
 | 
						|
// No objects in interpreter have this flag after GC ends.
 | 
						|
#define PREV_MASK_COLLECTING   _PyGC_PREV_MASK_COLLECTING
 | 
						|
 | 
						|
// Lowest bit of _gc_next is used for UNREACHABLE flag.
 | 
						|
//
 | 
						|
// This flag represents the object is in unreachable list in move_unreachable()
 | 
						|
//
 | 
						|
// Although this flag is used only in move_unreachable(), move_unreachable()
 | 
						|
// doesn't clear this flag to skip unnecessary iteration.
 | 
						|
// move_legacy_finalizers() removes this flag instead.
 | 
						|
// Between them, unreachable list is not normal list and we can not use
 | 
						|
// most gc_list_* functions for it.
 | 
						|
#define NEXT_MASK_UNREACHABLE  (1)
 | 
						|
 | 
						|
/* Get an object's GC head */
 | 
						|
#define AS_GC(o) ((PyGC_Head *)(o)-1)
 | 
						|
 | 
						|
/* Get the object given the GC head */
 | 
						|
#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
 | 
						|
 | 
						|
static inline int
 | 
						|
gc_is_collecting(PyGC_Head *g)
 | 
						|
{
 | 
						|
    return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_clear_collecting(PyGC_Head *g)
 | 
						|
{
 | 
						|
    g->_gc_prev &= ~PREV_MASK_COLLECTING;
 | 
						|
}
 | 
						|
 | 
						|
static inline Py_ssize_t
 | 
						|
gc_get_refs(PyGC_Head *g)
 | 
						|
{
 | 
						|
    return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
 | 
						|
{
 | 
						|
    g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
 | 
						|
        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
 | 
						|
{
 | 
						|
    g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
 | 
						|
        | PREV_MASK_COLLECTING
 | 
						|
        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_decref(PyGC_Head *g)
 | 
						|
{
 | 
						|
    _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
 | 
						|
                              gc_get_refs(g) > 0,
 | 
						|
                              "refcount is too small");
 | 
						|
    g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
/* Python string to use if unhandled exception occurs */
 | 
						|
static PyObject *gc_str = NULL;
 | 
						|
 | 
						|
/* set for debugging information */
 | 
						|
#define DEBUG_STATS             (1<<0) /* print collection statistics */
 | 
						|
#define DEBUG_COLLECTABLE       (1<<1) /* print collectable objects */
 | 
						|
#define DEBUG_UNCOLLECTABLE     (1<<2) /* print uncollectable objects */
 | 
						|
#define DEBUG_SAVEALL           (1<<5) /* save all garbage in gc.garbage */
 | 
						|
#define DEBUG_LEAK              DEBUG_COLLECTABLE | \
 | 
						|
                DEBUG_UNCOLLECTABLE | \
 | 
						|
                DEBUG_SAVEALL
 | 
						|
 | 
						|
#define GEN_HEAD(state, n) (&(state)->generations[n].head)
 | 
						|
 | 
						|
void
 | 
						|
_PyGC_Initialize(struct _gc_runtime_state *state)
 | 
						|
{
 | 
						|
    state->enabled = 1; /* automatic collection enabled? */
 | 
						|
 | 
						|
#define _GEN_HEAD(n) GEN_HEAD(state, n)
 | 
						|
    struct gc_generation generations[NUM_GENERATIONS] = {
 | 
						|
        /* PyGC_Head,                                    threshold,    count */
 | 
						|
        {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)},   700,        0},
 | 
						|
        {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)},   10,         0},
 | 
						|
        {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)},   10,         0},
 | 
						|
    };
 | 
						|
    for (int i = 0; i < NUM_GENERATIONS; i++) {
 | 
						|
        state->generations[i] = generations[i];
 | 
						|
    };
 | 
						|
    state->generation0 = GEN_HEAD(state, 0);
 | 
						|
    struct gc_generation permanent_generation = {
 | 
						|
          {(uintptr_t)&state->permanent_generation.head,
 | 
						|
           (uintptr_t)&state->permanent_generation.head}, 0, 0
 | 
						|
    };
 | 
						|
    state->permanent_generation = permanent_generation;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
_gc_prev values
 | 
						|
---------------
 | 
						|
 | 
						|
Between collections, _gc_prev is used for doubly linked list.
 | 
						|
 | 
						|
Lowest two bits of _gc_prev are used for flags.
 | 
						|
PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
 | 
						|
or _PyObject_GC_UNTRACK() is called.
 | 
						|
 | 
						|
During a collection, _gc_prev is temporary used for gc_refs, and the gc list
 | 
						|
is singly linked until _gc_prev is restored.
 | 
						|
 | 
						|
gc_refs
 | 
						|
    At the start of a collection, update_refs() copies the true refcount
 | 
						|
    to gc_refs, for each object in the generation being collected.
 | 
						|
    subtract_refs() then adjusts gc_refs so that it equals the number of
 | 
						|
    times an object is referenced directly from outside the generation
 | 
						|
    being collected.
 | 
						|
 | 
						|
PREV_MASK_COLLECTING
 | 
						|
    Objects in generation being collected are marked PREV_MASK_COLLECTING in
 | 
						|
    update_refs().
 | 
						|
 | 
						|
 | 
						|
_gc_next values
 | 
						|
---------------
 | 
						|
 | 
						|
_gc_next takes these values:
 | 
						|
 | 
						|
0
 | 
						|
    The object is not tracked
 | 
						|
 | 
						|
!= 0
 | 
						|
    Pointer to the next object in the GC list.
 | 
						|
    Additionally, lowest bit is used temporary for
 | 
						|
    NEXT_MASK_UNREACHABLE flag described below.
 | 
						|
 | 
						|
NEXT_MASK_UNREACHABLE
 | 
						|
    move_unreachable() then moves objects not reachable (whether directly or
 | 
						|
    indirectly) from outside the generation into an "unreachable" set and
 | 
						|
    set this flag.
 | 
						|
 | 
						|
    Objects that are found to be reachable have gc_refs set to 1.
 | 
						|
    When this flag is set for the reachable object, the object must be in
 | 
						|
    "unreachable" set.
 | 
						|
    The flag is unset and the object is moved back to "reachable" set.
 | 
						|
 | 
						|
    move_legacy_finalizers() will remove this flag from "unreachable" set.
 | 
						|
*/
 | 
						|
 | 
						|
/*** list functions ***/
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_list_init(PyGC_Head *list)
 | 
						|
{
 | 
						|
    // List header must not have flags.
 | 
						|
    // We can assign pointer by simple cast.
 | 
						|
    list->_gc_prev = (uintptr_t)list;
 | 
						|
    list->_gc_next = (uintptr_t)list;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
gc_list_is_empty(PyGC_Head *list)
 | 
						|
{
 | 
						|
    return (list->_gc_next == (uintptr_t)list);
 | 
						|
}
 | 
						|
 | 
						|
/* Append `node` to `list`. */
 | 
						|
static inline void
 | 
						|
gc_list_append(PyGC_Head *node, PyGC_Head *list)
 | 
						|
{
 | 
						|
    PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
 | 
						|
 | 
						|
    // last <-> node
 | 
						|
    _PyGCHead_SET_PREV(node, last);
 | 
						|
    _PyGCHead_SET_NEXT(last, node);
 | 
						|
 | 
						|
    // node <-> list
 | 
						|
    _PyGCHead_SET_NEXT(node, list);
 | 
						|
    list->_gc_prev = (uintptr_t)node;
 | 
						|
}
 | 
						|
 | 
						|
/* Remove `node` from the gc list it's currently in. */
 | 
						|
static inline void
 | 
						|
gc_list_remove(PyGC_Head *node)
 | 
						|
{
 | 
						|
    PyGC_Head *prev = GC_PREV(node);
 | 
						|
    PyGC_Head *next = GC_NEXT(node);
 | 
						|
 | 
						|
    _PyGCHead_SET_NEXT(prev, next);
 | 
						|
    _PyGCHead_SET_PREV(next, prev);
 | 
						|
 | 
						|
    node->_gc_next = 0; /* object is not currently tracked */
 | 
						|
}
 | 
						|
 | 
						|
/* Move `node` from the gc list it's currently in (which is not explicitly
 | 
						|
 * named here) to the end of `list`.  This is semantically the same as
 | 
						|
 * gc_list_remove(node) followed by gc_list_append(node, list).
 | 
						|
 */
 | 
						|
static void
 | 
						|
gc_list_move(PyGC_Head *node, PyGC_Head *list)
 | 
						|
{
 | 
						|
    /* Unlink from current list. */
 | 
						|
    PyGC_Head *from_prev = GC_PREV(node);
 | 
						|
    PyGC_Head *from_next = GC_NEXT(node);
 | 
						|
    _PyGCHead_SET_NEXT(from_prev, from_next);
 | 
						|
    _PyGCHead_SET_PREV(from_next, from_prev);
 | 
						|
 | 
						|
    /* Relink at end of new list. */
 | 
						|
    // list must not have flags.  So we can skip macros.
