mirror of
				https://github.com/python/cpython.git
				synced 2025-10-28 20:25:04 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			651 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			651 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Random objects */
 | |
| 
 | |
| /* ------------------------------------------------------------------
 | |
|    The code in this module was based on a download from:
 | |
|       http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
 | |
| 
 | |
|    It was modified in 2002 by Raymond Hettinger as follows:
 | |
| 
 | |
|     * the principal computational lines untouched.
 | |
| 
 | |
|     * renamed genrand_res53() to random_random() and wrapped
 | |
|       in python calling/return code.
 | |
| 
 | |
|     * genrand_uint32() and the helper functions, init_genrand()
 | |
|       and init_by_array(), were declared static, wrapped in
 | |
|       Python calling/return code.  also, their global data
 | |
|       references were replaced with structure references.
 | |
| 
 | |
|     * unused functions from the original were deleted.
 | |
|       new, original C python code was added to implement the
 | |
|       Random() interface.
 | |
| 
 | |
|    The following are the verbatim comments from the original code:
 | |
| 
 | |
|    A C-program for MT19937, with initialization improved 2002/1/26.
 | |
|    Coded by Takuji Nishimura and Makoto Matsumoto.
 | |
| 
 | |
|    Before using, initialize the state by using init_genrand(seed)
 | |
|    or init_by_array(init_key, key_length).
 | |
| 
 | |
|    Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | |
|    All rights reserved.
 | |
| 
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|      1. Redistributions of source code must retain the above copyright
 | |
|     notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|      2. Redistributions in binary form must reproduce the above copyright
 | |
|     notice, this list of conditions and the following disclaimer in the
 | |
|     documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|      3. The names of its contributors may not be used to endorse or promote
 | |
|     products derived from this software without specific prior written
 | |
|     permission.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | |
|    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| 
 | |
|    Any feedback is very welcome.
 | |
|    http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 | |
|    email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
 | |
| */
 | |
| 
 | |
| /* ---------------------------------------------------------------*/
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pycore_moduleobject.h"  // _PyModule_GetState()
 | |
| #ifdef HAVE_PROCESS_H
 | |
| #  include <process.h>            // getpid()
 | |
| #endif
 | |
| 
 | |
| /* Period parameters -- These are all magic.  Don't change. */
 | |
| #define N 624
 | |
| #define M 397
 | |
| #define MATRIX_A 0x9908b0dfU    /* constant vector a */
 | |
| #define UPPER_MASK 0x80000000U  /* most significant w-r bits */
 | |
| #define LOWER_MASK 0x7fffffffU  /* least significant r bits */
 | |
| 
 | |
| typedef struct {
 | |
|     PyObject *Random_Type;
 | |
|     PyObject *Long___abs__;
 | |
| } _randomstate;
 | |
| 
 | |
| static inline _randomstate*
 | |
| get_random_state(PyObject *module)
 | |
| {
 | |
|     void *state = _PyModule_GetState(module);
 | |
|     assert(state != NULL);
 | |
|     return (_randomstate *)state;
 | |
| }
 | |
| 
 | |
| static struct PyModuleDef _randommodule;
 | |
| 
 | |
| #define _randomstate_type(type) \
 | |
|     (get_random_state(_PyType_GetModuleByDef(type, &_randommodule)))
 | |
| 
 | |
| typedef struct {
 | |
|     PyObject_HEAD
 | |
|     int index;
 | |
|     uint32_t state[N];
 | |
| } RandomObject;
 | |
| 
 | |
| 
 | |
| #include "clinic/_randommodule.c.h"
 | |
| 
 | |
| /*[clinic input]
 | |
| module _random
 | |
| class _random.Random "RandomObject *" "_randomstate_type(type)->Random_Type"
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=70a2c99619474983]*/
 | |
| 
 | |
| /* Random methods */
 | |
| 
 | |
| 
 | |
| /* generates a random number on [0,0xffffffff]-interval */
 | |
| static uint32_t
 | |
| genrand_uint32(RandomObject *self)
 | |
| {
 | |
|     uint32_t y;
 | |
|     static const uint32_t mag01[2] = {0x0U, MATRIX_A};
 | |
|     /* mag01[x] = x * MATRIX_A  for x=0,1 */
 | |
|     uint32_t *mt;
 | |
| 
 | |
|     mt = self->state;
 | |
|     if (self->index >= N) { /* generate N words at one time */
 | |
|         int kk;
 | |
| 
 | |
|         for (kk=0;kk<N-M;kk++) {
 | |
|             y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 | |
|             mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1U];
 | |
|         }
 | |
|         for (;kk<N-1;kk++) {
 | |
|             y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 | |
|             mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1U];
 | |
|         }
 | |
|         y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
 | |
|         mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1U];
 | |
| 
 | |
|         self->index = 0;
 | |
|     }
 | |
| 
 | |
|     y = mt[self->index++];
 | |
|     y ^= (y >> 11);
 | |
|     y ^= (y << 7) & 0x9d2c5680U;
 | |
|     y ^= (y << 15) & 0xefc60000U;
 | |
|     y ^= (y >> 18);
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /* random_random is the function named genrand_res53 in the original code;
 | |
|  * generates a random number on [0,1) with 53-bit resolution; note that
 | |
|  * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as
 | |
|  * multiply-by-reciprocal in the (likely vain) hope that the compiler will
 | |
|  * optimize the division away at compile-time.  67108864 is 2**26.  In
 | |
|  * effect, a contains 27 random bits shifted left 26, and b fills in the
 | |
|  * lower 26 bits of the 53-bit numerator.
