mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	 9f2e346911
			
		
	
	
		9f2e346911
		
	
	
	
	
		
			
			svn+ssh://pythondev@svn.python.org/python/branches/p3yk
................
  r56477 | martin.v.loewis | 2007-07-21 09:04:38 +0200 (Sa, 21 Jul 2007) | 11 lines
  Merged revisions 56466-56476 via svnmerge from
  svn+ssh://pythondev@svn.python.org/python/trunk
  ........
    r56476 | martin.v.loewis | 2007-07-21 08:55:02 +0200 (Sa, 21 Jul 2007) | 4 lines
    PEP 3123: Provide forward compatibility with Python 3.0, while keeping
    backwards compatibility. Add Py_Refcnt, Py_Type, Py_Size, and
    PyVarObject_HEAD_INIT.
  ........
................
  r56478 | martin.v.loewis | 2007-07-21 09:47:23 +0200 (Sa, 21 Jul 2007) | 2 lines
  PEP 3123: Use proper C inheritance for PyObject.
................
  r56479 | martin.v.loewis | 2007-07-21 10:06:55 +0200 (Sa, 21 Jul 2007) | 3 lines
  Add longintrepr.h to Python.h, so that the compiler can
  see that PyFalse is really some kind of PyObject*.
................
  r56480 | martin.v.loewis | 2007-07-21 10:47:18 +0200 (Sa, 21 Jul 2007) | 2 lines
  Qualify SHIFT, MASK, BASE.
................
  r56482 | martin.v.loewis | 2007-07-21 19:10:57 +0200 (Sa, 21 Jul 2007) | 2 lines
  Correctly refer to _ob_next.
................
		
	
			
		
			
				
	
	
		
			1840 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1840 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Generic object operations; and implementation of None (NoObject) */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "sliceobject.h" /* For PyEllipsis_Type */
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #ifdef Py_REF_DEBUG
 | |
| Py_ssize_t _Py_RefTotal;
 | |
| 
 | |
| Py_ssize_t
 | |
| _Py_GetRefTotal(void)
 | |
| {
 | |
| 	PyObject *o;
 | |
| 	Py_ssize_t total = _Py_RefTotal;
 | |
|         /* ignore the references to the dummy object of the dicts and sets
 | |
|            because they are not reliable and not useful (now that the
 | |
|            hash table code is well-tested) */
 | |
| 	o = _PyDict_Dummy();
 | |
| 	if (o != NULL)
 | |
| 		total -= o->ob_refcnt;
 | |
| 	o = _PySet_Dummy();
 | |
| 	if (o != NULL)
 | |
| 		total -= o->ob_refcnt;
 | |
| 	return total;
 | |
| }
 | |
| #endif /* Py_REF_DEBUG */
 | |
| 
 | |
| int Py_DivisionWarningFlag;
 | |
| 
 | |
| /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
 | |
|    These are used by the individual routines for object creation.
 | |
|    Do not call them otherwise, they do not initialize the object! */
 | |
| 
 | |
| #ifdef Py_TRACE_REFS
 | |
| /* Head of circular doubly-linked list of all objects.  These are linked
 | |
|  * together via the _ob_prev and _ob_next members of a PyObject, which
 | |
|  * exist only in a Py_TRACE_REFS build.
 | |
|  */
 | |
| static PyObject refchain = {&refchain, &refchain};
 | |
| 
 | |
| /* Insert op at the front of the list of all objects.  If force is true,
 | |
|  * op is added even if _ob_prev and _ob_next are non-NULL already.  If
 | |
|  * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
 | |
|  * force should be true if and only if op points to freshly allocated,
 | |
|  * uninitialized memory, or you've unlinked op from the list and are
 | |
|  * relinking it into the front.
 | |
|  * Note that objects are normally added to the list via _Py_NewReference,
 | |
|  * which is called by PyObject_Init.  Not all objects are initialized that
 | |
|  * way, though; exceptions include statically allocated type objects, and
 | |
|  * statically allocated singletons (like Py_True and Py_None).
 | |
|  */
 | |
| void
 | |
| _Py_AddToAllObjects(PyObject *op, int force)
 | |
| {
 | |
| #ifdef  Py_DEBUG
 | |
| 	if (!force) {
 | |
| 		/* If it's initialized memory, op must be in or out of
 | |
| 		 * the list unambiguously.
 | |
| 		 */
 | |
| 		assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
 | |
| 	}
 | |
| #endif
 | |
| 	if (force || op->_ob_prev == NULL) {
 | |
| 		op->_ob_next = refchain._ob_next;
 | |
| 		op->_ob_prev = &refchain;
 | |
| 		refchain._ob_next->_ob_prev = op;
 | |
| 		refchain._ob_next = op;
 | |
| 	}
 | |
| }
 | |
| #endif	/* Py_TRACE_REFS */
 | |
| 
 | |
| #ifdef COUNT_ALLOCS
 | |
| static PyTypeObject *type_list;
 | |
| /* All types are added to type_list, at least when
 | |
|    they get one object created. That makes them
 | |
|    immortal, which unfortunately contributes to
 | |
|    garbage itself. If unlist_types_without_objects
 | |
|    is set, they will be removed from the type_list
 | |
|    once the last object is deallocated. */
 | |
| int unlist_types_without_objects;
 | |
| extern int tuple_zero_allocs, fast_tuple_allocs;
 | |
| extern int quick_int_allocs, quick_neg_int_allocs;
 | |
| extern int null_strings, one_strings;
 | |
| void
 | |
| dump_counts(FILE* f)
 | |
| {
 | |
| 	PyTypeObject *tp;
 | |
| 
 | |
| 	for (tp = type_list; tp; tp = tp->tp_next)
 | |
| 		fprintf(f, "%s alloc'd: %d, freed: %d, max in use: %d\n",
 | |
| 			tp->tp_name, tp->tp_allocs, tp->tp_frees,
 | |
| 			tp->tp_maxalloc);
 | |
| 	fprintf(f, "fast tuple allocs: %d, empty: %d\n",
 | |
| 		fast_tuple_allocs, tuple_zero_allocs);
 | |
| 	fprintf(f, "fast int allocs: pos: %d, neg: %d\n",
 | |
| 		quick_int_allocs, quick_neg_int_allocs);
 | |
| 	fprintf(f, "null strings: %d, 1-strings: %d\n",
 | |
| 		null_strings, one_strings);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| get_counts(void)
 | |
| {
 | |
| 	PyTypeObject *tp;
 | |
| 	PyObject *result;
 | |
| 	PyObject *v;
 | |
| 
 | |
| 	result = PyList_New(0);
 | |
| 	if (result == NULL)
 | |
| 		return NULL;
 | |
| 	for (tp = type_list; tp; tp = tp->tp_next) {
 | |
| 		v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
 | |
| 				  tp->tp_frees, tp->tp_maxalloc);
 | |
| 		if (v == NULL) {
 | |
| 			Py_DECREF(result);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (PyList_Append(result, v) < 0) {
 | |
| 			Py_DECREF(v);
 | |
| 			Py_DECREF(result);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		Py_DECREF(v);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| void
 | |
| inc_count(PyTypeObject *tp)
 | |
| {
 | |
| 	if (tp->tp_next == NULL && tp->tp_prev == NULL) {
 | |
| 		/* first time; insert in linked list */
 | |
| 		if (tp->tp_next != NULL) /* sanity check */
 | |
| 			Py_FatalError("XXX inc_count sanity check");
 | |
| 		if (type_list)
 | |
| 			type_list->tp_prev = tp;
 | |
| 		tp->tp_next = type_list;
 | |
| 		/* Note that as of Python 2.2, heap-allocated type objects
 | |
| 		 * can go away, but this code requires that they stay alive
 | |
| 		 * until program exit.  That's why we're careful with
 | |
| 		 * refcounts here.  type_list gets a new reference to tp,
 | |
| 		 * while ownership of the reference type_list used to hold
 | |
| 		 * (if any) was transferred to tp->tp_next in the line above.
 | |
| 		 * tp is thus effectively immortal after this.
 | |
| 		 */
 | |
| 		Py_INCREF(tp);
 | |
| 		type_list = tp;
 | |
| #ifdef Py_TRACE_REFS
 | |
| 		/* Also insert in the doubly-linked list of all objects,
 | |
| 		 * if not already there.