 | 
						|
    PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
 | 
						|
    _PyGCHead_SET_PREV(node, to_prev);
 | 
						|
    _PyGCHead_SET_NEXT(to_prev, node);
 | 
						|
    list->_gc_prev = (uintptr_t)node;
 | 
						|
    _PyGCHead_SET_NEXT(node, list);
 | 
						|
}
 | 
						|
 | 
						|
/* append list `from` onto list `to`; `from` becomes an empty list */
 | 
						|
static void
 | 
						|
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
 | 
						|
{
 | 
						|
    assert(from != to);
 | 
						|
    if (!gc_list_is_empty(from)) {
 | 
						|
        PyGC_Head *to_tail = GC_PREV(to);
 | 
						|
        PyGC_Head *from_head = GC_NEXT(from);
 | 
						|
        PyGC_Head *from_tail = GC_PREV(from);
 | 
						|
        assert(from_head != from);
 | 
						|
        assert(from_tail != from);
 | 
						|
 | 
						|
        _PyGCHead_SET_NEXT(to_tail, from_head);
 | 
						|
        _PyGCHead_SET_PREV(from_head, to_tail);
 | 
						|
 | 
						|
        _PyGCHead_SET_NEXT(from_tail, to);
 | 
						|
        _PyGCHead_SET_PREV(to, from_tail);
 | 
						|
    }
 | 
						|
    gc_list_init(from);
 | 
						|
}
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
gc_list_size(PyGC_Head *list)
 | 
						|
{
 | 
						|
    PyGC_Head *gc;
 | 
						|
    Py_ssize_t n = 0;
 | 
						|
    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
 | 
						|
        n++;
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
/* Append objects in a GC list to a Python list.
 | 
						|
 * Return 0 if all OK, < 0 if error (out of memory for list).
 | 
						|
 */
 | 
						|
static int
 | 
						|
append_objects(PyObject *py_list, PyGC_Head *gc_list)
 | 
						|
{
 | 
						|
    PyGC_Head *gc;
 | 
						|
    for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
        if (op != py_list) {
 | 
						|
            if (PyList_Append(py_list, op)) {
 | 
						|
                return -1; /* exception */
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if GC_DEBUG
 | 
						|
// validate_list checks list consistency.  And it works as document
 | 
						|
// describing when expected_mask is set / unset.
 | 
						|
static void
 | 
						|
validate_list(PyGC_Head *head, uintptr_t expected_mask)
 | 
						|
{
 | 
						|
    PyGC_Head *prev = head;
 | 
						|
    PyGC_Head *gc = GC_NEXT(head);
 | 
						|
    while (gc != head) {
 | 
						|
        assert(GC_NEXT(gc) != NULL);
 | 
						|
        assert(GC_PREV(gc) == prev);
 | 
						|
        assert((gc->_gc_prev & PREV_MASK_COLLECTING) == expected_mask);
 | 
						|
        prev = gc;
 | 
						|
        gc = GC_NEXT(gc);
 | 
						|
    }
 | 
						|
    assert(prev == GC_PREV(head));
 | 
						|
}
 | 
						|
#else
 | 
						|
#define validate_list(x,y) do{}while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*** end of list stuff ***/
 | 
						|
 | 
						|
 | 
						|
/* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 and
 | 
						|
 * PREV_MASK_COLLECTING bit is set for all objects in containers.
 | 
						|
 */
 | 
						|
static void
 | 
						|
update_refs(PyGC_Head *containers)
 | 
						|
{
 | 
						|
    PyGC_Head *gc = GC_NEXT(containers);
 | 
						|
    for (; gc != containers; gc = GC_NEXT(gc)) {
 | 
						|
        gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
 | 
						|
        /* Python's cyclic gc should never see an incoming refcount
 | 
						|
         * of 0:  if something decref'ed to 0, it should have been
 | 
						|
         * deallocated immediately at that time.
 | 
						|
         * Possible cause (if the assert triggers):  a tp_dealloc
 | 
						|
         * routine left a gc-aware object tracked during its teardown
 | 
						|
         * phase, and did something-- or allowed something to happen --
 | 
						|
         * that called back into Python.  gc can trigger then, and may
 | 
						|
         * see the still-tracked dying object.  Before this assert
 | 
						|
         * was added, such mistakes went on to allow gc to try to
 | 
						|
         * delete the object again.  In a debug build, that caused
 | 
						|
         * a mysterious segfault, when _Py_ForgetReference tried
 | 
						|
         * to remove the object from the doubly-linked list of all
 | 
						|
         * objects a second time.  In a release build, an actual
 | 
						|
         * double deallocation occurred, which leads to corruption
 | 
						|
         * of the allocator's internal bookkeeping pointers.  That's
 | 
						|
         * so serious that maybe this should be a release-build
 | 
						|
         * check instead of an assert?
 | 
						|
         */
 | 
						|
        _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* A traversal callback for subtract_refs. */
 | 
						|
static int
 | 
						|
visit_decref(PyObject *op, void *data)
 | 
						|
{
 | 
						|
    assert(op != NULL);
 | 
						|
    if (PyObject_IS_GC(op)) {
 | 
						|
        PyGC_Head *gc = AS_GC(op);
 | 
						|
        /* We're only interested in gc_refs for objects in the
 | 
						|
         * generation being collected, which can be recognized
 | 
						|
         * because only they have positive gc_refs.
 | 
						|
         */
 | 
						|
        if (gc_is_collecting(gc)) {
 | 
						|
            gc_decref(gc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
 | 
						|
 * for all objects in containers, and is GC_REACHABLE for all tracked gc
 | 
						|
 * objects not in containers.  The ones with gc_refs > 0 are directly
 | 
						|
 * reachable from outside containers, and so can't be collected.
 | 
						|
 */
 | 
						|
static void
 | 
						|
subtract_refs(PyGC_Head *containers)
 | 
						|
{
 | 
						|
    traverseproc traverse;
 | 
						|
    PyGC_Head *gc = GC_NEXT(containers);
 | 
						|
    for (; gc != containers; gc = GC_NEXT(gc)) {
 | 
						|
        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
 | 
						|
        (void) traverse(FROM_GC(gc),
 | 
						|
                       (visitproc)visit_decref,
 | 
						|
                       NULL);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* A traversal callback for move_unreachable. */
 | 
						|
static int
 | 
						|
visit_reachable(PyObject *op, PyGC_Head *reachable)
 | 
						|
{
 | 
						|
    if (!PyObject_IS_GC(op)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    PyGC_Head *gc = AS_GC(op);
 | 
						|
    const Py_ssize_t gc_refs = gc_get_refs(gc);
 | 
						|
 | 
						|
    // Ignore untracked objects and objects in other generation.
 | 
						|
    if (gc->_gc_next == 0 || !gc_is_collecting(gc)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
 | 
						|
        /* This had gc_refs = 0 when move_unreachable got
 | 
						|
         * to it, but turns out it's reachable after all.
 | 
						|
         * Move it back to move_unreachable's 'young' list,
 | 
						|
         * and move_unreachable will eventually get to it
 | 
						|
         * again.
 | 
						|
         */
 | 
						|
        // Manually unlink gc from unreachable list because
 | 
						|
        PyGC_Head *prev = GC_PREV(gc);
 | 
						|
        PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
 | 
						|
        _PyObject_ASSERT(FROM_GC(prev),
 | 
						|
                         prev->_gc_next & NEXT_MASK_UNREACHABLE);
 | 
						|
        _PyObject_ASSERT(FROM_GC(next),
 | 
						|
                         next->_gc_next & NEXT_MASK_UNREACHABLE);
 | 
						|
        prev->_gc_next = gc->_gc_next;  // copy NEXT_MASK_UNREACHABLE
 | 
						|
        _PyGCHead_SET_PREV(next, prev);
 | 
						|
 | 
						|
        gc_list_append(gc, reachable);
 | 
						|
        gc_set_refs(gc, 1);
 | 
						|
    }
 | 
						|
    else if (gc_refs == 0) {
 | 
						|
        /* This is in move_unreachable's 'young' list, but
 | 
						|
         * the traversal hasn't yet gotten to it.  All
 | 
						|
         * we need to do is tell move_unreachable that it's
 | 
						|
         * reachable.
 | 
						|
         */
 | 
						|
        gc_set_refs(gc, 1);
 | 
						|
    }
 | 
						|
    /* Else there's nothing to do.
 | 
						|
     * If gc_refs > 0, it must be in move_unreachable's 'young'
 | 
						|
     * list, and move_unreachable will eventually get to it.
 | 
						|
     */
 | 
						|
    else {
 | 
						|
        _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Move the unreachable objects from young to unreachable.  After this,
 | 
						|
 * all objects in young don't have PREV_MASK_COLLECTING flag and
 | 
						|
 * unreachable have the flag.
 | 
						|
 * All objects in young after this are directly or indirectly reachable
 | 
						|
 * from outside the original young; and all objects in unreachable are
 | 
						|
 * not.
 | 
						|
 *
 | 
						|
 * This function restores _gc_prev pointer.  young and unreachable are
 | 
						|
 * doubly linked list after this function.
 | 
						|
 * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
 | 
						|
 * So we can not gc_list_* functions for unreachable until we remove the flag.
 | 
						|
 */
 | 
						|
static void
 | 
						|
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
 | 
						|
{
 | 
						|
    // previous elem in the young list, used for restore gc_prev.
 | 
						|
    PyGC_Head *prev = young;
 | 
						|
    PyGC_Head *gc = GC_NEXT(young);
 | 
						|
 | 
						|
    /* Invariants:  all objects "to the left" of us in young are reachable
 | 
						|
     * (directly or indirectly) from outside the young list as it was at entry.
 | 
						|
     *
 | 
						|
     * All other objects from the original young "to the left" of us are in
 | 
						|
     * unreachable now, and have NEXT_MASK_UNREACHABLE.  All objects to the
 | 
						|
     * left of us in 'young' now have been scanned, and no objects here
 | 
						|
     * or to the right have been scanned yet.
