mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	 8cc5aa47ee
			
		
	
	
		8cc5aa47ee
		
			
		
	
	
	
	
		
			
			Instead of surprise crashes and memory corruption, we now hang threads that attempt to re-enter the Python interpreter after Python runtime finalization has started. These are typically daemon threads (our long standing mis-feature) but could also be threads spawned by extension modules that then try to call into Python. This marks the `PyThread_exit_thread` public C API as deprecated as there is no plausible safe way to accomplish that on any supported platform in the face of things like C++ code with finalizers anywhere on a thread's stack. Doing this was the least bad option. Co-authored-by: Gregory P. Smith <greg@krypto.org>
		
			
				
	
	
		
			531 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			531 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "pycore_interp.h"        // _PyInterpreterState.threads.stacksize
 | |
| #include "pycore_time.h"          // _PyTime_AsMicroseconds()
 | |
| 
 | |
| /* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
 | |
| /* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
 | |
| /* Eliminated some memory leaks, gsw@agere.com */
 | |
| 
 | |
| #include <windows.h>
 | |
| #include <limits.h>
 | |
| #ifdef HAVE_PROCESS_H
 | |
| #include <process.h>
 | |
| #endif
 | |
| 
 | |
| /* options */
 | |
| #ifndef _PY_USE_CV_LOCKS
 | |
| #define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */
 | |
| #endif
 | |
| 
 | |
| /* Now, define a non-recursive mutex using either condition variables
 | |
|  * and critical sections (fast) or using operating system mutexes
 | |
|  * (slow)
 | |
|  */
 | |
| 
 | |
| #if _PY_USE_CV_LOCKS
 | |
| 
 | |
| #include "condvar.h"
 | |
| 
 | |
| typedef struct _NRMUTEX
 | |
| {
 | |
|     PyMUTEX_T cs;
 | |
|     PyCOND_T cv;
 | |
|     int locked;
 | |
| } NRMUTEX;
 | |
| typedef NRMUTEX *PNRMUTEX;
 | |
| 
 | |
| static PNRMUTEX
 | |
| AllocNonRecursiveMutex(void)
 | |
| {
 | |
|     PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
 | |
|     if (!m)
 | |
|         return NULL;
 | |
|     if (PyCOND_INIT(&m->cv))
 | |
|         goto fail;
 | |
|     if (PyMUTEX_INIT(&m->cs)) {
 | |
|         PyCOND_FINI(&m->cv);
 | |
|         goto fail;
 | |
|     }
 | |
|     m->locked = 0;
 | |
|     return m;
 | |
| fail:
 | |
|     PyMem_RawFree(m);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static VOID
 | |
| FreeNonRecursiveMutex(PNRMUTEX mutex)
 | |
| {
 | |
|     if (mutex) {
 | |
|         PyCOND_FINI(&mutex->cv);
 | |
|         PyMUTEX_FINI(&mutex->cs);
 | |
|         PyMem_RawFree(mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static DWORD
 | |
| EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
 | |
| {
 | |
|     DWORD result = WAIT_OBJECT_0;
 | |
|     if (PyMUTEX_LOCK(&mutex->cs))
 | |
|         return WAIT_FAILED;
 | |
|     if (milliseconds == INFINITE) {
 | |
|         while (mutex->locked) {
 | |
|             if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
 | |
|                 result = WAIT_FAILED;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     } else if (milliseconds != 0) {
 | |
|         /* wait at least until the deadline */
 | |
|         PyTime_t timeout = (PyTime_t)milliseconds * (1000 * 1000);
 | |
|         PyTime_t deadline = _PyDeadline_Init(timeout);
 | |
|         while (mutex->locked) {
 | |
|             PyTime_t microseconds = _PyTime_AsMicroseconds(timeout,
 | |
|                                                            _PyTime_ROUND_TIMEOUT);
 | |
|             if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, microseconds) < 0) {
 | |
|                 result = WAIT_FAILED;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             timeout = _PyDeadline_Get(deadline);
 | |
|             if (timeout <= 0) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (!mutex->locked) {
 | |
|         mutex->locked = 1;
 | |
|         result = WAIT_OBJECT_0;
 | |
|     } else if (result == WAIT_OBJECT_0)
 | |
|         result = WAIT_TIMEOUT;
 | |
|     /* else, it is WAIT_FAILED */
 | |
|     PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static BOOL