 | |
| 		 */
 | |
| 		_Py_AddToAllObjects((PyObject *)tp, 0);
 | |
| #endif
 | |
| 	}
 | |
| 	tp->tp_allocs++;
 | |
| 	if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
 | |
| 		tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
 | |
| }
 | |
| 
 | |
| void dec_count(PyTypeObject *tp)
 | |
| {
 | |
| 	tp->tp_frees++;
 | |
| 	if (unlist_types_without_objects &&
 | |
| 	    tp->tp_allocs == tp->tp_frees) {
 | |
| 		/* unlink the type from type_list */
 | |
| 		if (tp->tp_prev)
 | |
| 			tp->tp_prev->tp_next = tp->tp_next;
 | |
| 		else
 | |
| 			type_list = tp->tp_next;
 | |
| 		if (tp->tp_next)
 | |
| 			tp->tp_next->tp_prev = tp->tp_prev;
 | |
| 		tp->tp_next = tp->tp_prev = NULL;
 | |
| 		Py_DECREF(tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef Py_REF_DEBUG
 | |
| /* Log a fatal error; doesn't return. */
 | |
| void
 | |
| _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
 | |
| {
 | |
| 	char buf[300];
 | |
| 
 | |
| 	PyOS_snprintf(buf, sizeof(buf),
 | |
| 		      "%s:%i object at %p has negative ref count "
 | |
| 		      "%" PY_FORMAT_SIZE_T "d",
 | |
| 		      fname, lineno, op, op->ob_refcnt);
 | |
| 	Py_FatalError(buf);
 | |
| }
 | |
| 
 | |
| #endif /* Py_REF_DEBUG */
 | |
| 
 | |
| void
 | |
| Py_IncRef(PyObject *o)
 | |
| {
 | |
|     Py_XINCREF(o);
 | |
| }
 | |
| 
 | |
| void
 | |
| Py_DecRef(PyObject *o)
 | |
| {
 | |
|     Py_XDECREF(o);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_Init(PyObject *op, PyTypeObject *tp)
 | |
| {
 | |
| 	if (op == NULL)
 | |
| 		return PyErr_NoMemory();
 | |
| 	/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
 | |
| 	Py_Type(op) = tp;
 | |
| 	_Py_NewReference(op);
 | |
| 	return op;
 | |
| }
 | |
| 
 | |
| PyVarObject *
 | |
| PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
 | |
| {
 | |
| 	if (op == NULL)
 | |
| 		return (PyVarObject *) PyErr_NoMemory();
 | |
| 	/* Any changes should be reflected in PyObject_INIT_VAR */
 | |
| 	op->ob_size = size;
 | |
| 	Py_Type(op) = tp;
 | |
| 	_Py_NewReference((PyObject *)op);
 | |
| 	return op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyObject_New(PyTypeObject *tp)
 | |
| {
 | |
| 	PyObject *op;
 | |
| 	op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
 | |
| 	if (op == NULL)
 | |
| 		return PyErr_NoMemory();
 | |
| 	return PyObject_INIT(op, tp);
 | |
| }
 | |
| 
 | |
| PyVarObject *
 | |
| _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
 | |
| {
 | |
| 	PyVarObject *op;
 | |
| 	const size_t size = _PyObject_VAR_SIZE(tp, nitems);
 | |
| 	op = (PyVarObject *) PyObject_MALLOC(size);
 | |
| 	if (op == NULL)
 | |
| 		return (PyVarObject *)PyErr_NoMemory();
 | |
| 	return PyObject_INIT_VAR(op, tp, nitems);
 | |
| }
 | |
| 
 | |
| /* Implementation of PyObject_Print with recursion checking */
 | |
| static int
 | |
| internal_print(PyObject *op, FILE *fp, int flags, int nesting)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (nesting > 10) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "print recursion");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (PyErr_CheckSignals())
 | |
| 		return -1;
 | |
| #ifdef USE_STACKCHECK
 | |
| 	if (PyOS_CheckStack()) {
 | |
| 		PyErr_SetString(PyExc_MemoryError, "stack overflow");
 | |
| 		return -1;
 | |
| 	}
 | |
| #endif
 | |
| 	clearerr(fp); /* Clear any previous error condition */
 | |
| 	if (op == NULL) {
 | |
| 		fprintf(fp, "<nil>");
 | |
| 	}
 | |
| 	else {
 | |
| 		if (op->ob_refcnt <= 0)
 | |
| 			/* XXX(twouters) cast refcount to long until %zd is
 | |
| 			   universally available */
 | |
| 			fprintf(fp, "<refcnt %ld at %p>",
 | |
| 				(long)op->ob_refcnt, op);
 | |
| 		else if (Py_Type(op)->tp_print == NULL) {
 | |
| 			PyObject *s;
 | |
| 			if (flags & Py_PRINT_RAW)
 | |
| 				s = PyObject_Str(op);
 | |
| 			else
 | |
| 				s = PyObject_ReprStr8(op);
 | |
| 			if (s == NULL)
 | |
| 				ret = -1;
 | |
| 			else {
 | |
| 				ret = internal_print(s, fp, Py_PRINT_RAW,
 | |
| 						     nesting+1);
 | |
| 			}
 | |
| 			Py_XDECREF(s);
 | |
| 		}
 | |
| 		else
 | |
| 			ret = (*Py_Type(op)->tp_print)(op, fp, flags);
 | |
| 	}
 | |
| 	if (ret == 0) {
 | |
| 		if (ferror(fp)) {
 | |
| 			PyErr_SetFromErrno(PyExc_IOError);
 | |
| 			clearerr(fp);
 | |
| 			ret = -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_Print(PyObject *op, FILE *fp, int flags)
 | |
| {
 | |
| 	return internal_print(op, fp, flags, 0);
 | |
| }
 | |
| 
 | |
| /* For debugging convenience.  Set a breakpoint here and call it from your DLL */
 | |
| void
 | |
| _Py_BreakPoint(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /* For debugging convenience.  See Misc/gdbinit for some useful gdb hooks */
 | |
| void
 | |
| _PyObject_Dump(PyObject* op)
 | |
| {
 | |
| 	if (op == NULL)
 | |
| 		fprintf(stderr, "NULL\n");
 | |
| 	else {
 | |
| 		fprintf(stderr, "object  : ");
 | |
| 		(void)PyObject_Print(op, stderr, 0);
 | |
| 		/* XXX(twouters) cast refcount to long until %zd is
 | |
| 		   universally available */
 | |
| 		fprintf(stderr, "\n"
 | |
| 			"type    : %s\n"
 | |
| 			"refcount: %ld\n"
 | |
| 			"address : %p\n",
 | |
| 			Py_Type(op)==NULL ? "NULL" : Py_Type(op)->tp_name,
 | |
| 			(long)op->ob_refcnt,
 | |
| 			op);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_Repr(PyObject *v)
 | |
| {
 | |
| 	PyObject *ress, *resu;
 | |
| 	if (PyErr_CheckSignals())
 | |
| 		return NULL;
 | |
| #ifdef USE_STACKCHECK
 | |
| 	if (PyOS_CheckStack()) {
 | |
| 		PyErr_SetString(PyExc_MemoryError, "stack overflow");
 | |
| 		return NULL;
 | |
| 	}
 | |
| #endif
 | |
| 	if (v == NULL)
 | |
| 		return PyUnicode_FromString("<NULL>");
 | |
| 	else if (Py_Type(v)->tp_repr == NULL)
 | |
| 		return PyUnicode_FromFormat("<%s object at %p>", v->ob_type->tp_name, v);
 | |
| 	else {
 | |
| 		ress = (*v->ob_type->tp_repr)(v);
 | |
| 		if (!ress)
 | |
| 			return NULL;
 | |
| 		if (PyUnicode_Check(ress))
 | |
| 			return ress;
 | |
| 		if (!PyString_Check(ress)) {
 | |
| 			PyErr_Format(PyExc_TypeError,
 | |
| 				     "__repr__ returned non-string (type %.200s)",
 | |
| 				     ress->ob_type->tp_name);
 | |
| 			Py_DECREF(ress);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		resu = PyUnicode_FromObject(ress);
 | |
| 		Py_DECREF(ress);
 | |
| 		return resu;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_ReprStr8(PyObject *v)
 | |
| {
 | |
| 	PyObject *resu = PyObject_Repr(v);
 | |
| 	if (resu) {
 | |
| 		PyObject *resb = PyUnicode_AsEncodedString(resu, NULL, NULL);
 | |
| 		Py_DECREF(resu);
 | |
| 		if (resb) {
 | |