 | 
						|
     */
 | 
						|
 | 
						|
    while (gc != young) {
 | 
						|
        if (gc_get_refs(gc)) {
 | 
						|
            /* gc is definitely reachable from outside the
 | 
						|
             * original 'young'.  Mark it as such, and traverse
 | 
						|
             * its pointers to find any other objects that may
 | 
						|
             * be directly reachable from it.  Note that the
 | 
						|
             * call to tp_traverse may append objects to young,
 | 
						|
             * so we have to wait until it returns to determine
 | 
						|
             * the next object to visit.
 | 
						|
             */
 | 
						|
            PyObject *op = FROM_GC(gc);
 | 
						|
            traverseproc traverse = Py_TYPE(op)->tp_traverse;
 | 
						|
            _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
 | 
						|
                                      "refcount is too small");
 | 
						|
            // NOTE: visit_reachable may change gc->_gc_next when
 | 
						|
            // young->_gc_prev == gc.  Don't do gc = GC_NEXT(gc) before!
 | 
						|
            (void) traverse(op,
 | 
						|
                    (visitproc)visit_reachable,
 | 
						|
                    (void *)young);
 | 
						|
            // relink gc_prev to prev element.
 | 
						|
            _PyGCHead_SET_PREV(gc, prev);
 | 
						|
            // gc is not COLLECTING state after here.
 | 
						|
            gc_clear_collecting(gc);
 | 
						|
            prev = gc;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* This *may* be unreachable.  To make progress,
 | 
						|
             * assume it is.  gc isn't directly reachable from
 | 
						|
             * any object we've already traversed, but may be
 | 
						|
             * reachable from an object we haven't gotten to yet.
 | 
						|
             * visit_reachable will eventually move gc back into
 | 
						|
             * young if that's so, and we'll see it again.
 | 
						|
             */
 | 
						|
            // Move gc to unreachable.
 | 
						|
            // No need to gc->next->prev = prev because it is single linked.
 | 
						|
            prev->_gc_next = gc->_gc_next;
 | 
						|
 | 
						|
            // We can't use gc_list_append() here because we use
 | 
						|
            // NEXT_MASK_UNREACHABLE here.
 | 
						|
            PyGC_Head *last = GC_PREV(unreachable);
 | 
						|
            // NOTE: Since all objects in unreachable set has
 | 
						|
            // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
 | 
						|
            // But this may set the flat to unreachable too.
 | 
						|
            // move_legacy_finalizers() should care about it.
 | 
						|
            last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
 | 
						|
            _PyGCHead_SET_PREV(gc, last);
 | 
						|
            gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
 | 
						|
            unreachable->_gc_prev = (uintptr_t)gc;
 | 
						|
        }
 | 
						|
        gc = (PyGC_Head*)prev->_gc_next;
 | 
						|
    }
 | 
						|
    // young->_gc_prev must be last element remained in the list.
 | 
						|
    young->_gc_prev = (uintptr_t)prev;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
untrack_tuples(PyGC_Head *head)
 | 
						|
{
 | 
						|
    PyGC_Head *next, *gc = GC_NEXT(head);
 | 
						|
    while (gc != head) {
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
        next = GC_NEXT(gc);
 | 
						|
        if (PyTuple_CheckExact(op)) {
 | 
						|
            _PyTuple_MaybeUntrack(op);
 | 
						|
        }
 | 
						|
        gc = next;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Try to untrack all currently tracked dictionaries */
 | 
						|
static void
 | 
						|
untrack_dicts(PyGC_Head *head)
 | 
						|
{
 | 
						|
    PyGC_Head *next, *gc = GC_NEXT(head);
 | 
						|
    while (gc != head) {
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
        next = GC_NEXT(gc);
 | 
						|
        if (PyDict_CheckExact(op)) {
 | 
						|
            _PyDict_MaybeUntrack(op);
 | 
						|
        }
 | 
						|
        gc = next;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if object has a pre-PEP 442 finalization method. */
 | 
						|
static int
 | 
						|
has_legacy_finalizer(PyObject *op)
 | 
						|
{
 | 
						|
    return op->ob_type->tp_del != NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Move the objects in unreachable with tp_del slots into `finalizers`.
 | 
						|
 *
 | 
						|
 * This function also removes NEXT_MASK_UNREACHABLE flag
 | 
						|
 * from _gc_next in unreachable.
 | 
						|
 */
 | 
						|
static void
 | 
						|
move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
 | 
						|
{
 | 
						|
    PyGC_Head *gc, *next;
 | 
						|
    unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
 | 
						|
 | 
						|
    /* March over unreachable.  Move objects with finalizers into
 | 
						|
     * `finalizers`.
 | 
						|
     */
 | 
						|
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
 | 
						|
        _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
 | 
						|
        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
 | 
						|
        next = (PyGC_Head*)gc->_gc_next;
 | 
						|
 | 
						|
        if (has_legacy_finalizer(op)) {
 | 
						|
            gc_clear_collecting(gc);
 | 
						|
            gc_list_move(gc, finalizers);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* A traversal callback for move_legacy_finalizer_reachable. */
 | 
						|
static int
 | 
						|
visit_move(PyObject *op, PyGC_Head *tolist)
 | 
						|
{
 | 
						|
    if (PyObject_IS_GC(op)) {
 | 
						|
        PyGC_Head *gc = AS_GC(op);
 | 
						|
        if (gc_is_collecting(gc)) {
 | 
						|
            gc_list_move(gc, tolist);
 | 
						|
            gc_clear_collecting(gc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Move objects that are reachable from finalizers, from the unreachable set
 | 
						|
 * into finalizers set.
 | 
						|
 */
 | 
						|
static void
 | 
						|
move_legacy_finalizer_reachable(PyGC_Head *finalizers)
 | 
						|
{
 | 
						|
    traverseproc traverse;
 | 
						|
    PyGC_Head *gc = GC_NEXT(finalizers);
 | 
						|
    for (; gc != finalizers; gc = GC_NEXT(gc)) {
 | 
						|
        /* Note that the finalizers list may grow during this. */
 | 
						|
        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
 | 
						|
        (void) traverse(FROM_GC(gc),
 | 
						|
                        (visitproc)visit_move,
 | 
						|
                        (void *)finalizers);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Clear all weakrefs to unreachable objects, and if such a weakref has a
 | 
						|
 * callback, invoke it if necessary.  Note that it's possible for such
 | 
						|
 * weakrefs to be outside the unreachable set -- indeed, those are precisely
 | 
						|
 * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
 | 
						|
 * overview & some details.  Some weakrefs with callbacks may be reclaimed
 | 
						|
 * directly by this routine; the number reclaimed is the return value.  Other
 | 
						|
 * weakrefs with callbacks may be moved into the `old` generation.  Objects
 | 
						|
 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
 | 
						|
 * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
 | 
						|
 * no object in `unreachable` is weakly referenced anymore.
 | 
						|
 */
 | 
						|
static int
 | 
						|
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
 | 
						|
{
 | 
						|
    PyGC_Head *gc;
 | 
						|
    PyObject *op;               /* generally FROM_GC(gc) */
 | 
						|
    PyWeakReference *wr;        /* generally a cast of op */
 | 
						|
    PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
 | 
						|
    PyGC_Head *next;
 | 
						|
    int num_freed = 0;
 | 
						|
 | 
						|
    gc_list_init(&wrcb_to_call);
 | 
						|
 | 
						|
    /* Clear all weakrefs to the objects in unreachable.  If such a weakref
 | 
						|
     * also has a callback, move it into `wrcb_to_call` if the callback
 | 
						|
     * needs to be invoked.  Note that we cannot invoke any callbacks until
 | 
						|
     * all weakrefs to unreachable objects are cleared, lest the callback
 | 
						|
     * resurrect an unreachable object via a still-active weakref.  We
 | 
						|
     * make another pass over wrcb_to_call, invoking callbacks, after this
 | 
						|
     * pass completes.
 | 
						|
     */
 | 
						|
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
 | 
						|
        PyWeakReference **wrlist;
 | 
						|
 | 
						|
        op = FROM_GC(gc);
 | 
						|
        next = GC_NEXT(gc);
 | 
						|
 | 
						|
        if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* It supports weakrefs.  Does it have any? */
 | 
						|
        wrlist = (PyWeakReference **)
 | 
						|
                                PyObject_GET_WEAKREFS_LISTPTR(op);
 | 
						|
 | 
						|
        /* `op` may have some weakrefs.  March over the list, clear
 | 
						|
         * all the weakrefs, and move the weakrefs with callbacks
 | 
						|
         * that must be called into wrcb_to_call.
 | 
						|
         */
 | 
						|
        for (wr = *wrlist; wr != NULL; wr = *wrlist) {
 | 
						|
            PyGC_Head *wrasgc;                  /* AS_GC(wr) */
 | 
						|
 | 
						|
            /* _PyWeakref_ClearRef clears the weakref but leaves
 | 
						|
             * the callback pointer intact.  Obscure:  it also
 | 
						|
             * changes *wrlist.
 | 
						|
             */
 | 
						|
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
 | 
						|
            _PyWeakref_ClearRef(wr);
 | 
						|
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
 | 
						|
            if (wr->wr_callback == NULL) {
 | 
						|
                /* no callback */
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Headache time.  `op` is going away, and is weakly referenced by
 | 
						|
             * `wr`, which has a callback.  Should the callback be invoked?  If wr
 | 
						|
             * is also trash, no:
 | 
						|
             *
 | 
						|
             * 1. There's no need to call it.  The object and the weakref are
 | 
						|
             *    both going away, so it's legitimate to pretend the weakref is
 | 
						|
             *    going away first.  The user has to ensure a weakref outlives its
 | 
						|
             *    referent if they want a guarantee that the wr callback will get
 | 
						|
             *    invoked.