 | |
| LeaveNonRecursiveMutex(PNRMUTEX mutex)
 | |
| {
 | |
|     BOOL result;
 | |
|     if (PyMUTEX_LOCK(&mutex->cs))
 | |
|         return FALSE;
 | |
|     mutex->locked = 0;
 | |
|     /* condvar APIs return 0 on success. We need to return TRUE on success. */
 | |
|     result = !PyCOND_SIGNAL(&mutex->cv);
 | |
|     PyMUTEX_UNLOCK(&mutex->cs);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #else /* if ! _PY_USE_CV_LOCKS */
 | |
| 
 | |
| /* NR-locks based on a kernel mutex */
 | |
| #define PNRMUTEX HANDLE
 | |
| 
 | |
| static PNRMUTEX
 | |
| AllocNonRecursiveMutex(void)
 | |
| {
 | |
|     return CreateSemaphore(NULL, 1, 1, NULL);
 | |
| }
 | |
| 
 | |
| static VOID
 | |
| FreeNonRecursiveMutex(PNRMUTEX mutex)
 | |
| {
 | |
|     /* No in-use check */
 | |
|     CloseHandle(mutex);
 | |
| }
 | |
| 
 | |
| static DWORD
 | |
| EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
 | |
| {
 | |
|     return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
 | |
| }
 | |
| 
 | |
| static BOOL
 | |
| LeaveNonRecursiveMutex(PNRMUTEX mutex)
 | |
| {
 | |
|     return ReleaseSemaphore(mutex, 1, NULL);
 | |
| }
 | |
| #endif /* _PY_USE_CV_LOCKS */
 | |
| 
 | |
| unsigned long PyThread_get_thread_ident(void);
 | |
| 
 | |
| #ifdef PY_HAVE_THREAD_NATIVE_ID
 | |
| unsigned long PyThread_get_thread_native_id(void);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initialization for the current runtime.
 | |
|  */
 | |
| static void
 | |
| PyThread__init_thread(void)
 | |
| {
 | |
|     // Initialization of the C package should not be needed.
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread support.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     void (*func)(void*);
 | |
|     void *arg;
 | |
| } callobj;
 | |
| 
 | |
| /* thunker to call adapt between the function type used by the system's
 | |
| thread start function and the internally used one. */
 | |
| static unsigned __stdcall
 | |
| bootstrap(void *call)
 | |
| {
 | |
|     callobj *obj = (callobj*)call;
 | |
|     void (*func)(void*) = obj->func;
 | |
|     void *arg = obj->arg;
 | |
|     HeapFree(GetProcessHeap(), 0, obj);
 | |
|     func(arg);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_start_joinable_thread(void (*func)(void *), void *arg,
 | |
|                                PyThread_ident_t* ident, PyThread_handle_t* handle) {
 | |
|     HANDLE hThread;
 | |
|     unsigned threadID;
 | |
|     callobj *obj;
 | |
| 
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
|     obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
 | |
|     if (!obj)
 | |
|         return -1;
 | |
|     obj->func = func;
 | |
|     obj->arg = arg;
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0;
 | |
|     hThread = (HANDLE)_beginthreadex(0,
 | |
|                       Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int),
 | |
|                       bootstrap, obj,
 | |
|                       0, &threadID);
 | |
|     if (hThread == 0) {
 | |
|         /* I've seen errno == EAGAIN here, which means "there are
 | |
|          * too many threads".
 | |
|          */
 | |
|         HeapFree(GetProcessHeap(), 0, obj);
 | |
|         return -1;
 | |
|     }
 | |
|     *ident = threadID;
 | |
|     // The cast is safe since HANDLE is pointer-sized
 | |
|     *handle = (PyThread_handle_t) hThread;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| PyThread_start_new_thread(void (*func)(void *), void *arg) {
 | |
|     PyThread_handle_t handle;
 | |
|     PyThread_ident_t ident;
 | |
|     if (PyThread_start_joinable_thread(func, arg, &ident, &handle)) {
 | |
|         return PYTHREAD_INVALID_THREAD_ID;
 | |
|     }
 | |
|     CloseHandle((HANDLE) handle);
 | |
|     // The cast is safe since the ident is really an unsigned int
 | |
|     return (unsigned long) ident;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_join_thread(PyThread_handle_t handle) {
 | |
|     HANDLE hThread = (HANDLE) handle;
 | |
|     int errored = (WaitForSingleObject(hThread, INFINITE) != WAIT_OBJECT_0);
 | |
|     CloseHandle(hThread);
 | |
|     return errored;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_detach_thread(PyThread_handle_t handle) {