| 			PyObject *ress = PyString_FromStringAndSize(
 | |
| 				PyBytes_AS_STRING(resb),
 | |
| 				PyBytes_GET_SIZE(resb)
 | |
| 			);
 | |
| 			Py_DECREF(resb);
 | |
| 			return ress;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyObject_Str(PyObject *v)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	if (v == NULL)
 | |
| 		return PyString_FromString("<NULL>");
 | |
| 	if (PyString_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return v;
 | |
| 	}
 | |
| 	if (PyUnicode_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return v;
 | |
| 	}
 | |
| 	if (Py_Type(v)->tp_str == NULL)
 | |
| 		return PyObject_Repr(v);
 | |
| 
 | |
| 	res = (*Py_Type(v)->tp_str)(v);
 | |
| 	if (res == NULL)
 | |
| 		return NULL;
 | |
| 	if (!(PyString_Check(res) || PyUnicode_Check(res))) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "__str__ returned non-string (type %.200s)",
 | |
| 			     Py_Type(res)->tp_name);
 | |
| 		Py_DECREF(res);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_Str(PyObject *v)
 | |
| {
 | |
| 	PyObject *res = _PyObject_Str(v);
 | |
| 	if (res == NULL)
 | |
| 		return NULL;
 | |
| 	if (PyUnicode_Check(res)) {
 | |
| 		PyObject* str;
 | |
| 		str = _PyUnicode_AsDefaultEncodedString(res, NULL);
 | |
| 		Py_XINCREF(str);
 | |
| 		Py_DECREF(res);
 | |
| 		if (str)
 | |
| 			res = str;
 | |
| 		else
 | |
| 		    	return NULL;
 | |
| 	}
 | |
| 	assert(PyString_Check(res));
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_Unicode(PyObject *v)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	PyObject *func;
 | |
| 	PyObject *str;
 | |
| 	static PyObject *unicodestr;
 | |
| 
 | |
| 	if (v == NULL)
 | |
| 		return PyUnicode_FromString("<NULL>");
 | |
| 	else if (PyUnicode_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return v;
 | |
| 	}
 | |
| 	/* XXX As soon as we have a tp_unicode slot, we should
 | |
| 	   check this before trying the __unicode__
 | |
| 	   method. */
 | |
| 	if (unicodestr == NULL) {
 | |
| 		unicodestr= PyUnicode_InternFromString("__unicode__");
 | |
| 		if (unicodestr == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	func = PyObject_GetAttr(v, unicodestr);
 | |
| 	if (func != NULL) {
 | |
| 		res = PyEval_CallObject(func, (PyObject *)NULL);
 | |
| 		Py_DECREF(func);
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Clear();
 | |
| 		if (PyUnicode_Check(v) &&
 | |
| 		    v->ob_type->tp_str == PyUnicode_Type.tp_str) {
 | |
| 			/* For a Unicode subtype that's didn't overwrite
 | |
| 			   __unicode__ or __str__,
 | |
| 			   return a true Unicode object with the same data. */
 | |
| 			return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
 | |
| 			                             PyUnicode_GET_SIZE(v));
 | |
| 		}
 | |
| 		if (PyString_CheckExact(v)) {
 | |
| 			Py_INCREF(v);
 | |
| 			res = v;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (Py_Type(v)->tp_str != NULL)
 | |
| 				res = (*Py_Type(v)->tp_str)(v);
 | |
| 			else
 | |
| 				res = PyObject_Repr(v);
 | |
| 		}
 | |
| 	}
 | |
| 	if (res == NULL)
 | |
| 		return NULL;
 | |
| 	if (!PyUnicode_Check(res)) {
 | |
| 		str = PyUnicode_FromEncodedObject(res, NULL, "strict");
 | |
| 		Py_DECREF(res);
 | |
| 		res = str;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The new comparison philosophy is: we completely separate three-way
 | |
|    comparison from rich comparison.  That is, PyObject_Compare() and
 | |
|    PyObject_Cmp() *just* use the tp_compare slot.  And PyObject_RichCompare()
 | |
|    and PyObject_RichCompareBool() *just* use the tp_richcompare slot.
 | |
|    
 | |
|    See (*) below for practical amendments.
 | |
| 
 | |
|    IOW, only cmp() uses tp_compare; the comparison operators (==, !=, <=, <,
 | |
|    >=, >) only use tp_richcompare.  Note that list.sort() only uses <.
 | |
| 
 | |
|    (And yes, eventually we'll rip out cmp() and tp_compare.)
 | |
| 
 | |
|    The calling conventions are different: tp_compare only gets called with two
 | |
|    objects of the appropriate type; tp_richcompare gets called with a first
 | |
|    argument of the appropriate type and a second object of an arbitrary type.
 | |
|    We never do any kind of coercion.
 | |
| 
 | |
|    The return conventions are also different.
 | |
| 
 | |
|    The tp_compare slot should return a C int, as follows:
 | |
| 
 | |
|      -1 if a < b or if an exception occurred
 | |
|       0 if a == b
 | |
|      +1 if a > b
 | |
| 
 | |
|    No other return values are allowed.  PyObject_Compare() has the same
 | |
|    calling convention.
 | |
| 
 | |
|   The tp_richcompare slot should return an object, as follows:
 | |
| 
 | |
|     NULL if an exception occurred
 | |
|     NotImplemented if the requested comparison is not implemented
 | |
|     any other false value if the requested comparison is false
 | |
|     any other true value if the requested comparison is true
 | |
| 
 | |
|   The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
 | |
|   NotImplemented.
 | |
| 
 | |
|   (*) Practical amendments:
 | |
| 
 | |
|   - If rich comparison returns NotImplemented, == and != are decided by
 | |
|     comparing the object pointer (i.e. falling back to the base object
 | |
|     implementation).
 | |
| 
 | |
|   - If three-way comparison is not implemented, it falls back on rich
 | |
|     comparison (but not the other way around!).
 | |
| 
 | |
| */
 | |
| 
 | |
| /* Forward */
 | |
| static PyObject *do_richcompare(PyObject *v, PyObject *w, int op);
 | |
| 
 | |
| /* Perform a three-way comparison, raising TypeError if three-way comparison
 | |
|    is not supported.  */
 | |
| static int
 | |
| do_compare(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	cmpfunc f;
 | |
| 	int ok;
 | |
| 
 | |
| 	if (v->ob_type == w->ob_type && 
 | |
| 	    (f = v->ob_type->tp_compare) != NULL) {
 | |
| 		return (*f)(v, w);
 | |
| 	}
 | |
| 
 | |
| 	/* Now try three-way compare before giving up.  This is intentionally
 | |
| 	   elaborate; if you have a it will raise TypeError if it detects two
 | |
| 	   objects that aren't ordered with respect to each other. */
 | |
| 	ok = PyObject_RichCompareBool(v, w, Py_LT);
 | |
| 	if (ok < 0)
 | |
| 		return -1; /* Error */
 | |
| 	if (ok)
 | |
| 		return -1; /* Less than */
 | |
| 	ok = PyObject_RichCompareBool(v, w, Py_GT);
 | |
| 	if (ok < 0)
 | |
| 		return -1; /* Error */
 | |
| 	if (ok)
 | |
| 		return 1; /* Greater than */
 | |
| 	ok = PyObject_RichCompareBool(v, w, Py_EQ);
 | |
| 	if (ok < 0)
 | |
| 		return -1; /* Error */
 | |
| 	if (ok)
 | |
| 		return 0; /* Equal */
 | |
| 
 | |