 | |
|  * The original code credited Isaku Wada for this algorithm, 2002/01/09.
 | |
|  */
 | |
| 
 | |
| /*[clinic input]
 | |
| _random.Random.random
 | |
| 
 | |
|   self: self(type="RandomObject *")
 | |
| 
 | |
| random() -> x in the interval [0, 1).
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| _random_Random_random_impl(RandomObject *self)
 | |
| /*[clinic end generated code: output=117ff99ee53d755c input=afb2a59cbbb00349]*/
 | |
| {
 | |
|     uint32_t a=genrand_uint32(self)>>5, b=genrand_uint32(self)>>6;
 | |
|     return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
 | |
| }
 | |
| 
 | |
| /* initializes mt[N] with a seed */
 | |
| static void
 | |
| init_genrand(RandomObject *self, uint32_t s)
 | |
| {
 | |
|     int mti;
 | |
|     uint32_t *mt;
 | |
| 
 | |
|     mt = self->state;
 | |
|     mt[0]= s;
 | |
|     for (mti=1; mti<N; mti++) {
 | |
|         mt[mti] =
 | |
|         (1812433253U * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
 | |
|         /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | |
|         /* In the previous versions, MSBs of the seed affect   */
 | |
|         /* only MSBs of the array mt[].                                */
 | |
|         /* 2002/01/09 modified by Makoto Matsumoto                     */
 | |
|     }
 | |
|     self->index = mti;
 | |
|     return;
 | |
| }
 | |
| 
 | |
| /* initialize by an array with array-length */
 | |
| /* init_key is the array for initializing keys */
 | |
| /* key_length is its length */
 | |
| static void
 | |
| init_by_array(RandomObject *self, uint32_t init_key[], size_t key_length)
 | |
| {
 | |
|     size_t i, j, k;       /* was signed in the original code. RDH 12/16/2002 */
 | |
|     uint32_t *mt;
 | |
| 
 | |
|     mt = self->state;
 | |
|     init_genrand(self, 19650218U);
 | |
|     i=1; j=0;
 | |
|     k = (N>key_length ? N : key_length);
 | |
|     for (; k; k--) {
 | |
|         mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525U))
 | |
|                  + init_key[j] + (uint32_t)j; /* non linear */
 | |
|         i++; j++;
 | |
|         if (i>=N) { mt[0] = mt[N-1]; i=1; }
 | |
|         if (j>=key_length) j=0;
 | |
|     }
 | |
|     for (k=N-1; k; k--) {
 | |
|         mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941U))
 | |
|                  - (uint32_t)i; /* non linear */
 | |
|         i++;
 | |
|         if (i>=N) { mt[0] = mt[N-1]; i=1; }
 | |
|     }
 | |
| 
 | |
|     mt[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The rest is Python-specific code, neither part of, nor derived from, the
 | |
|  * Twister download.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| random_seed_urandom(RandomObject *self)
 | |
| {
 | |
|     uint32_t key[N];
 | |
| 
 | |
|     if (_PyOS_URandomNonblock(key, sizeof(key)) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     init_by_array(self, key, Py_ARRAY_LENGTH(key));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| random_seed_time_pid(RandomObject *self)
 | |
| {
 | |
|     _PyTime_t now;
 | |
|     uint32_t key[5];
 | |
| 
 | |
|     now = _PyTime_GetSystemClock();
 | |
|     key[0] = (uint32_t)(now & 0xffffffffU);
 | |
|     key[1] = (uint32_t)(now >> 32);
 | |
| 
 | |
|     key[2] = (uint32_t)getpid();
 | |
| 
 | |
|     now = _PyTime_GetMonotonicClock();
 | |
|     key[3] = (uint32_t)(now & 0xffffffffU);
 | |
|     key[4] = (uint32_t)(now >> 32);
 | |
| 
 | |
|     init_by_array(self, key, Py_ARRAY_LENGTH(key));
 | |
| }
 | |
| 
 | |
| static int
 | |
| random_seed(RandomObject *self, PyObject *arg)
 | |
| {
 | |
|     int result = -1;  /* guilty until proved innocent */
 | |
|     PyObject *n = NULL;
 | |
|     uint32_t *key = NULL;
 | |
|     size_t bits, keyused;
 | |
|     int res;
 | |
| 
 | |
|     if (arg == NULL || arg == Py_None) {
 | |
|        if (random_seed_urandom(self) < 0) {
 | |
|             PyErr_Clear();
 | |
| 
 | |
|             /* Reading system entropy failed, fall back on the worst entropy:
 | |
|                use the current time and process identifier. */
 | |
|             random_seed_time_pid(self);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* This algorithm relies on the number being unsigned.
