mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1030 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1030 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Integer object implementation */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include <ctype.h>
 | |
| 
 | |
| long
 | |
| PyInt_GetMax(void)
 | |
| {
 | |
| 	return LONG_MAX;	/* To initialize sys.maxint */
 | |
| }
 | |
| 
 | |
| /* Standard Booleans */
 | |
| 
 | |
| PyIntObject _Py_ZeroStruct = {
 | |
| 	PyObject_HEAD_INIT(&PyInt_Type)
 | |
| 	0
 | |
| };
 | |
| 
 | |
| PyIntObject _Py_TrueStruct = {
 | |
| 	PyObject_HEAD_INIT(&PyInt_Type)
 | |
| 	1
 | |
| };
 | |
| 
 | |
| /* Return 1 if exception raised, 0 if caller should retry using longs */
 | |
| static int
 | |
| err_ovf(char *msg)
 | |
| {
 | |
| 	if (PyErr_Warn(PyExc_OverflowWarning, msg) < 0) {
 | |
| 		if (PyErr_ExceptionMatches(PyExc_OverflowWarning))
 | |
| 			PyErr_SetString(PyExc_OverflowError, msg);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /* Integers are quite normal objects, to make object handling uniform.
 | |
|    (Using odd pointers to represent integers would save much space
 | |
|    but require extra checks for this special case throughout the code.)
 | |
|    Since, a typical Python program spends much of its time allocating
 | |
|    and deallocating integers, these operations should be very fast.
 | |
|    Therefore we use a dedicated allocation scheme with a much lower
 | |
|    overhead (in space and time) than straight malloc(): a simple
 | |
|    dedicated free list, filled when necessary with memory from malloc().
 | |
| */
 | |
| 
 | |
| #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
 | |
| #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
 | |
| #define N_INTOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject))
 | |
| 
 | |
| struct _intblock {
 | |
| 	struct _intblock *next;
 | |
| 	PyIntObject objects[N_INTOBJECTS];
 | |
| };
 | |
| 
 | |
| typedef struct _intblock PyIntBlock;
 | |
| 
 | |
| static PyIntBlock *block_list = NULL;
 | |
| static PyIntObject *free_list = NULL;
 | |
| 
 | |
| static PyIntObject *
 | |
| fill_free_list(void)
 | |
| {
 | |
| 	PyIntObject *p, *q;
 | |
| 	/* XXX Int blocks escape the object heap. Use PyObject_MALLOC ??? */
 | |
| 	p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
 | |
| 	if (p == NULL)
 | |
| 		return (PyIntObject *) PyErr_NoMemory();
 | |
| 	((PyIntBlock *)p)->next = block_list;
 | |
| 	block_list = (PyIntBlock *)p;
 | |
| 	p = &((PyIntBlock *)p)->objects[0];
 | |
| 	q = p + N_INTOBJECTS;
 | |
| 	while (--q > p)
 | |
| 		q->ob_type = (struct _typeobject *)(q-1);
 | |
| 	q->ob_type = NULL;
 | |
| 	return p + N_INTOBJECTS - 1;
 | |
| }
 | |
| 
 | |
| #ifndef NSMALLPOSINTS
 | |
| #define NSMALLPOSINTS		100
 | |
| #endif
 | |
| #ifndef NSMALLNEGINTS
 | |
| #define NSMALLNEGINTS		1
 | |
| #endif
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| /* References to small integers are saved in this array so that they
 | |
|    can be shared.