| 	/* Give up */
 | |
| 	PyErr_Format(PyExc_TypeError,
 | |
| 		     "unorderable types: '%.100s' != '%.100s'",
 | |
| 		     v->ob_type->tp_name,
 | |
| 		     w->ob_type->tp_name);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Perform a three-way comparison.  This wraps do_compare() with a check for
 | |
|    NULL arguments and a recursion check. */
 | |
| int
 | |
| PyObject_Compare(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	if (v == NULL || w == NULL) {
 | |
| 		if (!PyErr_Occurred())
 | |
| 			PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (Py_EnterRecursiveCall(" in cmp"))
 | |
| 		return -1;
 | |
| 	res = do_compare(v, w);
 | |
| 	Py_LeaveRecursiveCall();
 | |
| 	return res < 0 ? -1 : res;
 | |
| }
 | |
| 
 | |
| /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
 | |
| int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
 | |
| 
 | |
| static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="};
 | |
| 
 | |
| /* Perform a rich comparison, raising TypeError when the requested comparison
 | |
|    operator is not supported. */
 | |
| static PyObject *
 | |
| do_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	richcmpfunc f;
 | |
| 	PyObject *res;
 | |
| 
 | |
| 	if (v->ob_type != w->ob_type &&
 | |
| 	    PyType_IsSubtype(w->ob_type, v->ob_type) &&
 | |
| 	    (f = w->ob_type->tp_richcompare) != NULL) {
 | |
| 		res = (*f)(w, v, _Py_SwappedOp[op]);
 | |
| 		if (res != Py_NotImplemented)
 | |
| 			return res;
 | |
| 		Py_DECREF(res);
 | |
| 	}
 | |
| 	if ((f = v->ob_type->tp_richcompare) != NULL) {
 | |
| 		res = (*f)(v, w, op);
 | |
| 		if (res != Py_NotImplemented)
 | |
| 			return res;
 | |
| 		Py_DECREF(res);
 | |
| 	}
 | |
| 	if ((f = w->ob_type->tp_richcompare) != NULL) {
 | |
| 		res = (*f)(w, v, _Py_SwappedOp[op]);
 | |
| 		if (res != Py_NotImplemented)
 | |
| 			return res;
 | |
| 		Py_DECREF(res);
 | |
| 	}
 | |
| 	/* If neither object implements it, provide a sensible default
 | |
| 	   for == and !=, but raise an exception for ordering. */
 | |
| 	switch (op) {
 | |
| 	case Py_EQ:
 | |
| 		res = (v == w) ? Py_True : Py_False;
 | |
| 		break;
 | |
| 	case Py_NE:
 | |
| 		res = (v != w) ? Py_True : Py_False;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* XXX Special-case None so it doesn't show as NoneType() */
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "unorderable types: %.100s() %s %.100s()",
 | |
| 			     v->ob_type->tp_name,
 | |
| 			     opstrings[op],
 | |
| 			     w->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	Py_INCREF(res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Perform a rich comparison with object result.  This wraps do_richcompare()
 | |
|    with a check for NULL arguments and a recursion check. */
 | |
| 
 | |
| PyObject *
 | |
| PyObject_RichCompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 
 | |
| 	assert(Py_LT <= op && op <= Py_GE);
 | |
| 	if (v == NULL || w == NULL) {
 | |
| 		if (!PyErr_Occurred())
 | |
| 			PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (Py_EnterRecursiveCall(" in cmp"))
 | |
| 		return NULL;
 | |
| 	res = do_richcompare(v, w, op);
 | |
| 	Py_LeaveRecursiveCall();
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Perform a rich comparison with integer result.  This wraps
 | |
|    PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
 | |
| int
 | |
| PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	int ok;
 | |
| 
 | |
| 	res = PyObject_RichCompare(v, w, op);
 | |
| 	if (res == NULL)
 | |
| 		return -1;
 | |
| 	if (PyBool_Check(res))
 | |
| 		ok = (res == Py_True);
 | |
| 	else
 | |
| 		ok = PyObject_IsTrue(res);
 | |
| 	Py_DECREF(res);
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| /* Turn the result of a three-way comparison into the result expected by a
 | |
|    rich comparison. */
 | |
| PyObject *
 | |
| Py_CmpToRich(int op, int cmp)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	int ok;
 | |
| 
 | |
| 	if (PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	switch (op) {
 | |
| 	case Py_LT:
 | |
| 		ok = cmp <  0; 
 | |
| 		break;
 | |
| 	case Py_LE:
 | |
| 		ok = cmp <= 0; 
 | |
| 		break;
 | |
| 	case Py_EQ:
 | |
| 		ok = cmp == 0; 
 | |
| 		break;
 | |
| 	case Py_NE:
 | |
| 		ok = cmp != 0; 
 | |
| 		break;
 | |
| 	case Py_GT: 
 | |
| 		ok = cmp >  0; 
 | |
| 		break;
 | |
| 	case Py_GE:
 | |
| 		ok = cmp >= 0; 
 | |
| 		break;
 | |
| 	default:
 | |
| 		PyErr_BadArgument(); 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	res = ok ? Py_True : Py_False;
 | |
| 	Py_INCREF(res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Set of hash utility functions to help maintaining the invariant that
 | |
| 	if a==b then hash(a)==hash(b)
 | |
| 
 | |
|    All the utility functions (_Py_Hash*()) return "-1" to signify an error.
 | |
| */
 | |
| 
 | |
| long
 | |
| _Py_HashDouble(double v)
 | |
| {
 | |
| 	double intpart, fractpart;
 | |
| 	int expo;
 | |
| 	long hipart;
 | |
| 	long x;		/* the final hash value */
 | |
| 	/* This is designed so that Python numbers of different types
 | |
| 	 * that compare equal hash to the same value; otherwise comparisons
 | |
| 	 * of mapping keys will turn out weird.
 | |
| 	 */
 | |
| 
 | |
| 	fractpart = modf(v, &intpart);
 | |
| 	if (fractpart == 0.0) {
 | |
| 		/* This must return the same hash as an equal int or long. */
 | |
| 		if (intpart > LONG_MAX || -intpart > LONG_MAX) {
 | |
| 			/* Convert to long and use its hash. */
 | |
| 			PyObject *plong;	/* converted to Python long */
 | |
| 			if (Py_IS_INFINITY(intpart))
 | |
| 				/* can't convert to long int -- arbitrary */
 | |
| 				v = v < 0 ? -271828.0 : 314159.0;
 | |
| 			plong = PyLong_FromDouble(v);
 | |
| 			if (plong == NULL)
 | |
| 				return -1;
 | |
| 			x = PyObject_Hash(plong);
 | |
| 			Py_DECREF(plong);
 | |
| 			return x;
 | |
| 		}
 | |
| 		/* Fits in a C long == a Python int, so is its own hash. */
 | |
| 		x = (long)intpart;
 | |
| 		if (x == -1)
 | |
| 			x = -2;
 | |
| 		return x;
 | |
| 	}
 | |
| 	/* The fractional part is non-zero, so we don't have to worry about
 | |
| 	 * making this match the hash of some other type.
 | |
| 	 * Use frexp to get at the bits in the double.
 | |
| 	 * Since the VAX D double format has 56 mantissa bits, which is the
 | |
| 	 * most of any double format in use, each of these parts may have as
 | |
| 	 * many as (but no more than) 56 significant bits.
 | |
| 	 * So, assuming sizeof(long) >= 4, each part can be broken into two
 | |
| 	 * longs; frexp and multiplication are used to do that.