 | |
|     HANDLE hThread = (HANDLE) handle;
 | |
|     return (CloseHandle(hThread) == 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the thread Id instead of a handle. The Id is said to uniquely identify the
 | |
|  * thread in the system
 | |
|  */
 | |
| PyThread_ident_t
 | |
| PyThread_get_thread_ident_ex(void)
 | |
| {
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
|     return GetCurrentThreadId();
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| PyThread_get_thread_ident(void)
 | |
| {
 | |
|     return (unsigned long) PyThread_get_thread_ident_ex();
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef PY_HAVE_THREAD_NATIVE_ID
 | |
| /*
 | |
|  * Return the native Thread ID (TID) of the calling thread.
 | |
|  * The native ID of a thread is valid and guaranteed to be unique system-wide
 | |
|  * from the time the thread is created until the thread has been terminated.
 | |
|  */
 | |
| unsigned long
 | |
| PyThread_get_thread_native_id(void)
 | |
| {
 | |
|     if (!initialized) {
 | |
|         PyThread_init_thread();
 | |
|     }
 | |
| 
 | |
|     DWORD native_id;
 | |
|     native_id = GetCurrentThreadId();
 | |
|     return (unsigned long) native_id;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void _Py_NO_RETURN
 | |
| PyThread_exit_thread(void)
 | |
| {
 | |
|     if (!initialized)
 | |
|         exit(0);
 | |
|     _endthreadex(0);
 | |
| }
 | |
| 
 | |
| void _Py_NO_RETURN
 | |
| PyThread_hang_thread(void)
 | |
| {
 | |
|     while (1) {
 | |
|         SleepEx(INFINITE, TRUE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock support. It has to be implemented as semaphores.
 | |
|  * I [Dag] tried to implement it with mutex but I could find a way to
 | |
|  * tell whether a thread already own the lock or not.
 | |
|  */
 | |
| PyThread_type_lock
 | |
| PyThread_allocate_lock(void)
 | |
| {
 | |
|     PNRMUTEX mutex;
 | |
| 
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
|     mutex = AllocNonRecursiveMutex() ;
 | |
| 
 | |
|     PyThread_type_lock aLock = (PyThread_type_lock) mutex;
 | |
|     assert(aLock);
 | |
| 
 | |
|     return aLock;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_free_lock(PyThread_type_lock aLock)
 | |
| {
 | |
|     FreeNonRecursiveMutex(aLock) ;
 | |
| }
 | |
| 
 | |
| // WaitForSingleObject() accepts timeout in milliseconds in the range
 | |
| // [0; 0xFFFFFFFE] (DWORD type). INFINITE value (0xFFFFFFFF) means no
 | |
| // timeout. 0xFFFFFFFE milliseconds is around 49.7 days.
 | |
| const DWORD TIMEOUT_MS_MAX = 0xFFFFFFFE;
 | |
| 
 | |
| /*
 | |
|  * Return 1 on success if the lock was acquired
 | |
|  *
 | |
|  * and 0 if the lock was not acquired. This means a 0 is returned
 | |
|  * if the lock has already been acquired by this thread!
 | |
|  */
 | |
| PyLockStatus
 | |
| PyThread_acquire_lock_timed(PyThread_type_lock aLock,
 | |
|                             PY_TIMEOUT_T microseconds, int intr_flag)
 | |
| {
 | |
|     assert(aLock);
 | |
| 
 | |
|     /* Fow now, intr_flag does nothing on Windows, and lock acquires are
 | |
|      * uninterruptible.  */
 | |
|     PyLockStatus success;
 | |
|     PY_TIMEOUT_T milliseconds;
 | |
| 
 | |
|     if (microseconds >= 0) {
 | |
|         milliseconds = microseconds / 1000;
 | |
|         // Round milliseconds away from zero
 | |
|         if (microseconds % 1000 > 0) {
 | |
|             milliseconds++;
 | |
|         }
 | |
|         if (milliseconds > (PY_TIMEOUT_T)TIMEOUT_MS_MAX) {
 | |
|             // bpo-41710: PyThread_acquire_lock_timed() cannot report timeout
 | |
|             // overflow to the caller, so clamp the timeout to
 | |
|             // [0, TIMEOUT_MS_MAX] milliseconds.
 | |
|             //
 | |
|             // _thread.Lock.acquire() and _thread.RLock.acquire() raise an
 | |
|             // OverflowError if microseconds is greater than PY_TIMEOUT_MAX.
 | |
|             milliseconds = TIMEOUT_MS_MAX;
 | |
|         }
 | |
|         assert(milliseconds != INFINITE);
 | |
|     }
 | |
|     else {
 | |
|         milliseconds = INFINITE;
 | |
|     }
 | |
| 
 | |
|     if (EnterNonRecursiveMutex((PNRMUTEX)aLock,
 | |