 | |
|      * So: if the arg is a PyLong, use its absolute value.
 | |
|      * Otherwise use its hash value, cast to unsigned.
 | |
|      */
 | |
|     if (PyLong_CheckExact(arg)) {
 | |
|         n = PyNumber_Absolute(arg);
 | |
|     } else if (PyLong_Check(arg)) {
 | |
|         /* Calling int.__abs__() prevents calling arg.__abs__(), which might
 | |
|            return an invalid value. See issue #31478. */
 | |
|         _randomstate *state = _randomstate_type(Py_TYPE(self));
 | |
|         n = PyObject_CallOneArg(state->Long___abs__, arg);
 | |
|     }
 | |
|     else {
 | |
|         Py_hash_t hash = PyObject_Hash(arg);
 | |
|         if (hash == -1)
 | |
|             goto Done;
 | |
|         n = PyLong_FromSize_t((size_t)hash);
 | |
|     }
 | |
|     if (n == NULL)
 | |
|         goto Done;
 | |
| 
 | |
|     /* Now split n into 32-bit chunks, from the right. */
 | |
|     bits = _PyLong_NumBits(n);
 | |
|     if (bits == (size_t)-1 && PyErr_Occurred())
 | |
|         goto Done;
 | |
| 
 | |
|     /* Figure out how many 32-bit chunks this gives us. */
 | |
|     keyused = bits == 0 ? 1 : (bits - 1) / 32 + 1;
 | |
| 
 | |
|     /* Convert seed to byte sequence. */
 | |
|     key = (uint32_t *)PyMem_Malloc((size_t)4 * keyused);
 | |
|     if (key == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         goto Done;
 | |
|     }
 | |
|     res = _PyLong_AsByteArray((PyLongObject *)n,
 | |
|                               (unsigned char *)key, keyused * 4,
 | |
|                               PY_LITTLE_ENDIAN,
 | |
|                               0); /* unsigned */
 | |
|     if (res == -1) {
 | |
|         goto Done;
 | |
|     }
 | |
| 
 | |
| #if PY_BIG_ENDIAN
 | |
|     {
 | |
|         size_t i, j;
 | |
|         /* Reverse an array. */
 | |
|         for (i = 0, j = keyused - 1; i < j; i++, j--) {
 | |
|             uint32_t tmp = key[i];
 | |
|             key[i] = key[j];
 | |
|             key[j] = tmp;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     init_by_array(self, key, keyused);
 | |
| 
 | |
|     result = 0;
 | |
| 
 | |
| Done:
 | |
|     Py_XDECREF(n);
 | |
|     PyMem_Free(key);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| _random.Random.seed
 | |
| 
 | |
|   self: self(type="RandomObject *")
 | |
|   n: object = None
 | |
|   /
 | |
| 
 | |
| seed([n]) -> None.