 | |
| 	 * Also, since the Cray double format has 15 exponent bits, which is
 | |
| 	 * the most of any double format in use, shifting the exponent field
 | |
| 	 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
 | |
| 	 */
 | |
| 	v = frexp(v, &expo);
 | |
| 	v *= 2147483648.0;	/* 2**31 */
 | |
| 	hipart = (long)v;	/* take the top 32 bits */
 | |
| 	v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
 | |
| 	x = hipart + (long)v + (expo << 15);
 | |
| 	if (x == -1)
 | |
| 		x = -2;
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| long
 | |
| _Py_HashPointer(void *p)
 | |
| {
 | |
| #if SIZEOF_LONG >= SIZEOF_VOID_P
 | |
| 	return (long)p;
 | |
| #else
 | |
| 	/* convert to a Python long and hash that */
 | |
| 	PyObject* longobj;
 | |
| 	long x;
 | |
| 
 | |
| 	if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
 | |
| 		x = -1;
 | |
| 		goto finally;
 | |
| 	}
 | |
| 	x = PyObject_Hash(longobj);
 | |
| 
 | |
| finally:
 | |
| 	Py_XDECREF(longobj);
 | |
| 	return x;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| long
 | |
| PyObject_Hash(PyObject *v)
 | |
| {
 | |
| 	PyTypeObject *tp = v->ob_type;
 | |
| 	if (tp->tp_hash != NULL)
 | |
| 		return (*tp->tp_hash)(v);
 | |
| 	/* Otherwise, the object can't be hashed */
 | |
| 	PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
 | |
| 		     v->ob_type->tp_name);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_GetAttrString(PyObject *v, const char *name)
 | |
| {
 | |
| 	PyObject *w, *res;
 | |
| 
 | |
| 	if (Py_Type(v)->tp_getattr != NULL)
 | |
| 		return (*Py_Type(v)->tp_getattr)(v, (char*)name);
 | |
| 	w = PyUnicode_InternFromString(name);
 | |
| 	if (w == NULL)
 | |
| 		return NULL;
 | |
| 	res = PyObject_GetAttr(v, w);
 | |
| 	Py_XDECREF(w);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_HasAttrString(PyObject *v, const char *name)
 | |
| {
 | |
| 	PyObject *res = PyObject_GetAttrString(v, name);
 | |
| 	if (res != NULL) {
 | |
| 		Py_DECREF(res);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	PyErr_Clear();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
 | |
| {
 | |
| 	PyObject *s;
 | |
| 	int res;
 | |
| 
 | |
| 	if (Py_Type(v)->tp_setattr != NULL)
 | |
| 		return (*Py_Type(v)->tp_setattr)(v, (char*)name, w);
 | |
| 	s = PyUnicode_InternFromString(name);
 | |
| 	if (s == NULL)
 | |
| 		return -1;
 | |
| 	res = PyObject_SetAttr(v, s, w);
 | |
| 	Py_XDECREF(s);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_GetAttr(PyObject *v, PyObject *name)
 | |
| {
 | |
| 	PyTypeObject *tp = Py_Type(v);
 | |
| 
 | |
|  	if (!PyUnicode_Check(name)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "attribute name must be string, not '%.200s'",
 | |
| 			     name->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (tp->tp_getattro != NULL)
 | |
| 		return (*tp->tp_getattro)(v, name);
 | |
| 	if (tp->tp_getattr != NULL)
 | |
| 		return (*tp->tp_getattr)(v, PyUnicode_AsString(name));
 | |
| 	PyErr_Format(PyExc_AttributeError,
 | |
| 		     "'%.50s' object has no attribute '%U'",
 | |
| 		     tp->tp_name, name);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_HasAttr(PyObject *v, PyObject *name)
 | |
| {
 | |
| 	PyObject *res = PyObject_GetAttr(v, name);
 | |
| 	if (res != NULL) {
 | |
| 		Py_DECREF(res);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	PyErr_Clear();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
 | |
| {
 | |
| 	PyTypeObject *tp = Py_Type(v);
 | |
| 	int err;
 | |
| 
 | |
| 	if (!PyUnicode_Check(name)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "attribute name must be string, not '%.200s'",
 | |
| 			     name->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	Py_INCREF(name);
 | |
| 
 | |
| 	PyUnicode_InternInPlace(&name);
 | |
| 	if (tp->tp_setattro != NULL) {
 | |
| 		err = (*tp->tp_setattro)(v, name, value);
 | |
| 		Py_DECREF(name);
 | |
| 		return err;
 | |
| 	}
 | |
| 	if (tp->tp_setattr != NULL) {
 | |
| 		err = (*tp->tp_setattr)(v, PyUnicode_AsString(name), value);
 | |
| 		Py_DECREF(name);
 | |
| 		return err;
 | |
| 	}
 | |
| 	Py_DECREF(name);
 | |
| 	assert(name->ob_refcnt >= 1);
 | |
| 	if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "'%.100s' object has no attributes "
 | |
| 			     "(%s .%U)",
 | |
| 			     tp->tp_name,
 | |
| 			     value==NULL ? "del" : "assign to",
 | |
| 			     name);
 | |
| 	else
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "'%.100s' object has only read-only attributes "
 | |
| 			     "(%s .%U)",
 | |
| 			     tp->tp_name,
 | |
| 			     value==NULL ? "del" : "assign to",
 | |
| 			     name);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Helper to get a pointer to an object's __dict__ slot, if any */
 | |
| 
 | |
| PyObject **
 | |
| _PyObject_GetDictPtr(PyObject *obj)
 | |
| {
 | |
| 	Py_ssize_t dictoffset;
 | |
| 	PyTypeObject *tp = Py_Type(obj);
 | |
| 
 | |
| 	dictoffset = tp->tp_dictoffset;
 | |
| 	if (dictoffset == 0)
 | |
| 		return NULL;
 | |
| 	if (dictoffset < 0) {
 | |
| 		Py_ssize_t tsize;
 | |
| 		size_t size;
 | |
| 
 | |
| 		tsize = ((PyVarObject *)obj)->ob_size;
 | |
| 		if (tsize < 0)
 | |
| 			tsize = -tsize;
 | |
| 		size = _PyObject_VAR_SIZE(tp, tsize);
 | |
| 
 | |
| 		dictoffset += (long)size;
 | |
| 		assert(dictoffset > 0);
 | |
| 		assert(dictoffset % SIZEOF_VOID_P == 0);
 | |
| 	}
 | |
| 	return (PyObject **) ((char *)obj + dictoffset);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyObject_SelfIter(PyObject *obj)
 | |
| {
 | |
| 	Py_INCREF(obj);
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
 | |
| 
 | |
| PyObject *
 | |
| PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
 | |
| {
 | |
| 	PyTypeObject *tp = Py_Type(obj);
 | |
| 	PyObject *descr = NULL;
 | |
| 	PyObject *res = NULL;
 | |
| 	descrgetfunc f;
 | |
| 	Py_ssize_t dictoffset;
 | |
| 	PyObject **dictptr;
 | |
| 
 | |
| 	if (!PyUnicode_Check(name)){
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "attribute name must be string, not '%.200s'",
 | |
| 			     name->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else
 | |
| 		Py_INCREF(name);
 | |
| 
 | |
| 	if (tp->tp_dict == NULL) {
 | |
| 		if (PyType_Ready(tp) < 0)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Inline _PyType_Lookup */
 | |
| 	{
 | |
| 		Py_ssize_t i, n;
 | |
| 		PyObject *mro, *base, *dict;
 | |
| 
 | |
| 		/* Look in tp_dict of types in MRO */
 | |
| 		mro = tp->tp_mro;
 | |
| 		assert(mro != NULL);
 | |
| 		assert(PyTuple_Check(mro));
 | |
| 		n = PyTuple_GET_SIZE(mro);
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			base = PyTuple_GET_ITEM(mro, i);
 | |
| 			assert(PyType_Check(base));
 | |
| 			dict = ((PyTypeObject *)base)->tp_dict;
 | |
| 			assert(dict && PyDict_Check(dict));
 | |
| 			descr = PyDict_GetItem(dict, name);
 | |
| 			if (descr != NULL)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_XINCREF(descr);
 | |
| 
 | |
| 	f = NULL;
 | |
| 	if (descr != NULL) {
 | |
| 		f = descr->ob_type->tp_descr_get;
 | |
| 		if (f != NULL && PyDescr_IsData(descr)) {
 | |
| 			res = f(descr, obj, (PyObject *)obj->ob_type);
 | |
| 			Py_DECREF(descr);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Inline _PyObject_GetDictPtr */
 | |
| 	dictoffset = tp->tp_dictoffset;
 | |
| 	if (dictoffset != 0) {
 | |
| 		PyObject *dict;
 | |
| 		if (dictoffset < 0) {
 | |
| 			Py_ssize_t tsize;
 | |
| 			size_t size;
 | |
| 
 | |
| 			tsize = ((PyVarObject *)obj)->ob_size;
 | |
| 			if (tsize < 0)
 | |
| 				tsize = -tsize;
 | |
| 			size = _PyObject_VAR_SIZE(tp, tsize);
 | |
| 
 | |
| 			dictoffset += (long)size;
 | |
| 			assert(dictoffset > 0);
 | |
| 			assert(dictoffset % SIZEOF_VOID_P == 0);
 | |
| 		}
 | |
| 		dictptr = (PyObject **) ((char *)obj + dictoffset);
 | |
| 		dict = *dictptr;
 | |
| 		if (dict != NULL) {
 | |
| 			res = PyDict_GetItem(dict, name);
 | |
| 			if (res != NULL) {
 | |
| 				Py_INCREF(res);
 | |
| 				Py_XDECREF(descr);
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (f != NULL) {
 | |
| 		res = f(descr, obj, (PyObject *)Py_Type(obj));
 | |
| 		Py_DECREF(descr);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (descr != NULL) {
 | |
| 		res = descr;
 | |
| 		/* descr was already increfed above */
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	PyErr_Format(PyExc_AttributeError,
 | |
| 		     "'%.50s' object has no attribute '%.400s'",
 | |
| 		     tp->tp_name, PyUnicode_AsString(name));
 | |
|   done:
 | |
| 	Py_DECREF(name);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
 | |
| {
 | |
| 	PyTypeObject *tp = Py_Type(obj);
 | |
| 	PyObject *descr;
 | |
| 	descrsetfunc f;
 | |
| 	PyObject **dictptr;
 | |
| 	int res = -1;
 | |
| 
 | |
| 	if (!PyUnicode_Check(name)){
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "attribute name must be string, not '%.200s'",
 | |
| 			     name->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else
 | |
| 		Py_INCREF(name);
 | |
| 
 | |
| 	if (tp->tp_dict == NULL) {
 | |
| 		if (PyType_Ready(tp) < 0)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	descr = _PyType_Lookup(tp, name);
 | |
| 	f = NULL;
 | |
| 	if (descr != NULL) {
 | |
| 		f = descr->ob_type->tp_descr_set;
 | |
| 		if (f != NULL && PyDescr_IsData(descr)) {
 | |
| 			res = f(descr, obj, value);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dictptr = _PyObject_GetDictPtr(obj);
 | |
| 	if (dictptr != NULL) {
 | |
| 		PyObject *dict = *dictptr;
 | |
| 		if (dict == NULL && value != NULL) {
 | |
| 			dict = PyDict_New();
 | |
| 			if (dict == NULL)
 | |
| 				goto done;
 | |
| 			*dictptr = dict;
 | |
| 		}
 | |
| 		if (dict != NULL) {
 | |
| 			if (value == NULL)
 | |
| 				res = PyDict_DelItem(dict, name);
 | |
| 			else
 | |
| 				res = PyDict_SetItem(dict, name, value);
 | |
| 			if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
 | |
| 				PyErr_SetObject(PyExc_AttributeError, name);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (f != NULL) {
 | |
| 		res = f(descr, obj, value);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (descr == NULL) {
 | |
| 		PyErr_Format(PyExc_AttributeError,
 | |
| 			     "'%.100s' object has no attribute '%U'",
 | |
| 			     tp->tp_name, name);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	PyErr_Format(PyExc_AttributeError,
 | |
| 		     "'%.50s' object attribute '%U' is read-only",
 | |
| 		     tp->tp_name, name);
 | |
|   done:
 | |
| 	Py_DECREF(name);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Test a value used as condition, e.g., in a for or if statement.