 | |
|    The integers that are saved are those in the range
 | |
|    -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
 | |
| */
 | |
| static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
 | |
| #endif
 | |
| #ifdef COUNT_ALLOCS
 | |
| int quick_int_allocs, quick_neg_int_allocs;
 | |
| #endif
 | |
| 
 | |
| PyObject *
 | |
| PyInt_FromLong(long ival)
 | |
| {
 | |
| 	register PyIntObject *v;
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| 	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS &&
 | |
| 	    (v = small_ints[ival + NSMALLNEGINTS]) != NULL) {
 | |
| 		Py_INCREF(v);
 | |
| #ifdef COUNT_ALLOCS
 | |
| 		if (ival >= 0)
 | |
| 			quick_int_allocs++;
 | |
| 		else
 | |
| 			quick_neg_int_allocs++;
 | |
| #endif
 | |
| 		return (PyObject *) v;
 | |
| 	}
 | |
| #endif
 | |
| 	if (free_list == NULL) {
 | |
| 		if ((free_list = fill_free_list()) == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	/* PyObject_New is inlined */
 | |
| 	v = free_list;
 | |
| 	free_list = (PyIntObject *)v->ob_type;
 | |
| 	PyObject_INIT(v, &PyInt_Type);
 | |
| 	v->ob_ival = ival;
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| 	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
 | |
| 		/* save this one for a following allocation */
 | |
| 		Py_INCREF(v);
 | |
| 		small_ints[ival + NSMALLNEGINTS] = v;
 | |
| 	}
 | |
| #endif
 | |
| 	return (PyObject *) v;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_dealloc(PyIntObject *v)
 | |
| {
 | |
| 	if (v->ob_type == &PyInt_Type) {
 | |
| 		v->ob_type = (struct _typeobject *)free_list;
 | |
| 		free_list = v;
 | |
| 	}
 | |
| 	else
 | |
| 		v->ob_type->tp_free((PyObject *)v);
 | |
| }
 | |
| 
 | |
| long
 | |
| PyInt_AsLong(register PyObject *op)
 | |
| {
 | |
| 	PyNumberMethods *nb;
 | |
| 	PyIntObject *io;
 | |
| 	long val;
 | |
| 	
 | |
| 	if (op && PyInt_Check(op))
 | |
| 		return PyInt_AS_LONG((PyIntObject*) op);
 | |
| 	
 | |
| 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
 | |
| 	    nb->nb_int == NULL) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	io = (PyIntObject*) (*nb->nb_int) (op);
 | |
| 	if (io == NULL)
 | |
| 		return -1;
 | |
| 	if (!PyInt_Check(io)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"nb_int should return int object");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	val = PyInt_AS_LONG(io);
 | |
| 	Py_DECREF(io);
 | |
| 	
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyInt_FromString(char *s, char **pend, int base)
 | |
| {
 | |
| 	char *end;
 | |
| 	long x;
 | |
| 	char buffer[256]; /* For errors */
 | |
| 
 | |
| 	if ((base != 0 && base < 2) || base > 36) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "int() base must be >= 2 and <= 36");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	while (*s && isspace(Py_CHARMASK(*s)))
 | |
| 		s++;
 | |
| 	errno = 0;
 | |
| 	if (base == 0 && s[0] == '0')
 | |
| 		x = (long) PyOS_strtoul(s, &end, base);
 | |
| 	else
 | |
| 		x = PyOS_strtol(s, &end, base);
 | |
| 	if (end == s || !isalnum(Py_CHARMASK(end[-1])))
 | |
| 		goto bad;
 | |
| 	while (*end && isspace(Py_CHARMASK(*end)))
 | |
| 		end++;
 | |
| 	if (*end != '\0') {
 | |
|   bad:
 | |
| 		sprintf(buffer, "invalid literal for int(): %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (errno != 0) {
 | |
| 		sprintf(buffer, "int() literal too large: %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (pend)
 | |
| 		*pend = end;
 | |
| 	return PyInt_FromLong(x);
 | |
| }
 | |
| 
 | |
| #ifdef Py_USING_UNICODE
 | |
| PyObject *
 | |
| PyInt_FromUnicode(Py_UNICODE *s, int length, int base)
 | |
| {
 | |
| 	char buffer[256];
 | |
| 	
 | |
| 	if (length >= sizeof(buffer)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"int() literal too large to convert");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (PyUnicode_EncodeDecimal(s, length, buffer, NULL))
 | |
| 		return NULL;
 | |
| 	return PyInt_FromString(buffer, NULL, base);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| /* Integers are seen as the "smallest" of all numeric types and thus
 | |
|    don't have any knowledge about conversion of other types to
 | |