 | |
| 
 | |
| Defaults to use urandom and falls back to a combination
 | |
| of the current time and the process identifier.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| _random_Random_seed_impl(RandomObject *self, PyObject *n)
 | |
| /*[clinic end generated code: output=0fad1e16ba883681 input=78d6ef0d52532a54]*/
 | |
| {
 | |
|     if (random_seed(self, n) < 0) {
 | |
|         return NULL;
 | |
|     }
 | |
|     Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| _random.Random.getstate
 | |
| 
 | |
|   self: self(type="RandomObject *")
 | |
| 
 | |
| getstate() -> tuple containing the current state.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| _random_Random_getstate_impl(RandomObject *self)
 | |
| /*[clinic end generated code: output=bf6cef0c092c7180 input=b937a487928c0e89]*/
 | |
| {
 | |
|     PyObject *state;
 | |
|     PyObject *element;
 | |
|     int i;
 | |
| 
 | |
|     state = PyTuple_New(N+1);
 | |
|     if (state == NULL)
 | |
|         return NULL;
 | |
|     for (i=0; i<N ; i++) {
 | |
|         element = PyLong_FromUnsignedLong(self->state[i]);
 | |
|         if (element == NULL)
 | |
|             goto Fail;
 | |
|         PyTuple_SET_ITEM(state, i, element);
 | |
|     }
 | |
|     element = PyLong_FromLong((long)(self->index));
 | |
|     if (element == NULL)
 | |
|         goto Fail;
 | |
|     PyTuple_SET_ITEM(state, i, element);
 | |
|     return state;
 | |
| 
 | |
| Fail:
 | |
|     Py_DECREF(state);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| _random.Random.setstate
 | |
| 
 | |
|   self: self(type="RandomObject *")
 | |
|   state: object
 | |
|   /
 | |
| 
 | |
| setstate(state) -> None.  Restores generator state.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| _random_Random_setstate(RandomObject *self, PyObject *state)
 | |
| /*[clinic end generated code: output=fd1c3cd0037b6681 input=b3b4efbb1bc66af8]*/
 | |
| {
 | |
|     int i;
 | |
|     unsigned long element;
 | |
|     long index;
 | |
|     uint32_t new_state[N];
 | |
| 
 | |
|     if (!PyTuple_Check(state)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|             "state vector must be a tuple");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (PyTuple_Size(state) != N+1) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|             "state vector is the wrong size");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for (i=0; i<N ; i++) {
 | |
|         element = PyLong_AsUnsignedLong(PyTuple_GET_ITEM(state, i));
 | |
|         if (element == (unsigned long)-1 && PyErr_Occurred())
 | |
|             return NULL;
 | |
|         new_state[i] = (uint32_t)element;
 | |
|     }
 | |
| 
 | |
|     index = PyLong_AsLong(PyTuple_GET_ITEM(state, i));
 | |
|     if (index == -1 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     if (index < 0 || index > N) {
 | |
|         PyErr_SetString(PyExc_ValueError, "invalid state");
 | |
|         return NULL;
 | |
|     }
 | |
|     self->index = (int)index;
 | |
|     for (i = 0; i < N; i++)
 | |
|         self->state[i] = new_state[i];
 | |
| 
 | |
|     Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| 
 | |
| _random.Random.getrandbits
 | |
| 
 | |
|   self: self(type="RandomObject *")
 | |
|   k: int
 | |
|   /
 | |
| 
 | |
| getrandbits(k) -> x.  Generates an int with k random bits.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| _random_Random_getrandbits_impl(RandomObject *self, int k)
 | |
| /*[clinic end generated code: output=b402f82a2158887f input=8c0e6396dd176fc0]*/
 | |
| {
 | |
|     int i, words;
 | |
|     uint32_t r;
 | |
|     uint32_t *wordarray;
 | |
|     PyObject *result;
 | |
| 
 | |
|     if (k < 0) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "number of bits must be non-negative");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (k == 0)
 | |
|         return PyLong_FromLong(0);
 | |
| 
 | |
|     if (k <= 32)  /* Fast path */
 | |
|         return PyLong_FromUnsignedLong(genrand_uint32(self) >> (32 - k));
 | |
| 
 | |
|     words = (k - 1) / 32 + 1;
 | |
|     wordarray = (uint32_t *)PyMem_Malloc(words * 4);
 | |
|     if (wordarray == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Fill-out bits of long integer, by 32-bit words, from least significant
 | |
|        to most significant. */
 | |
| #if PY_LITTLE_ENDIAN
 | |
|     for (i = 0; i < words; i++, k -= 32)