 | 
						|
             *
 | 
						|
             * 2. It may be catastrophic to call it.  If the callback is also in
 | 
						|
             *    cyclic trash (CT), then although the CT is unreachable from
 | 
						|
             *    outside the current generation, CT may be reachable from the
 | 
						|
             *    callback.  Then the callback could resurrect insane objects.
 | 
						|
             *
 | 
						|
             * Since the callback is never needed and may be unsafe in this case,
 | 
						|
             * wr is simply left in the unreachable set.  Note that because we
 | 
						|
             * already called _PyWeakref_ClearRef(wr), its callback will never
 | 
						|
             * trigger.
 | 
						|
             *
 | 
						|
             * OTOH, if wr isn't part of CT, we should invoke the callback:  the
 | 
						|
             * weakref outlived the trash.  Note that since wr isn't CT in this
 | 
						|
             * case, its callback can't be CT either -- wr acted as an external
 | 
						|
             * root to this generation, and therefore its callback did too.  So
 | 
						|
             * nothing in CT is reachable from the callback either, so it's hard
 | 
						|
             * to imagine how calling it later could create a problem for us.  wr
 | 
						|
             * is moved to wrcb_to_call in this case.
 | 
						|
             */
 | 
						|
            if (gc_is_collecting(AS_GC(wr))) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Create a new reference so that wr can't go away
 | 
						|
             * before we can process it again.
 | 
						|
             */
 | 
						|
            Py_INCREF(wr);
 | 
						|
 | 
						|
            /* Move wr to wrcb_to_call, for the next pass. */
 | 
						|
            wrasgc = AS_GC(wr);
 | 
						|
            assert(wrasgc != next); /* wrasgc is reachable, but
 | 
						|
                                       next isn't, so they can't
 | 
						|
                                       be the same */
 | 
						|
            gc_list_move(wrasgc, &wrcb_to_call);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Invoke the callbacks we decided to honor.  It's safe to invoke them
 | 
						|
     * because they can't reference unreachable objects.
 | 
						|
     */
 | 
						|
    while (! gc_list_is_empty(&wrcb_to_call)) {
 | 
						|
        PyObject *temp;
 | 
						|
        PyObject *callback;
 | 
						|
 | 
						|
        gc = (PyGC_Head*)wrcb_to_call._gc_next;
 | 
						|
        op = FROM_GC(gc);
 | 
						|
        _PyObject_ASSERT(op, PyWeakref_Check(op));
 | 
						|
        wr = (PyWeakReference *)op;
 | 
						|
        callback = wr->wr_callback;
 | 
						|
        _PyObject_ASSERT(op, callback != NULL);
 | 
						|
 | 
						|
        /* copy-paste of weakrefobject.c's handle_callback() */
 | 
						|
        temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
 | 
						|
        if (temp == NULL)
 | 
						|
            PyErr_WriteUnraisable(callback);
 | 
						|
        else
 | 
						|
            Py_DECREF(temp);
 | 
						|
 | 
						|
        /* Give up the reference we created in the first pass.  When
 | 
						|
         * op's refcount hits 0 (which it may or may not do right now),
 | 
						|
         * op's tp_dealloc will decref op->wr_callback too.  Note
 | 
						|
         * that the refcount probably will hit 0 now, and because this
 | 
						|
         * weakref was reachable to begin with, gc didn't already
 | 
						|
         * add it to its count of freed objects.  Example:  a reachable
 | 
						|
         * weak value dict maps some key to this reachable weakref.
 | 
						|
         * The callback removes this key->weakref mapping from the
 | 
						|
         * dict, leaving no other references to the weakref (excepting
 | 
						|
         * ours).
 | 
						|
         */
 | 
						|
        Py_DECREF(op);
 | 
						|
        if (wrcb_to_call._gc_next == (uintptr_t)gc) {
 | 
						|
            /* object is still alive -- move it */
 | 
						|
            gc_list_move(gc, old);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ++num_freed;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return num_freed;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
debug_cycle(const char *msg, PyObject *op)
 | 
						|
{
 | 
						|
    PySys_FormatStderr("gc: %s <%s %p>\n",
 | 
						|
                       msg, Py_TYPE(op)->tp_name, op);
 | 
						|
}
 | 
						|
 | 
						|
/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
 | 
						|
 * only from such cycles).
 | 
						|
 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
 | 
						|
 * garbage list (a Python list), else only the objects in finalizers with
 | 
						|
 * __del__ methods are appended to garbage.  All objects in finalizers are
 | 
						|
 * merged into the old list regardless.
 | 
						|
 */
 | 
						|
static void
 | 
						|
handle_legacy_finalizers(struct _gc_runtime_state *state,
 | 
						|
                         PyGC_Head *finalizers, PyGC_Head *old)
 | 
						|
{
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
 | 
						|
    PyGC_Head *gc = GC_NEXT(finalizers);
 | 
						|
    if (state->garbage == NULL) {
 | 
						|
        state->garbage = PyList_New(0);
 | 
						|
        if (state->garbage == NULL)
 | 
						|
            Py_FatalError("gc couldn't create gc.garbage list");
 | 
						|
    }
 | 
						|
    for (; gc != finalizers; gc = GC_NEXT(gc)) {
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
 | 
						|
        if ((state->debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
 | 
						|
            if (PyList_Append(state->garbage, op) < 0) {
 | 
						|
                PyErr_Clear();
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    gc_list_merge(finalizers, old);
 | 
						|
}
 | 
						|
 | 
						|
/* Run first-time finalizers (if any) on all the objects in collectable.
 | 
						|
 * Note that this may remove some (or even all) of the objects from the
 | 
						|
 * list, due to refcounts falling to 0.
 | 
						|
 */
 | 
						|
static void
 | 
						|
finalize_garbage(PyGC_Head *collectable)
 | 
						|
{
 | 
						|
    destructor finalize;
 | 
						|
    PyGC_Head seen;
 | 
						|
 | 
						|
    /* While we're going through the loop, `finalize(op)` may cause op, or
 | 
						|
     * other objects, to be reclaimed via refcounts falling to zero.  So
 | 
						|
     * there's little we can rely on about the structure of the input
 | 
						|
     * `collectable` list across iterations.  For safety, we always take the
 | 
						|
     * first object in that list and move it to a temporary `seen` list.
 | 
						|
     * If objects vanish from the `collectable` and `seen` lists we don't
 | 
						|
     * care.
 | 
						|
     */
 | 
						|
    gc_list_init(&seen);
 | 
						|
 | 
						|
    while (!gc_list_is_empty(collectable)) {
 | 
						|
        PyGC_Head *gc = GC_NEXT(collectable);
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
        gc_list_move(gc, &seen);
 | 
						|
        if (!_PyGCHead_FINALIZED(gc) &&
 | 
						|
                (finalize = Py_TYPE(op)->tp_finalize) != NULL) {
 | 
						|
            _PyGCHead_SET_FINALIZED(gc);
 | 
						|
            Py_INCREF(op);
 | 
						|
            finalize(op);
 | 
						|
            assert(!PyErr_Occurred());
 | 
						|
            Py_DECREF(op);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    gc_list_merge(&seen, collectable);
 | 
						|
}
 | 
						|
 | 
						|
/* Walk the collectable list and check that they are really unreachable
 | 
						|
   from the outside (some objects could have been resurrected by a
 | 
						|
   finalizer). */
 | 
						|
static int
 | 
						|
check_garbage(PyGC_Head *collectable)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    PyGC_Head *gc;
 | 
						|
    for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
 | 
						|
        // Use gc_refs and break gc_prev again.
 | 
						|
        gc_set_refs(gc, Py_REFCNT(FROM_GC(gc)));
 | 
						|
        _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
 | 
						|
    }
 | 
						|
    subtract_refs(collectable);
 | 
						|
    PyGC_Head *prev = collectable;
 | 
						|
    for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
 | 
						|
        _PyObject_ASSERT_WITH_MSG(FROM_GC(gc),
 | 
						|
                                  gc_get_refs(gc) >= 0,
 | 
						|
                                  "refcount is too small");
 | 
						|
        if (gc_get_refs(gc) != 0) {
 | 
						|
            ret = -1;
 | 
						|
        }
 | 
						|
        // Restore gc_prev here.
 | 
						|
        _PyGCHead_SET_PREV(gc, prev);
 | 
						|
        gc_clear_collecting(gc);
 | 
						|
        prev = gc;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Break reference cycles by clearing the containers involved.  This is
 | 
						|
 * tricky business as the lists can be changing and we don't know which
 | 
						|
 * objects may be freed.  It is possible I screwed something up here.
 | 
						|
 */
 | 
						|
static void
 | 
						|
delete_garbage(struct _gc_runtime_state *state,
 | 
						|
               PyGC_Head *collectable, PyGC_Head *old)
 | 
						|
{
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
 | 
						|
    while (!gc_list_is_empty(collectable)) {
 | 
						|
        PyGC_Head *gc = GC_NEXT(collectable);
 | 
						|
        PyObject *op = FROM_GC(gc);
 | 
						|
 | 
						|
        _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
 | 
						|
                                  "refcount is too small");
 | 
						|
 | 
						|
        if (state->debug & DEBUG_SAVEALL) {
 | 
						|
            assert(state->garbage != NULL);
 | 
						|
            if (PyList_Append(state->garbage, op) < 0) {
 | 
						|
                PyErr_Clear();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            inquiry clear;
 | 
						|
            if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
 | 
						|
                Py_INCREF(op);
 | 
						|
                (void) clear(op);
 | 
						|
                if (PyErr_Occurred()) {
 | 
						|
                    _PyErr_WriteUnraisableMsg("in tp_clear of",
 | 
						|
                                              (PyObject*)Py_TYPE(op));
 | 
						|
                }
 | 
						|
                Py_DECREF(op);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (GC_NEXT(collectable) == gc) {
 | 
						|
            /* object is still alive, move it, it may die later */
 | 
						|
            gc_list_move(gc, old);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Clear all free lists
 | 
						|
 * All free lists are cleared during the collection of the highest generation.