 | |
|    Return -1 if an error occurred */
 | |
| 
 | |
| int
 | |
| PyObject_IsTrue(PyObject *v)
 | |
| {
 | |
| 	Py_ssize_t res;
 | |
| 	if (v == Py_True)
 | |
| 		return 1;
 | |
| 	if (v == Py_False)
 | |
| 		return 0;
 | |
| 	if (v == Py_None)
 | |
| 		return 0;
 | |
| 	else if (v->ob_type->tp_as_number != NULL &&
 | |
| 		 v->ob_type->tp_as_number->nb_bool != NULL)
 | |
| 		res = (*v->ob_type->tp_as_number->nb_bool)(v);
 | |
| 	else if (v->ob_type->tp_as_mapping != NULL &&
 | |
| 		 v->ob_type->tp_as_mapping->mp_length != NULL)
 | |
| 		res = (*v->ob_type->tp_as_mapping->mp_length)(v);
 | |
| 	else if (v->ob_type->tp_as_sequence != NULL &&
 | |
| 		 v->ob_type->tp_as_sequence->sq_length != NULL)
 | |
| 		res = (*v->ob_type->tp_as_sequence->sq_length)(v);
 | |
| 	else
 | |
| 		return 1;
 | |
| 	/* if it is negative, it should be either -1 or -2 */
 | |
| 	return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
 | |
| }
 | |
| 
 | |
| /* equivalent of 'not v'
 | |
|    Return -1 if an error occurred */
 | |
| 
 | |
| int
 | |
| PyObject_Not(PyObject *v)
 | |
| {
 | |
| 	int res;
 | |
| 	res = PyObject_IsTrue(v);
 | |
| 	if (res < 0)
 | |
| 		return res;
 | |
| 	return res == 0;
 | |
| }
 | |
| 
 | |
| /* Test whether an object can be called */
 | |
| 
 | |
| int
 | |
| PyCallable_Check(PyObject *x)
 | |
| {
 | |
| 	if (x == NULL)
 | |
| 		return 0;
 | |
| 	return x->ob_type->tp_call != NULL;
 | |
| }
 | |
| 
 | |
| /* ------------------------- PyObject_Dir() helpers ------------------------- */
 | |
| 
 | |
| /* Helper for PyObject_Dir.
 | |
|    Merge the __dict__ of aclass into dict, and recursively also all
 | |
|    the __dict__s of aclass's base classes.  The order of merging isn't
 | |
|    defined, as it's expected that only the final set of dict keys is
 | |
|    interesting.
 | |
|    Return 0 on success, -1 on error.
 | |
| */
 | |
| 
 | |
| static int
 | |
| merge_class_dict(PyObject* dict, PyObject* aclass)
 | |
| {
 | |
| 	PyObject *classdict;
 | |
| 	PyObject *bases;
 | |
| 
 | |
| 	assert(PyDict_Check(dict));
 | |
| 	assert(aclass);
 | |
| 
 | |
| 	/* Merge in the type's dict (if any). */
 | |
| 	classdict = PyObject_GetAttrString(aclass, "__dict__");
 | |
| 	if (classdict == NULL)
 | |
| 		PyErr_Clear();
 | |
| 	else {
 | |
| 		int status = PyDict_Update(dict, classdict);
 | |
| 		Py_DECREF(classdict);
 | |
| 		if (status < 0)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Recursively merge in the base types' (if any) dicts. */
 | |
| 	bases = PyObject_GetAttrString(aclass, "__bases__");
 | |
| 	if (bases == NULL)
 | |
| 		PyErr_Clear();
 | |
| 	else {
 | |
| 		/* We have no guarantee that bases is a real tuple */
 | |
| 		Py_ssize_t i, n;
 | |
| 		n = PySequence_Size(bases); /* This better be right */
 | |
| 		if (n < 0)
 | |
| 			PyErr_Clear();
 | |
| 		else {
 | |
| 			for (i = 0; i < n; i++) {
 | |
| 				int status;
 | |
| 				PyObject *base = PySequence_GetItem(bases, i);
 | |
| 				if (base == NULL) {
 | |
| 					Py_DECREF(bases);
 | |
| 					return -1;
 | |
| 				}
 | |
| 				status = merge_class_dict(dict, base);
 | |
| 				Py_DECREF(base);
 | |
| 				if (status < 0) {
 | |
| 					Py_DECREF(bases);
 | |
| 					return -1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(bases);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Helper for PyObject_Dir without arguments: returns the local scope. */
 | |
| static PyObject *
 | |
| _dir_locals(void)
 | |
| {
 | |
| 	PyObject *names;
 | |
| 	PyObject *locals = PyEval_GetLocals();
 | |
| 
 | |
| 	if (locals == NULL) {
 | |
| 		PyErr_SetString(PyExc_SystemError, "frame does not exist");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	names = PyMapping_Keys(locals);
 | |
| 	if (!names)
 | |
| 		return NULL;
 | |
| 	if (!PyList_Check(names)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			"dir(): expected keys() of locals to be a list, "
 | |
| 			"not '%.200s'", Py_Type(names)->tp_name);
 | |
| 		Py_DECREF(names);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* the locals don't need to be DECREF'd */
 | |
| 	return names;
 | |
| }
 | |
| 
 | |
| /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
 | |
|    We deliberately don't suck up its __class__, as methods belonging to the 
 | |
|    metaclass would probably be more confusing than helpful. 
 | |
| */
 | |
| static PyObject * 
 | |
| _specialized_dir_type(PyObject *obj)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	PyObject *dict = PyDict_New();
 | |
| 
 | |
| 	if (dict != NULL && merge_class_dict(dict, obj) == 0)
 | |
| 		result = PyDict_Keys(dict);
 | |
| 
 | |
| 	Py_XDECREF(dict);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
 | |
| static PyObject *
 | |
| _specialized_dir_module(PyObject *obj)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
 | |
| 
 | |
| 	if (dict != NULL) {
 | |
| 		if (PyDict_Check(dict))
 | |
| 			result = PyDict_Keys(dict);
 | |
| 		else {
 | |
| 			PyErr_Format(PyExc_TypeError,
 | |
| 				     "%.200s.__dict__ is not a dictionary",
 | |
| 				     PyModule_GetName(obj));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_XDECREF(dict);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
 | |
|    and recursively up the __class__.__bases__ chain.