|                                (DWORD)milliseconds) == WAIT_OBJECT_0) {
 | |
|         success = PY_LOCK_ACQUIRED;
 | |
|     }
 | |
|     else {
 | |
|         success = PY_LOCK_FAILURE;
 | |
|     }
 | |
| 
 | |
|     return success;
 | |
| }
 | |
| int
 | |
| PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
 | |
| {
 | |
|     return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_release_lock(PyThread_type_lock aLock)
 | |
| {
 | |
|     assert(aLock);
 | |
|     (void)LeaveNonRecursiveMutex((PNRMUTEX) aLock);
 | |
| }
 | |
| 
 | |
| /* minimum/maximum thread stack sizes supported */
 | |
| #define THREAD_MIN_STACKSIZE    0x8000          /* 32 KiB */
 | |
| #define THREAD_MAX_STACKSIZE    0x10000000      /* 256 MiB */
 | |
| 
 | |
| /* set the thread stack size.
 | |
|  * Return 0 if size is valid, -1 otherwise.
 | |
|  */
 | |
| static int
 | |
| _pythread_nt_set_stacksize(size_t size)
 | |
| {
 | |
|     /* set to default */
 | |
|     if (size == 0) {
 | |
|         _PyInterpreterState_GET()->threads.stacksize = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* valid range? */
 | |
|     if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
 | |
|         _PyInterpreterState_GET()->threads.stacksize = size;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| #define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
 | |
| 
 | |
| 
 | |
| /* Thread Local Storage (TLS) API
 | |
| 
 | |
|    This API is DEPRECATED since Python 3.7.  See PEP 539 for details.
 | |
| */
 | |
| 
 | |
| int
 | |
| PyThread_create_key(void)
 | |
| {
 | |
|     DWORD result = TlsAlloc();
 | |
|     if (result == TLS_OUT_OF_INDEXES)
 | |
|         return -1;
 | |
|     return (int)result;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_delete_key(int key)
 | |
| {
 | |
|     TlsFree(key);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_set_key_value(int key, void *value)
 | |
| {
 | |
|     BOOL ok = TlsSetValue(key, value);
 | |
|     return ok ? 0 : -1;
 | |
| }
 | |
| 
 | |
| void *
 | |
| PyThread_get_key_value(int key)
 | |
| {
 | |
|     return TlsGetValue(key);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_delete_key_value(int key)
 | |
| {
 | |
|     /* NULL is used as "key missing", and it is also the default
 | |
|      * given by TlsGetValue() if nothing has been set yet.
 | |
|      */
 | |
|     TlsSetValue(key, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reinitialization of TLS is not necessary after fork when using
 | |
|  * the native TLS functions.  And forking isn't supported on Windows either.
 | |
|  */
 | |
| void
 | |
| PyThread_ReInitTLS(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Thread Specific Storage (TSS) API
 | |
| 
 | |
|    Platform-specific components of TSS API implementation.
 | |
| */
 | |
| 
 | |
| int
 | |
| PyThread_tss_create(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     /* If the key has been created, function is silently skipped. */
 | |
|     if (key->_is_initialized) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     DWORD result = TlsAlloc();
 | |
|     if (result == TLS_OUT_OF_INDEXES) {
 | |
|         return -1;
 | |
|     }
 | |
|     /* In Windows, platform-specific key type is DWORD. */
 | |
|     key->_key = result;
 | |
|     key->_is_initialized = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_tss_delete(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     /* If the key has not been created, function is silently skipped. */
 | |
|     if (!key->_is_initialized) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     TlsFree(key->_key);
 | |
|     key->_key = TLS_OUT_OF_INDEXES;
 | |
|     key->_is_initialized = 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_tss_set(Py_tss_t *key, void *value)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     BOOL ok = TlsSetValue(key->_key, value);
 | |
|     return ok ? 0 : -1;
 | |
| }
 | |
| 
 | |
| void *
 | |
| PyThread_tss_get(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     int err = GetLastError();
 | |
|     void *r = TlsGetValue(key->_key);
 | |
|     if (r || !GetLastError()) {
 | |
|         SetLastError(err);
 | |
|     }
 | |
|     return r;
 | |
| }
 |