 | 
						|
 * Allocated items in the free list may keep a pymalloc arena occupied.
 | 
						|
 * Clearing the free lists may give back memory to the OS earlier.
 | 
						|
 */
 | 
						|
static void
 | 
						|
clear_freelists(void)
 | 
						|
{
 | 
						|
    (void)PyMethod_ClearFreeList();
 | 
						|
    (void)PyFrame_ClearFreeList();
 | 
						|
    (void)PyCFunction_ClearFreeList();
 | 
						|
    (void)PyTuple_ClearFreeList();
 | 
						|
    (void)PyUnicode_ClearFreeList();
 | 
						|
    (void)PyFloat_ClearFreeList();
 | 
						|
    (void)PyList_ClearFreeList();
 | 
						|
    (void)PyDict_ClearFreeList();
 | 
						|
    (void)PySet_ClearFreeList();
 | 
						|
    (void)PyAsyncGen_ClearFreeLists();
 | 
						|
    (void)PyContext_ClearFreeList();
 | 
						|
}
 | 
						|
 | 
						|
/* This is the main function.  Read this to understand how the
 | 
						|
 * collection process works. */
 | 
						|
static Py_ssize_t
 | 
						|
collect(struct _gc_runtime_state *state, int generation,
 | 
						|
        Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    Py_ssize_t m = 0; /* # objects collected */
 | 
						|
    Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
 | 
						|
    PyGC_Head *young; /* the generation we are examining */
 | 
						|
    PyGC_Head *old; /* next older generation */
 | 
						|
    PyGC_Head unreachable; /* non-problematic unreachable trash */
 | 
						|
    PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
 | 
						|
    PyGC_Head *gc;
 | 
						|
    _PyTime_t t1 = 0;   /* initialize to prevent a compiler warning */
 | 
						|
 | 
						|
    if (state->debug & DEBUG_STATS) {
 | 
						|
        PySys_WriteStderr("gc: collecting generation %d...\n",
 | 
						|
                          generation);
 | 
						|
        PySys_WriteStderr("gc: objects in each generation:");
 | 
						|
        for (i = 0; i < NUM_GENERATIONS; i++)
 | 
						|
            PySys_FormatStderr(" %zd",
 | 
						|
                              gc_list_size(GEN_HEAD(state, i)));
 | 
						|
        PySys_WriteStderr("\ngc: objects in permanent generation: %zd",
 | 
						|
                         gc_list_size(&state->permanent_generation.head));
 | 
						|
        t1 = _PyTime_GetMonotonicClock();
 | 
						|
 | 
						|
        PySys_WriteStderr("\n");
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyDTrace_GC_START_ENABLED())
 | 
						|
        PyDTrace_GC_START(generation);
 | 
						|
 | 
						|
    /* update collection and allocation counters */
 | 
						|
    if (generation+1 < NUM_GENERATIONS)
 | 
						|
        state->generations[generation+1].count += 1;
 | 
						|
    for (i = 0; i <= generation; i++)
 | 
						|
        state->generations[i].count = 0;
 | 
						|
 | 
						|
    /* merge younger generations with one we are currently collecting */
 | 
						|
    for (i = 0; i < generation; i++) {
 | 
						|
        gc_list_merge(GEN_HEAD(state, i), GEN_HEAD(state, generation));
 | 
						|
    }
 | 
						|
 | 
						|
    /* handy references */
 | 
						|
    young = GEN_HEAD(state, generation);
 | 
						|
    if (generation < NUM_GENERATIONS-1)
 | 
						|
        old = GEN_HEAD(state, generation+1);
 | 
						|
    else
 | 
						|
        old = young;
 | 
						|
 | 
						|
    validate_list(young, 0);
 | 
						|
    validate_list(old, 0);
 | 
						|
    /* Using ob_refcnt and gc_refs, calculate which objects in the
 | 
						|
     * container set are reachable from outside the set (i.e., have a
 | 
						|
     * refcount greater than 0 when all the references within the
 | 
						|
     * set are taken into account).
 | 
						|
     */
 | 
						|
    update_refs(young);  // gc_prev is used for gc_refs
 | 
						|
    subtract_refs(young);
 | 
						|
 | 
						|
    /* Leave everything reachable from outside young in young, and move
 | 
						|
     * everything else (in young) to unreachable.
 | 
						|
     * NOTE:  This used to move the reachable objects into a reachable
 | 
						|
     * set instead.  But most things usually turn out to be reachable,
 | 
						|
     * so it's more efficient to move the unreachable things.
 | 
						|
     */
 | 
						|
    gc_list_init(&unreachable);
 | 
						|
    move_unreachable(young, &unreachable);  // gc_prev is pointer again
 | 
						|
    validate_list(young, 0);
 | 
						|
 | 
						|
    untrack_tuples(young);
 | 
						|
    /* Move reachable objects to next generation. */
 | 
						|
    if (young != old) {
 | 
						|
        if (generation == NUM_GENERATIONS - 2) {
 | 
						|
            state->long_lived_pending += gc_list_size(young);
 | 
						|
        }
 | 
						|
        gc_list_merge(young, old);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* We only untrack dicts in full collections, to avoid quadratic
 | 
						|
           dict build-up. See issue #14775. */
 | 
						|
        untrack_dicts(young);
 | 
						|
        state->long_lived_pending = 0;
 | 
						|
        state->long_lived_total = gc_list_size(young);
 | 
						|
    }
 | 
						|
 | 
						|
    /* All objects in unreachable are trash, but objects reachable from
 | 
						|
     * legacy finalizers (e.g. tp_del) can't safely be deleted.
 | 
						|
     */
 | 
						|
    gc_list_init(&finalizers);
 | 
						|
    // NEXT_MASK_UNREACHABLE is cleared here.
 | 
						|
    // After move_legacy_finalizers(), unreachable is normal list.
 | 
						|
    move_legacy_finalizers(&unreachable, &finalizers);
 | 
						|
    /* finalizers contains the unreachable objects with a legacy finalizer;
 | 
						|
     * unreachable objects reachable *from* those are also uncollectable,
 | 
						|
     * and we move those into the finalizers list too.
 | 
						|
     */
 | 
						|
    move_legacy_finalizer_reachable(&finalizers);
 | 
						|
 | 
						|
    validate_list(&finalizers, 0);
 | 
						|
    validate_list(&unreachable, PREV_MASK_COLLECTING);
 | 
						|
 | 
						|
    /* Collect statistics on collectable objects found and print
 | 
						|
     * debugging information.
 | 
						|
     */
 | 
						|
    for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
 | 
						|
        m++;
 | 
						|
        if (state->debug & DEBUG_COLLECTABLE) {
 | 
						|
            debug_cycle("collectable", FROM_GC(gc));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clear weakrefs and invoke callbacks as necessary. */
 | 
						|
    m += handle_weakrefs(&unreachable, old);
 | 
						|
 | 
						|
    validate_list(old, 0);
 | 
						|
    validate_list(&unreachable, PREV_MASK_COLLECTING);
 | 
						|
 | 
						|
    /* Call tp_finalize on objects which have one. */
 | 
						|
    finalize_garbage(&unreachable);
 | 
						|
 | 
						|
    if (check_garbage(&unreachable)) { // clear PREV_MASK_COLLECTING here
 | 
						|
        gc_list_merge(&unreachable, old);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* Call tp_clear on objects in the unreachable set.  This will cause
 | 
						|
         * the reference cycles to be broken.  It may also cause some objects
 | 
						|
         * in finalizers to be freed.
 | 
						|
         */
 | 
						|
        delete_garbage(state, &unreachable, old);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Collect statistics on uncollectable objects found and print
 | 
						|
     * debugging information. */
 | 
						|
    for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
 | 
						|
        n++;
 | 
						|
        if (state->debug & DEBUG_UNCOLLECTABLE)
 | 
						|
            debug_cycle("uncollectable", FROM_GC(gc));
 | 
						|
    }
 | 
						|
    if (state->debug & DEBUG_STATS) {
 | 
						|
        _PyTime_t t2 = _PyTime_GetMonotonicClock();
 | 
						|
 | 
						|
        if (m == 0 && n == 0)
 | 
						|
            PySys_WriteStderr("gc: done");
 | 
						|
        else
 | 
						|
            PySys_FormatStderr(
 | 
						|
                "gc: done, %zd unreachable, %zd uncollectable",
 | 
						|
                n+m, n);
 | 
						|
        PySys_WriteStderr(", %.4fs elapsed\n",
 | 
						|
                          _PyTime_AsSecondsDouble(t2 - t1));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Append instances in the uncollectable set to a Python
 | 
						|
     * reachable list of garbage.  The programmer has to deal with
 | 
						|
     * this if they insist on creating this type of structure.