 | |
| */
 | |
| static PyObject *
 | |
| _generic_dir(PyObject *obj)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	PyObject *dict = NULL;
 | |
| 	PyObject *itsclass = NULL;
 | |
| 	
 | |
| 	/* Get __dict__ (which may or may not be a real dict...) */
 | |
| 	dict = PyObject_GetAttrString(obj, "__dict__");
 | |
| 	if (dict == NULL) {
 | |
| 		PyErr_Clear();
 | |
| 		dict = PyDict_New();
 | |
| 	}
 | |
| 	else if (!PyDict_Check(dict)) {
 | |
| 		Py_DECREF(dict);
 | |
| 		dict = PyDict_New();
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Copy __dict__ to avoid mutating it. */
 | |
| 		PyObject *temp = PyDict_Copy(dict);
 | |
| 		Py_DECREF(dict);
 | |
| 		dict = temp;
 | |
| 	}
 | |
| 
 | |
| 	if (dict == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Merge in attrs reachable from its class. */
 | |
| 	itsclass = PyObject_GetAttrString(obj, "__class__");
 | |
| 	if (itsclass == NULL)
 | |
| 		/* XXX(tomer): Perhaps fall back to obj->ob_type if no
 | |
| 		               __class__ exists? */
 | |
| 		PyErr_Clear();
 | |
| 	else {
 | |
| 		if (merge_class_dict(dict, itsclass) != 0)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	result = PyDict_Keys(dict);
 | |
| 	/* fall through */
 | |
| error:
 | |
| 	Py_XDECREF(itsclass);
 | |
| 	Py_XDECREF(dict);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Helper for PyObject_Dir: object introspection.
 | |
|    This calls one of the above specialized versions if no __dir__ method
 | |
|    exists. */
 | |
| static PyObject *
 | |
| _dir_object(PyObject *obj)
 | |
| {
 | |
| 	PyObject * result = NULL;
 | |
| 	PyObject * dirfunc = PyObject_GetAttrString((PyObject*)obj->ob_type,
 | |
| 						    "__dir__");
 | |
| 
 | |
| 	assert(obj);
 | |
| 	if (dirfunc == NULL) {
 | |
| 		/* use default implementation */
 | |
| 		PyErr_Clear();
 | |
| 		if (PyModule_Check(obj))
 | |
| 			result = _specialized_dir_module(obj);
 | |
| 		else if (PyType_Check(obj))
 | |
| 			result = _specialized_dir_type(obj);
 | |
| 		else
 | |
| 			result = _generic_dir(obj);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* use __dir__ */
 | |
| 		result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL);
 | |
| 		Py_DECREF(dirfunc);
 | |
| 		if (result == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		/* result must be a list */
 | |
| 		/* XXX(gbrandl): could also check if all items are strings */
 | |
| 		if (!PyList_Check(result)) {
 | |
| 			PyErr_Format(PyExc_TypeError,
 | |
| 				     "__dir__() must return a list, not %.200s",
 | |
| 				     Py_Type(result)->tp_name);
 | |
| 			Py_DECREF(result);
 | |
| 			result = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Implementation of dir() -- if obj is NULL, returns the names in the current
 | |
|    (local) scope.  Otherwise, performs introspection of the object: returns a
 | |
|    sorted list of attribute names (supposedly) accessible from the object
 | |
| */
 | |
| PyObject *
 | |
| PyObject_Dir(PyObject *obj)
 | |
| {
 | |
| 	PyObject * result;
 | |
| 
 | |
| 	if (obj == NULL)
 | |
| 		/* no object -- introspect the locals */
 | |
| 		result = _dir_locals();
 | |
| 	else
 | |
| 		/* object -- introspect the object */
 | |
| 		result = _dir_object(obj);
 | |
| 
 | |
| 	assert(result == NULL || PyList_Check(result));
 | |
| 
 | |
| 	if (result != NULL && PyList_Sort(result) != 0) {
 | |
| 		/* sorting the list failed */
 | |
| 		Py_DECREF(result);
 | |
| 		result = NULL;
 | |
| 	}
 | |
| 	
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
| NoObject is usable as a non-NULL undefined value, used by the macro None.
 | |
| There is (and should be!) no way to create other objects of this type,
 | |
| so there is exactly one (which is indestructible, by the way).
 | |
| (XXX This type and the type of NotImplemented below should be unified.)
 | |
| */
 | |
| 
 | |
| /* ARGSUSED */
 | |
| static PyObject *
 | |
| none_repr(PyObject *op)
 | |
| {
 | |
| 	return PyUnicode_FromString("None");
 | |
| }
 | |
| 
 | |
| /* ARGUSED */
 | |
| static void
 | |
| none_dealloc(PyObject* ignore)
 | |
| {
 | |
| 	/* This should never get called, but we also don't want to SEGV if
 | |
| 	 * we accidently decref None out of existance.
 | |
| 	 */
 | |
| 	Py_FatalError("deallocating None");
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyTypeObject PyNone_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"NoneType",
 | |
| 	0,
 | |
| 	0,
 | |
| 	none_dealloc,	/*tp_dealloc*/ /*never called*/
 | |
| 	0,		/*tp_print*/
 | |
| 	0,		/*tp_getattr*/
 | |
| 	0,		/*tp_setattr*/
 | |
| 	0,		/*tp_compare*/
 | |
| 	none_repr,	/*tp_repr*/
 | |
| 	0,		/*tp_as_number*/
 | |
| 	0,		/*tp_as_sequence*/
 | |
| 	0,		/*tp_as_mapping*/
 | |
| 	0,		/*tp_hash */
 | |
| };
 | |
| 
 | |
| PyObject _Py_NoneStruct = {
 | |
|   _PyObject_EXTRA_INIT
 | |
|   1, &PyNone_Type
 | |
| };
 | |
| 
 | |
| /* NotImplemented is an object that can be used to signal that an
 | |
|    operation is not implemented for the given type combination. */
 | |
| 
 | |
| static PyObject *
 | |
| NotImplemented_repr(PyObject *op)
 | |
| {
 | |
| 	return PyUnicode_FromString("NotImplemented");
 | |
| }
 | |
| 
 | |
| static PyTypeObject PyNotImplemented_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"NotImplementedType",
 | |
| 	0,
 | |
| 	0,
 | |
| 	none_dealloc,	/*tp_dealloc*/ /*never called*/
 | |
| 	0,		/*tp_print*/
 | |
| 	0,		/*tp_getattr*/
 | |
| 	0,		/*tp_setattr*/
 | |
| 	0,		/*tp_compare*/
 | |
| 	NotImplemented_repr, /*tp_repr*/
 | |
| 	0,		/*tp_as_number*/
 | |
| 	0,		/*tp_as_sequence*/
 | |
| 	0,		/*tp_as_mapping*/
 | |
| 	0,		/*tp_hash */
 | |
| };
 | |
| 
 | |
| PyObject _Py_NotImplementedStruct = {
 | |
| 	_PyObject_EXTRA_INIT
 | |
| 	1, &PyNotImplemented_Type
 | |
| };
 | |
| 
 | |
| void
 | |
| _Py_ReadyTypes(void)
 | |
| {
 | |
| 	if (PyType_Ready(&PyType_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'type'");
 | |
| 
 | |
| 	if (PyType_Ready(&_PyWeakref_RefType) < 0)
 | |
| 		Py_FatalError("Can't initialize 'weakref'");
 | |
| 
 | |
| 	if (PyType_Ready(&PyBool_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'bool'");
 | |
| 
 | |
| 	if (PyType_Ready(&PyBytes_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'bytes'");
 | |
| 
 | |
| 	if (PyType_Ready(&PyString_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'str'");
 | |
| 
 | |
| 	if (PyType_Ready(&PyList_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'list'");
 | |
| 
 | |
| 	if (PyType_Ready(&PyNone_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize type(None)");
 | |
| 
 | |
| 	if (PyType_Ready(Py_Ellipsis->ob_type) < 0)
 | |
| 		Py_FatalError("Can't initialize type(Ellipsis)");
 | |
| 
 | |
| 	if (PyType_Ready(&PyNotImplemented_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize type(NotImplemented)");
 | |
| 
 | |
| 	if (PyType_Ready(&PyCode_Type) < 0)
 | |
| 		Py_FatalError("Can't initialize 'code'");
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef Py_TRACE_REFS
 | |
| 
 | |
| void
 | |
| _Py_NewReference(PyObject *op)
 | |
| {
 | |
| 	_Py_INC_REFTOTAL;
 | |
| 	op->ob_refcnt = 1;
 | |
| 	_Py_AddToAllObjects(op, 1);
 | |
| 	_Py_INC_TPALLOCS(op);
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_ForgetReference(register PyObject *op)
 | |
| {
 | |
| #ifdef SLOW_UNREF_CHECK
 | |
|         register PyObject *p;
 | |
| #endif
 | |
| 	if (op->ob_refcnt < 0)
 | |
| 		Py_FatalError("UNREF negative refcnt");
 | |
| 	if (op == &refchain ||
 | |
| 	    op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
 | |
| 		Py_FatalError("UNREF invalid object");
 | |
| #ifdef SLOW_UNREF_CHECK
 | |
| 	for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
 | |
| 		if (p == op)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (p == &refchain) /* Not found */
 | |
| 		Py_FatalError("UNREF unknown object");
 | |
| #endif
 | |
| 	op->_ob_next->_ob_prev = op->_ob_prev;
 | |
| 	op->_ob_prev->_ob_next = op->_ob_next;
 | |
| 	op->_ob_next = op->_ob_prev = NULL;
 | |
| 	_Py_INC_TPFREES(op);
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_Dealloc(PyObject *op)
 | |
| {
 | |
| 	destructor dealloc = Py_Type(op)->tp_dealloc;
 | |
| 	_Py_ForgetReference(op);
 | |
| 	(*dealloc)(op);
 | |
| }
 | |
| 
 | |
| /* Print all live objects.  Because PyObject_Print is called, the
 | |
|  * interpreter must be in a healthy state.