 | |
| #else
 | |
|     for (i = words - 1; i >= 0; i--, k -= 32)
 | |
| #endif
 | |
|     {
 | |
|         r = genrand_uint32(self);
 | |
|         if (k < 32)
 | |
|             r >>= (32 - k);  /* Drop least significant bits */
 | |
|         wordarray[i] = r;
 | |
|     }
 | |
| 
 | |
|     result = _PyLong_FromByteArray((unsigned char *)wordarray, words * 4,
 | |
|                                    PY_LITTLE_ENDIAN, 0 /* unsigned */);
 | |
|     PyMem_Free(wordarray);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static int
 | |
| random_init(RandomObject *self, PyObject *args, PyObject *kwds)
 | |
| {
 | |
|     PyObject *arg = NULL;
 | |
|     _randomstate *state = _randomstate_type(Py_TYPE(self));
 | |
| 
 | |
|     if (Py_IS_TYPE(self, (PyTypeObject *)state->Random_Type) &&
 | |
|         !_PyArg_NoKeywords("Random()", kwds)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyTuple_GET_SIZE(args) > 1) {
 | |
|         PyErr_SetString(PyExc_TypeError, "Random() requires 0 or 1 argument");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyTuple_GET_SIZE(args) == 1)
 | |
|         arg = PyTuple_GET_ITEM(args, 0);
 | |
| 
 | |
|     return random_seed(self, arg);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyMethodDef random_methods[] = {
 | |
|     _RANDOM_RANDOM_RANDOM_METHODDEF
 | |
|     _RANDOM_RANDOM_SEED_METHODDEF
 | |
|     _RANDOM_RANDOM_GETSTATE_METHODDEF
 | |
|     _RANDOM_RANDOM_SETSTATE_METHODDEF
 | |
|     _RANDOM_RANDOM_GETRANDBITS_METHODDEF
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(random_doc,
 | |
| "Random() -> create a random number generator with its own internal state.");
 | |
| 
 | |
| static PyType_Slot Random_Type_slots[] = {
 | |
|     {Py_tp_doc, (void *)random_doc},
 | |
|     {Py_tp_methods, random_methods},
 | |
|     {Py_tp_new, PyType_GenericNew},
 | |
|     {Py_tp_init, random_init},
 | |
|     {Py_tp_free, PyObject_Free},
 | |
|     {0, 0},
 | |
| };
 | |
| 
 | |
| static PyType_Spec Random_Type_spec = {
 | |
|     "_random.Random",
 | |
|     sizeof(RandomObject),
 | |
|     0,
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
 | |
|     Random_Type_slots
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "Module implements the Mersenne Twister random number generator.");
 | |
| 
 | |
| static int
 | |
| _random_exec(PyObject *module)
 | |
| {
 | |
|     _randomstate *state = get_random_state(module);
 | |
| 
 | |
|     state->Random_Type = PyType_FromModuleAndSpec(
 | |
|         module, &Random_Type_spec, NULL);
 | |
|     if (state->Random_Type == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     if (PyModule_AddType(module, (PyTypeObject *)state->Random_Type) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Look up and save int.__abs__, which is needed in random_seed(). */
 | |
|     PyObject *longval = PyLong_FromLong(0);
 | |
|     if (longval == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     PyObject *longtype = PyObject_Type(longval);
 | |
|     Py_DECREF(longval);
 | |
|     if (longtype == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     state->Long___abs__ = PyObject_GetAttrString(longtype, "__abs__");
 | |
|     Py_DECREF(longtype);
 | |
|     if (state->Long___abs__ == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyModuleDef_Slot _random_slots[] = {
 | |
|     {Py_mod_exec, _random_exec},
 | |
|     {0, NULL}
 | |
| };
 | |
| 
 | |
| static int
 | |
| _random_traverse(PyObject *module, visitproc visit, void *arg)
 | |
| {
 | |
|     Py_VISIT(get_random_state(module)->Random_Type);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _random_clear(PyObject *module)
 | |
| {
 | |
|     Py_CLEAR(get_random_state(module)->Random_Type);
 | |
|     Py_CLEAR(get_random_state(module)->Long___abs__);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _random_free(void *module)
 | |
| {
 | |
|     _random_clear((PyObject *)module);
 | |
| }
 | |
| 
 | |
| static struct PyModuleDef _randommodule = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "_random",
 | |
|     module_doc,
 | |
|     sizeof(_randomstate),
 | |
|     NULL,
 | |
|     _random_slots,
 | |
|     _random_traverse,
 | |
|     _random_clear,
 | |
|     _random_free,
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| PyInit__random(void)
 | |
| {
 | |
|     return PyModuleDef_Init(&_randommodule);
 | |
| }
 | 