 | 
						|
     */
 | 
						|
    handle_legacy_finalizers(state, &finalizers, old);
 | 
						|
    validate_list(old, 0);
 | 
						|
 | 
						|
    /* Clear free list only during the collection of the highest
 | 
						|
     * generation */
 | 
						|
    if (generation == NUM_GENERATIONS-1) {
 | 
						|
        clear_freelists();
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyErr_Occurred()) {
 | 
						|
        if (nofail) {
 | 
						|
            PyErr_Clear();
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (gc_str == NULL)
 | 
						|
                gc_str = PyUnicode_FromString("garbage collection");
 | 
						|
            PyErr_WriteUnraisable(gc_str);
 | 
						|
            Py_FatalError("unexpected exception during garbage collection");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Update stats */
 | 
						|
    if (n_collected) {
 | 
						|
        *n_collected = m;
 | 
						|
    }
 | 
						|
    if (n_uncollectable) {
 | 
						|
        *n_uncollectable = n;
 | 
						|
    }
 | 
						|
 | 
						|
    struct gc_generation_stats *stats = &state->generation_stats[generation];
 | 
						|
    stats->collections++;
 | 
						|
    stats->collected += m;
 | 
						|
    stats->uncollectable += n;
 | 
						|
 | 
						|
    if (PyDTrace_GC_DONE_ENABLED()) {
 | 
						|
        PyDTrace_GC_DONE(n+m);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
    return n+m;
 | 
						|
}
 | 
						|
 | 
						|
/* Invoke progress callbacks to notify clients that garbage collection
 | 
						|
 * is starting or stopping
 | 
						|
 */
 | 
						|
static void
 | 
						|
invoke_gc_callback(struct _gc_runtime_state *state, const char *phase,
 | 
						|
                   int generation, Py_ssize_t collected,
 | 
						|
                   Py_ssize_t uncollectable)
 | 
						|
{
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
 | 
						|
    /* we may get called very early */
 | 
						|
    if (state->callbacks == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The local variable cannot be rebound, check it for sanity */
 | 
						|
    assert(PyList_CheckExact(state->callbacks));
 | 
						|
    PyObject *info = NULL;
 | 
						|
    if (PyList_GET_SIZE(state->callbacks) != 0) {
 | 
						|
        info = Py_BuildValue("{sisnsn}",
 | 
						|
            "generation", generation,
 | 
						|
            "collected", collected,
 | 
						|
            "uncollectable", uncollectable);
 | 
						|
        if (info == NULL) {
 | 
						|
            PyErr_WriteUnraisable(NULL);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (Py_ssize_t i=0; i<PyList_GET_SIZE(state->callbacks); i++) {
 | 
						|
        PyObject *r, *cb = PyList_GET_ITEM(state->callbacks, i);
 | 
						|
        Py_INCREF(cb); /* make sure cb doesn't go away */
 | 
						|
        r = PyObject_CallFunction(cb, "sO", phase, info);
 | 
						|
        if (r == NULL) {
 | 
						|
            PyErr_WriteUnraisable(cb);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            Py_DECREF(r);
 | 
						|
        }
 | 
						|
        Py_DECREF(cb);
 | 
						|
    }
 | 
						|
    Py_XDECREF(info);
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
}
 | 
						|
 | 
						|
/* Perform garbage collection of a generation and invoke
 | 
						|
 * progress callbacks.
 | 
						|
 */
 | 
						|
static Py_ssize_t
 | 
						|
collect_with_callback(struct _gc_runtime_state *state, int generation)
 | 
						|
{
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
    Py_ssize_t result, collected, uncollectable;
 | 
						|
    invoke_gc_callback(state, "start", generation, 0, 0);
 | 
						|
    result = collect(state, generation, &collected, &uncollectable, 0);
 | 
						|
    invoke_gc_callback(state, "stop", generation, collected, uncollectable);
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
collect_generations(struct _gc_runtime_state *state)
 | 
						|
{
 | 
						|
    /* Find the oldest generation (highest numbered) where the count
 | 
						|
     * exceeds the threshold.  Objects in the that generation and
 | 
						|
     * generations younger than it will be collected. */
 | 
						|
    Py_ssize_t n = 0;
 | 
						|
    for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
 | 
						|
        if (state->generations[i].count > state->generations[i].threshold) {
 | 
						|
            /* Avoid quadratic performance degradation in number
 | 
						|
               of tracked objects. See comments at the beginning
 | 
						|
               of this file, and issue #4074.
 | 
						|
            */
 | 
						|
            if (i == NUM_GENERATIONS - 1
 | 
						|
                && state->long_lived_pending < state->long_lived_total / 4)
 | 
						|
                continue;
 | 
						|
            n = collect_with_callback(state, i);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
#include "clinic/gcmodule.c.h"
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.enable
 | 
						|
 | 
						|
Enable automatic garbage collection.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_enable_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/
 | 
						|
{
 | 
						|
    _PyRuntime.gc.enabled = 1;
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.disable
 | 
						|
 | 
						|
Disable automatic garbage collection.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_disable_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/
 | 
						|
{
 | 
						|
    _PyRuntime.gc.enabled = 0;
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.isenabled -> bool
 | 
						|
 | 
						|
Returns true if automatic garbage collection is enabled.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static int
 | 
						|
gc_isenabled_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/
 | 
						|
{
 | 
						|
    return _PyRuntime.gc.enabled;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.collect -> Py_ssize_t
 | 
						|
 | 
						|
    generation: int(c_default="NUM_GENERATIONS - 1") = 2
 | 
						|
 | 
						|
Run the garbage collector.
 | 
						|
 | 
						|
With no arguments, run a full collection.  The optional argument
 | 
						|
may be an integer specifying which generation to collect.  A ValueError
 | 
						|
is raised if the generation number is invalid.
 | 
						|
 | 
						|
The number of unreachable objects is returned.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
gc_collect_impl(PyObject *module, int generation)
 | 
						|
/*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/
 | 
						|
{
 | 
						|
 | 
						|
    if (generation < 0 || generation >= NUM_GENERATIONS) {
 | 
						|
        PyErr_SetString(PyExc_ValueError, "invalid generation");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    Py_ssize_t n;
 | 
						|
    if (state->collecting) {
 | 
						|
        /* already collecting, don't do anything */
 | 
						|
        n = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        state->collecting = 1;
 | 
						|
        n = collect_with_callback(state, generation);
 | 
						|
        state->collecting = 0;
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.set_debug
 | 
						|
 | 
						|
    flags: int
 | 
						|
        An integer that can have the following bits turned on:
 | 
						|
          DEBUG_STATS - Print statistics during collection.
 | 
						|
          DEBUG_COLLECTABLE - Print collectable objects found.
 | 
						|
          DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects
 | 
						|
            found.
 | 
						|
          DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.
 | 
						|
          DEBUG_LEAK - Debug leaking programs (everything but STATS).
 | 
						|
    /
 | 
						|
 | 
						|
Set the garbage collection debugging flags.
 | 
						|
 | 
						|
Debugging information is written to sys.stderr.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_set_debug_impl(PyObject *module, int flags)
 | 
						|
/*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/
 | 
						|
{
 | 
						|
    _PyRuntime.gc.debug = flags;
 | 
						|
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_debug -> int
 | 
						|
 | 
						|
Get the garbage collection debugging flags.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static int
 | 
						|
gc_get_debug_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/
 | 
						|
{
 | 
						|
    return _PyRuntime.gc.debug;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(gc_set_thresh__doc__,
 | 
						|
"set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
 | 
						|
"\n"
 | 
						|
"Sets the collection thresholds.  Setting threshold0 to zero disables\n"
 | 
						|
"collection.\n");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_set_threshold(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
 | 
						|
                          &state->generations[0].threshold,
 | 
						|
                          &state->generations[1].threshold,
 | 
						|
                          &state->generations[2].threshold))
 | 
						|
        return NULL;
 | 
						|
    for (int i = 3; i < NUM_GENERATIONS; i++) {
 | 
						|
        /* generations higher than 2 get the same threshold */
 | 
						|
        state->generations[i].threshold = state->generations[2].threshold;
 | 
						|
    }
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_threshold
 | 
						|
 | 
						|
Return the current collection thresholds.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_threshold_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    return Py_BuildValue("(iii)",
 | 
						|
                         state->generations[0].threshold,
 | 
						|
                         state->generations[1].threshold,
 | 
						|
                         state->generations[2].threshold);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_count
 | 
						|
 | 
						|
Return a three-tuple of the current collection counts.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_count_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    return Py_BuildValue("(iii)",
 | 
						|
                         state->generations[0].count,
 | 
						|
                         state->generations[1].count,
 | 
						|
                         state->generations[2].count);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
referrersvisit(PyObject* obj, PyObject *objs)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
 | 
						|
        if (PyTuple_GET_ITEM(objs, i) == obj)
 | 
						|
            return 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
 | 
						|
{
 | 
						|
    PyGC_Head *gc;
 | 
						|
    PyObject *obj;
 | 
						|
    traverseproc traverse;
 | 
						|
    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
 | 
						|
        obj = FROM_GC(gc);
 | 
						|
        traverse = Py_TYPE(obj)->tp_traverse;
 | 
						|
        if (obj == objs || obj == resultlist)
 | 
						|
            continue;
 | 
						|
        if (traverse(obj, (visitproc)referrersvisit, objs)) {
 | 
						|
            if (PyList_Append(resultlist, obj) < 0)
 | 
						|
                return 0; /* error */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 1; /* no error */
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(gc_get_referrers__doc__,
 | 
						|
"get_referrers(*objs) -> list\n\
 | 
						|
Return the list of objects that directly refer to any of objs.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_referrers(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    PyObject *result = PyList_New(0);
 | 
						|
    if (!result) return NULL;
 | 
						|
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    for (i = 0; i < NUM_GENERATIONS; i++) {
 | 
						|
        if (!(gc_referrers_for(args, GEN_HEAD(state, i), result))) {
 | 
						|
            Py_DECREF(result);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Append obj to list; return true if error (out of memory), false if OK. */
 | 
						|
static int
 | 
						|
referentsvisit(PyObject *obj, PyObject *list)
 | 
						|
{
 | 
						|
    return PyList_Append(list, obj) < 0;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(gc_get_referents__doc__,
 | 
						|
"get_referents(*objs) -> list\n\
 | 
						|
Return the list of objects that are directly referred to by objs.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_referents(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject *result = PyList_New(0);
 | 
						|
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
 | 
						|
        traverseproc traverse;
 | 
						|
        PyObject *obj = PyTuple_GET_ITEM(args, i);
 | 
						|
 | 
						|
        if (! PyObject_IS_GC(obj))
 | 
						|
            continue;
 | 
						|
        traverse = Py_TYPE(obj)->tp_traverse;
 | 
						|
        if (! traverse)
 | 
						|
            continue;
 | 
						|
        if (traverse(obj, (visitproc)referentsvisit, result)) {
 | 
						|
            Py_DECREF(result);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_objects
 | 
						|
    generation: Py_ssize_t(accept={int, NoneType}, c_default="-1") = None
 | 
						|
        Generation to extract the objects from.