 | |
|  */
 | |
| void
 | |
| _Py_PrintReferences(FILE *fp)
 | |
| {
 | |
| 	PyObject *op;
 | |
| 	fprintf(fp, "Remaining objects:\n");
 | |
| 	for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
 | |
| 		fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
 | |
| 		if (PyObject_Print(op, fp, 0) != 0)
 | |
| 			PyErr_Clear();
 | |
| 		putc('\n', fp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Print the addresses of all live objects.  Unlike _Py_PrintReferences, this
 | |
|  * doesn't make any calls to the Python C API, so is always safe to call.
 | |
|  */
 | |
| void
 | |
| _Py_PrintReferenceAddresses(FILE *fp)
 | |
| {
 | |
| 	PyObject *op;
 | |
| 	fprintf(fp, "Remaining object addresses:\n");
 | |
| 	for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
 | |
| 		fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
 | |
| 			op->ob_refcnt, Py_Type(op)->tp_name);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _Py_GetObjects(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	int i, n;
 | |
| 	PyObject *t = NULL;
 | |
| 	PyObject *res, *op;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "i|O", &n, &t))
 | |
| 		return NULL;
 | |
| 	op = refchain._ob_next;
 | |
| 	res = PyList_New(0);
 | |
| 	if (res == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
 | |
| 		while (op == self || op == args || op == res || op == t ||
 | |
| 		       (t != NULL && Py_Type(op) != (PyTypeObject *) t)) {
 | |
| 			op = op->_ob_next;
 | |
| 			if (op == &refchain)
 | |
| 				return res;
 | |
| 		}
 | |
| 		if (PyList_Append(res, op) < 0) {
 | |
| 			Py_DECREF(res);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		op = op->_ob_next;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Hack to force loading of cobject.o */
 | |
| PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
 | |
| 
 | |
| 
 | |
| /* Hack to force loading of abstract.o */
 | |
| Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
 | |
| 
 | |
| 
 | |
| /* Python's malloc wrappers (see pymem.h) */
 | |
| 
 | |
| void *
 | |
| PyMem_Malloc(size_t nbytes)
 | |
| {
 | |
| 	return PyMem_MALLOC(nbytes);
 | |
| }
 | |
| 
 | |
| void *
 | |
| PyMem_Realloc(void *p, size_t nbytes)
 | |
| {
 | |
| 	return PyMem_REALLOC(p, nbytes);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyMem_Free(void *p)
 | |
| {
 | |
| 	PyMem_FREE(p);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* These methods are used to control infinite recursion in repr, str, print,
 | |
|    etc.  Container objects that may recursively contain themselves,
 | |
|    e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
 | |
|    Py_ReprLeave() to avoid infinite recursion.
 | |
| 
 | |
|    Py_ReprEnter() returns 0 the first time it is called for a particular
 | |
|    object and 1 every time thereafter.  It returns -1 if an exception
 | |
|    occurred.  Py_ReprLeave() has no return value.
 | |
| 
 | |
|    See dictobject.c and listobject.c for examples of use.
 | |
| */
 | |
| 
 | |
| #define KEY "Py_Repr"
 | |
| 
 | |
| int
 | |
| Py_ReprEnter(PyObject *obj)
 | |
| {
 | |
| 	PyObject *dict;
 | |
| 	PyObject *list;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	dict = PyThreadState_GetDict();
 | |
| 	if (dict == NULL)
 | |
| 		return 0;
 | |
| 	list = PyDict_GetItemString(dict, KEY);
 | |
| 	if (list == NULL) {
 | |
| 		list = PyList_New(0);
 | |
| 		if (list == NULL)
 | |
| 			return -1;
 | |
| 		if (PyDict_SetItemString(dict, KEY, list) < 0)
 | |
| 			return -1;
 | |
| 		Py_DECREF(list);
 | |
| 	}
 | |
| 	i = PyList_GET_SIZE(list);
 | |
| 	while (--i >= 0) {
 | |
| 		if (PyList_GET_ITEM(list, i) == obj)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	PyList_Append(list, obj);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| Py_ReprLeave(PyObject *obj)
 | |
| {
 | |
| 	PyObject *dict;
 | |
| 	PyObject *list;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	dict = PyThreadState_GetDict();
 | |
| 	if (dict == NULL)
 | |
| 		return;
 | |
| 	list = PyDict_GetItemString(dict, KEY);
 | |
| 	if (list == NULL || !PyList_Check(list))
 | |
| 		return;
 | |
| 	i = PyList_GET_SIZE(list);
 | |
| 	/* Count backwards because we always expect obj to be list[-1] */
 | |
| 	while (--i >= 0) {
 | |
| 		if (PyList_GET_ITEM(list, i) == obj) {
 | |
| 			PyList_SetSlice(list, i, i + 1, NULL);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Trashcan support. */
 | |
| 
 | |
| /* Current call-stack depth of tp_dealloc calls. */
 | |
| int _PyTrash_delete_nesting = 0;
 | |
| 
 | |
| /* List of objects that still need to be cleaned up, singly linked via their
 | |
|  * gc headers' gc_prev pointers.
 | |
|  */
 | |
| PyObject *_PyTrash_delete_later = NULL;
 | |
| 
 | |
| /* Add op to the _PyTrash_delete_later list.  Called when the current
 | |
|  * call-stack depth gets large.  op must be a currently untracked gc'ed
 | |
|  * object, with refcount 0.  Py_DECREF must already have been called on it.
 | |
|  */
 | |
| void
 | |
| _PyTrash_deposit_object(PyObject *op)
 | |
| {
 | |
| 	assert(PyObject_IS_GC(op));
 | |
| 	assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
 | |
| 	assert(op->ob_refcnt == 0);
 | |
| 	_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
 | |
| 	_PyTrash_delete_later = op;
 | |
| }
 | |
| 
 | |
| /* Dealloccate all the objects in the _PyTrash_delete_later list.  Called when
 | |
|  * the call-stack unwinds again.
 | |
|  */
 | |
| void
 | |
| _PyTrash_destroy_chain(void)
 | |
| {
 | |
| 	while (_PyTrash_delete_later) {
 | |
| 		PyObject *op = _PyTrash_delete_later;
 | |
| 		destructor dealloc = Py_Type(op)->tp_dealloc;
 | |
| 
 | |
| 		_PyTrash_delete_later =
 | |
| 			(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
 | |
| 
 | |
| 		/* Call the deallocator directly.  This used to try to
 | |
| 		 * fool Py_DECREF into calling it indirectly, but
 | |
| 		 * Py_DECREF was already called on this object, and in
 | |
| 		 * assorted non-release builds calling Py_DECREF again ends
 | |
| 		 * up distorting allocation statistics.
 | |
| 		 */
 | |
| 		assert(op->ob_refcnt == 0);
 | |
| 		++_PyTrash_delete_nesting;
 | |
| 		(*dealloc)(op);
 | |
| 		--_PyTrash_delete_nesting;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 |