 | 
						|
 | 
						|
Return a list of objects tracked by the collector (excluding the list returned).
 | 
						|
 | 
						|
If generation is not None, return only the objects tracked by the collector
 | 
						|
that are in that generation.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_objects_impl(PyObject *module, Py_ssize_t generation)
 | 
						|
/*[clinic end generated code: output=48b35fea4ba6cb0e input=ef7da9df9806754c]*/
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    PyObject* result;
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
 | 
						|
    result = PyList_New(0);
 | 
						|
    if (result == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If generation is passed, we extract only that generation */
 | 
						|
    if (generation != -1) {
 | 
						|
        if (generation >= NUM_GENERATIONS) {
 | 
						|
            PyErr_Format(PyExc_ValueError,
 | 
						|
                         "generation parameter must be less than the number of "
 | 
						|
                         "available generations (%i)",
 | 
						|
                          NUM_GENERATIONS);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        if (generation < 0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "generation parameter cannot be negative");
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        if (append_objects(result, GEN_HEAD(state, generation))) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If generation is not passed or None, get all objects from all generations */
 | 
						|
    for (i = 0; i < NUM_GENERATIONS; i++) {
 | 
						|
        if (append_objects(result, GEN_HEAD(state, i))) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(result);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_stats
 | 
						|
 | 
						|
Return a list of dictionaries containing per-generation statistics.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_get_stats_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=a8ab1d8a5d26f3ab input=1ef4ed9d17b1a470]*/
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    struct gc_generation_stats stats[NUM_GENERATIONS], *st;
 | 
						|
 | 
						|
    /* To get consistent values despite allocations while constructing
 | 
						|
       the result list, we use a snapshot of the running stats. */
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    for (i = 0; i < NUM_GENERATIONS; i++) {
 | 
						|
        stats[i] = state->generation_stats[i];
 | 
						|
    }
 | 
						|
 | 
						|
    PyObject *result = PyList_New(0);
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    for (i = 0; i < NUM_GENERATIONS; i++) {
 | 
						|
        PyObject *dict;
 | 
						|
        st = &stats[i];
 | 
						|
        dict = Py_BuildValue("{snsnsn}",
 | 
						|
                             "collections", st->collections,
 | 
						|
                             "collected", st->collected,
 | 
						|
                             "uncollectable", st->uncollectable
 | 
						|
                            );
 | 
						|
        if (dict == NULL)
 | 
						|
            goto error;
 | 
						|
        if (PyList_Append(result, dict)) {
 | 
						|
            Py_DECREF(dict);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_DECREF(dict);
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_XDECREF(result);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.is_tracked
 | 
						|
 | 
						|
    obj: object
 | 
						|
    /
 | 
						|
 | 
						|
Returns true if the object is tracked by the garbage collector.
 | 
						|
 | 
						|
Simple atomic objects will return false.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_is_tracked(PyObject *module, PyObject *obj)
 | 
						|
/*[clinic end generated code: output=14f0103423b28e31 input=d83057f170ea2723]*/
 | 
						|
{
 | 
						|
    PyObject *result;
 | 
						|
 | 
						|
    if (PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj))
 | 
						|
        result = Py_True;
 | 
						|
    else
 | 
						|
        result = Py_False;
 | 
						|
    Py_INCREF(result);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.freeze
 | 
						|
 | 
						|
Freeze all current tracked objects and ignore them for future collections.
 | 
						|
 | 
						|
This can be used before a POSIX fork() call to make the gc copy-on-write friendly.
 | 
						|
Note: collection before a POSIX fork() call may free pages for future allocation
 | 
						|
which can cause copy-on-write.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_freeze_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    for (int i = 0; i < NUM_GENERATIONS; ++i) {
 | 
						|
        gc_list_merge(GEN_HEAD(state, i), &state->permanent_generation.head);
 | 
						|
        state->generations[i].count = 0;
 | 
						|
    }
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.unfreeze
 | 
						|
 | 
						|
Unfreeze all objects in the permanent generation.
 | 
						|
 | 
						|
Put all objects in the permanent generation back into oldest generation.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
gc_unfreeze_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    gc_list_merge(&state->permanent_generation.head, GEN_HEAD(state, NUM_GENERATIONS-1));
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
gc.get_freeze_count -> Py_ssize_t
 | 
						|
 | 
						|
Return the number of objects in the permanent generation.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
gc_get_freeze_count_impl(PyObject *module)
 | 
						|
/*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/
 | 
						|
{
 | 
						|
    return gc_list_size(&_PyRuntime.gc.permanent_generation.head);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
PyDoc_STRVAR(gc__doc__,
 | 
						|
"This module provides access to the garbage collector for reference cycles.\n"
 | 
						|
"\n"
 | 
						|
"enable() -- Enable automatic garbage collection.\n"
 | 
						|
"disable() -- Disable automatic garbage collection.\n"
 | 
						|
"isenabled() -- Returns true if automatic collection is enabled.\n"
 | 
						|
"collect() -- Do a full collection right now.\n"
 | 
						|
"get_count() -- Return the current collection counts.\n"
 | 
						|
"get_stats() -- Return list of dictionaries containing per-generation stats.\n"
 | 
						|
"set_debug() -- Set debugging flags.\n"
 | 
						|
"get_debug() -- Get debugging flags.\n"
 | 
						|
"set_threshold() -- Set the collection thresholds.\n"
 | 
						|
"get_threshold() -- Return the current the collection thresholds.\n"
 | 
						|
"get_objects() -- Return a list of all objects tracked by the collector.\n"
 | 
						|
"is_tracked() -- Returns true if a given object is tracked.\n"
 | 
						|
"get_referrers() -- Return the list of objects that refer to an object.\n"
 | 
						|
"get_referents() -- Return the list of objects that an object refers to.\n"
 | 
						|
"freeze() -- Freeze all tracked objects and ignore them for future collections.\n"
 | 
						|
"unfreeze() -- Unfreeze all objects in the permanent generation.\n"
 | 
						|
"get_freeze_count() -- Return the number of objects in the permanent generation.\n");
 | 
						|
 | 
						|
static PyMethodDef GcMethods[] = {
 | 
						|
    GC_ENABLE_METHODDEF
 | 
						|
    GC_DISABLE_METHODDEF
 | 
						|
    GC_ISENABLED_METHODDEF
 | 
						|
    GC_SET_DEBUG_METHODDEF
 | 
						|
    GC_GET_DEBUG_METHODDEF
 | 
						|
    GC_GET_COUNT_METHODDEF
 | 
						|
    {"set_threshold",  gc_set_threshold, METH_VARARGS, gc_set_thresh__doc__},
 | 
						|
    GC_GET_THRESHOLD_METHODDEF
 | 
						|
    GC_COLLECT_METHODDEF
 | 
						|
    GC_GET_OBJECTS_METHODDEF
 | 
						|
    GC_GET_STATS_METHODDEF
 | 
						|
    GC_IS_TRACKED_METHODDEF
 | 
						|
    {"get_referrers",  gc_get_referrers, METH_VARARGS,
 | 
						|
        gc_get_referrers__doc__},
 | 
						|
    {"get_referents",  gc_get_referents, METH_VARARGS,
 | 
						|
        gc_get_referents__doc__},
 | 
						|
    GC_FREEZE_METHODDEF
 | 
						|
    GC_UNFREEZE_METHODDEF
 | 
						|
    GC_GET_FREEZE_COUNT_METHODDEF
 | 
						|
    {NULL,      NULL}           /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static struct PyModuleDef gcmodule = {
 | 
						|
    PyModuleDef_HEAD_INIT,
 | 
						|
    "gc",              /* m_name */
 | 
						|
    gc__doc__,         /* m_doc */
 | 
						|
    -1,                /* m_size */
 | 
						|
    GcMethods,         /* m_methods */
 | 
						|
    NULL,              /* m_reload */
 | 
						|
    NULL,              /* m_traverse */
 | 
						|
    NULL,              /* m_clear */
 | 
						|
    NULL               /* m_free */
 | 
						|
};
 | 
						|
 | 
						|
PyMODINIT_FUNC
 | 
						|
PyInit_gc(void)
 | 
						|
{
 | 
						|
    PyObject *m;
 | 
						|
 | 
						|
    m = PyModule_Create(&gcmodule);
 | 
						|
 | 
						|
    if (m == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    if (state->garbage == NULL) {
 | 
						|
        state->garbage = PyList_New(0);
 | 
						|
        if (state->garbage == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(state->garbage);
 | 
						|
    if (PyModule_AddObject(m, "garbage", state->garbage) < 0)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (state->callbacks == NULL) {
 | 
						|
        state->callbacks = PyList_New(0);
 | 
						|
        if (state->callbacks == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(state->callbacks);
 | 
						|
    if (PyModule_AddObject(m, "callbacks", state->callbacks) < 0)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return NULL
 | 
						|
    ADD_INT(DEBUG_STATS);
 | 
						|
    ADD_INT(DEBUG_COLLECTABLE);
 | 
						|
    ADD_INT(DEBUG_UNCOLLECTABLE);
 | 
						|
    ADD_INT(DEBUG_SAVEALL);
 | 
						|
    ADD_INT(DEBUG_LEAK);
 | 
						|
#undef ADD_INT
 | 
						|
    return m;
 | 
						|
}
 | 
						|
 | 
						|
/* API to invoke gc.collect() from C */
 | 
						|
Py_ssize_t
 | 
						|
PyGC_Collect(void)
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    if (!state->enabled) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    Py_ssize_t n;
 | 
						|
    if (state->collecting) {
 | 
						|
        /* already collecting, don't do anything */
 | 
						|
        n = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyObject *exc, *value, *tb;
 | 
						|
        state->collecting = 1;
 | 
						|
        PyErr_Fetch(&exc, &value, &tb);
 | 
						|
        n = collect_with_callback(state, NUM_GENERATIONS - 1);
 | 
						|
        PyErr_Restore(exc, value, tb);
 | 
						|
        state->collecting = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
_PyGC_CollectIfEnabled(void)
 | 
						|
{
 | 
						|
    return PyGC_Collect();
 | 
						|
}
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
_PyGC_CollectNoFail(void)
 | 
						|
{
 | 
						|
    assert(!PyErr_Occurred());
 | 
						|
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    Py_ssize_t n;
 | 
						|
 | 
						|
    /* Ideally, this function is only called on interpreter shutdown,
 | 
						|
       and therefore not recursively.  Unfortunately, when there are daemon
 | 
						|
       threads, a daemon thread can start a cyclic garbage collection
 | 
						|
       during interpreter shutdown (and then never finish it).
 | 
						|
       See http://bugs.python.org/issue8713#msg195178 for an example.
 | 
						|
       */
 | 
						|
    if (state->collecting) {
 | 
						|
        n = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        state->collecting = 1;
 | 
						|
        n = collect(state, NUM_GENERATIONS - 1, NULL, NULL, 1);
 | 
						|
        state->collecting = 0;
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyGC_DumpShutdownStats(_PyRuntimeState *runtime)
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &runtime->gc;
 | 
						|
    if (!(state->debug & DEBUG_SAVEALL)
 | 
						|
        && state->garbage != NULL && PyList_GET_SIZE(state->garbage) > 0) {
 | 
						|
        const char *message;
 | 
						|
        if (state->debug & DEBUG_UNCOLLECTABLE)
 | 
						|
            message = "gc: %zd uncollectable objects at " \
 | 
						|
                "shutdown";
 | 
						|
        else
 | 
						|
            message = "gc: %zd uncollectable objects at " \
 | 
						|
                "shutdown; use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
 | 
						|
        /* PyErr_WarnFormat does too many things and we are at shutdown,
 | 
						|
           the warnings module's dependencies (e.g. linecache) may be gone
 | 
						|
           already. */
 | 
						|
        if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
 | 
						|
                                     "gc", NULL, message,
 | 
						|
                                     PyList_GET_SIZE(state->garbage)))
 | 
						|
            PyErr_WriteUnraisable(NULL);
 | 
						|
        if (state->debug & DEBUG_UNCOLLECTABLE) {
 | 
						|
            PyObject *repr = NULL, *bytes = NULL;
 | 
						|
            repr = PyObject_Repr(state->garbage);
 | 
						|
            if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr)))
 | 
						|
                PyErr_WriteUnraisable(state->garbage);
 | 
						|
            else {
 | 
						|
                PySys_WriteStderr(
 | 
						|
                    "      %s\n",
 | 
						|
                    PyBytes_AS_STRING(bytes)
 | 
						|
                    );
 | 
						|
            }
 | 
						|
            Py_XDECREF(repr);
 | 
						|
            Py_XDECREF(bytes);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyGC_Fini(_PyRuntimeState *runtime)
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &runtime->gc;
 | 
						|
    Py_CLEAR(state->garbage);
 | 
						|
    Py_CLEAR(state->callbacks);
 | 
						|
}
 | 
						|
 | 
						|
/* for debugging */
 | 
						|
void
 | 
						|
_PyGC_Dump(PyGC_Head *g)
 | 
						|
{
 | 
						|
    _PyObject_Dump(FROM_GC(g));
 | 
						|
}
 | 
						|
 | 
						|
/* extension modules might be compiled with GC support so these
 | 
						|
   functions must always be available */
 | 
						|
 | 
						|
void
 | 
						|
PyObject_GC_Track(void *op_raw)
 | 
						|
{
 | 
						|
    PyObject *op = _PyObject_CAST(op_raw);
 | 
						|
    if (_PyObject_GC_IS_TRACKED(op)) {
 | 
						|
        _PyObject_ASSERT_FAILED_MSG(op,
 | 
						|
                                    "object already tracked "
 | 
						|
                                    "by the garbage collector");
 | 
						|
    }
 | 
						|
    _PyObject_GC_TRACK(op);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyObject_GC_UnTrack(void *op_raw)
 | 
						|
{
 | 
						|
    PyObject *op = _PyObject_CAST(op_raw);
 | 
						|
    /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
 | 
						|
     * call PyObject_GC_UnTrack twice on an object.
 | 
						|
     */
 | 
						|
    if (_PyObject_GC_IS_TRACKED(op)) {
 | 
						|
        _PyObject_GC_UNTRACK(op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
_PyObject_GC_Alloc(int use_calloc, size_t basicsize)
 | 
						|
{
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    PyObject *op;
 | 
						|
    PyGC_Head *g;
 | 
						|
    size_t size;
 | 
						|
    if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    size = sizeof(PyGC_Head) + basicsize;
 | 
						|
    if (use_calloc)
 | 
						|
        g = (PyGC_Head *)PyObject_Calloc(1, size);
 | 
						|
    else
 | 
						|
        g = (PyGC_Head *)PyObject_Malloc(size);
 | 
						|
    if (g == NULL)
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    assert(((uintptr_t)g & 3) == 0);  // g must be aligned 4bytes boundary
 | 
						|
    g->_gc_next = 0;
 | 
						|
    g->_gc_prev = 0;
 | 
						|
    state->generations[0].count++; /* number of allocated GC objects */
 | 
						|
    if (state->generations[0].count > state->generations[0].threshold &&
 | 
						|
        state->enabled &&
 | 
						|
        state->generations[0].threshold &&
 | 
						|
        !state->collecting &&
 | 
						|
        !PyErr_Occurred()) {
 | 
						|
        state->collecting = 1;
 | 
						|
        collect_generations(state);
 | 
						|
        state->collecting = 0;
 | 
						|
    }
 | 
						|
    op = FROM_GC(g);
 | 
						|
    return op;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyObject_GC_Malloc(size_t basicsize)
 | 
						|
{
 | 
						|
    return _PyObject_GC_Alloc(0, basicsize);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyObject_GC_Calloc(size_t basicsize)
 | 
						|
{
 | 
						|
    return _PyObject_GC_Alloc(1, basicsize);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyObject_GC_New(PyTypeObject *tp)
 | 
						|
{
 | 
						|
    PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
 | 
						|
    if (op != NULL)
 | 
						|
        op = PyObject_INIT(op, tp);
 | 
						|
    return op;
 | 
						|
}
 | 
						|
 | 
						|
PyVarObject *
 | 
						|
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
 | 
						|
{
 | 
						|
    size_t size;
 | 
						|
    PyVarObject *op;
 | 
						|
 | 
						|
    if (nitems < 0) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    size = _PyObject_VAR_SIZE(tp, nitems);
 | 
						|
    op = (PyVarObject *) _PyObject_GC_Malloc(size);
 | 
						|
    if (op != NULL)
 | 
						|
        op = PyObject_INIT_VAR(op, tp, nitems);
 | 
						|
    return op;
 | 
						|
}
 | 
						|
 | 
						|
PyVarObject *
 | 
						|
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
 | 
						|
{
 | 
						|
    const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
 | 
						|
    _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
 | 
						|
    if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
 | 
						|
        return (PyVarObject *)PyErr_NoMemory();
 | 
						|
    }
 | 
						|
 | 
						|
    PyGC_Head *g = AS_GC(op);
 | 
						|
    g = (PyGC_Head *)PyObject_REALLOC(g,  sizeof(PyGC_Head) + basicsize);
 | 
						|
    if (g == NULL)
 | 
						|
        return (PyVarObject *)PyErr_NoMemory();
 | 
						|
    op = (PyVarObject *) FROM_GC(g);
 | 
						|
    Py_SIZE(op) = nitems;
 | 
						|
    return op;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyObject_GC_Del(void *op)
 | 
						|
{
 | 
						|
    PyGC_Head *g = AS_GC(op);
 | 
						|
    if (_PyObject_GC_IS_TRACKED(op)) {
 | 
						|
        gc_list_remove(g);
 | 
						|
    }
 | 
						|
    struct _gc_runtime_state *state = &_PyRuntime.gc;
 | 
						|
    if (state->generations[0].count > 0) {
 | 
						|
        state->generations[0].count--;
 | 
						|
    }
 | 
						|
    PyObject_FREE(g);
 | 
						|
}
 |