|    integers. */
 | |
| 
 | |
| #define CONVERT_TO_LONG(obj, lng)		\
 | |
| 	if (PyInt_Check(obj)) {			\
 | |
| 		lng = PyInt_AS_LONG(obj);	\
 | |
| 	}					\
 | |
| 	else {					\
 | |
| 		Py_INCREF(Py_NotImplemented);	\
 | |
| 		return Py_NotImplemented;	\
 | |
| 	}
 | |
| 
 | |
| /* ARGSUSED */
 | |
| static int
 | |
| int_print(PyIntObject *v, FILE *fp, int flags)
 | |
|      /* flags -- not used but required by interface */
 | |
| {
 | |
| 	fprintf(fp, "%ld", v->ob_ival);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_repr(PyIntObject *v)
 | |
| {
 | |
| 	char buf[20];
 | |
| 	sprintf(buf, "%ld", v->ob_ival);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_compare(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long i = v->ob_ival;
 | |
| 	register long j = w->ob_ival;
 | |
| 	return (i < j) ? -1 : (i > j) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static long
 | |
| int_hash(PyIntObject *v)
 | |
| {
 | |
| 	/* XXX If this is changed, you also need to change the way
 | |
| 	   Python's long, float and complex types are hashed. */
 | |
| 	long x = v -> ob_ival;
 | |
| 	if (x == -1)
 | |
| 		x = -2;
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_add(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b, x;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	x = a + b;
 | |
| 	if ((x^a) >= 0 || (x^b) >= 0)
 | |
| 		return PyInt_FromLong(x);
 | |
| 	if (err_ovf("integer addition"))
 | |
| 		return NULL;
 | |
| 	return PyLong_Type.tp_as_number->nb_add((PyObject *)v, (PyObject *)w);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_sub(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b, x;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	x = a - b;
 | |
| 	if ((x^a) >= 0 || (x^~b) >= 0)
 | |
| 		return PyInt_FromLong(x);
 | |
| 	if (err_ovf("integer subtraction"))
 | |
| 		return NULL;
 | |
| 	return PyLong_Type.tp_as_number->nb_subtract((PyObject *)v,
 | |
| 						     (PyObject *)w);
 | |
| }
 | |
| 
 | |
| /*
 | |
| Integer overflow checking used to be done using a double, but on 64
 | |
| bit machines (where both long and double are 64 bit) this fails
 | |
| because the double doesn't have enough precision.  John Tromp suggests
 | |
| the following algorithm:
 | |
| 
 | |
| Suppose again we normalize a and b to be nonnegative.
 | |
| Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.).
 | |
| Now we test ah and bh against zero and get essentially 3 possible outcomes.
 | |
| 
 | |
| 1) both ah and bh > 0 : then report overflow
 | |
| 
 | |
| 2) both ah and bh = 0 : then compute a*b and report overflow if it comes out
 | |
|                         negative
 | |
| 
 | |
| 3) ah > 0 and bh = 0  : compute ah*bl and report overflow if it's >= 2^31
 | |
|                         compute al*bl and report overflow if it's negative
 | |
|                         add (ah*bl)<<32 to al*bl and report overflow if
 | |
|                         it's negative
 | |
| 
 | |
| In case of no overflow the result is then negated if necessary.
 | |
| 
 | |
| The majority of cases will be 2), in which case this method is the same as
 | |
| what I suggested before. If multiplication is expensive enough, then the
 | |
| other method is faster on case 3), but also more work to program, so I
 | |
| guess the above is the preferred solution.
 | |
| 
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| int_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	long a, b, ah, bh, x, y;
 | |
| 	int s = 1;
 | |
| 
 | |
| 	if (v->ob_type->tp_as_sequence &&
 | |
| 			v->ob_type->tp_as_sequence->sq_repeat) {
 | |
| 		/* sequence * int */
 | |
| 		a = PyInt_AsLong(w);
 | |
| 		return (*v->ob_type->tp_as_sequence->sq_repeat)(v, a);
 | |
| 	}
 | |
| 	else if (w->ob_type->tp_as_sequence &&
 | |
| 			w->ob_type->tp_as_sequence->sq_repeat) {
 | |
| 		/* int * sequence */
 | |
| 		a = PyInt_AsLong(v);
 | |
| 		return (*w->ob_type->tp_as_sequence->sq_repeat)(w, a);
 | |
| 	}
 | |
| 
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	ah = a >> (LONG_BIT/2);
 | |
| 	bh = b >> (LONG_BIT/2);
 | |
| 
 | |
| 	/* Quick test for common case: two small positive ints */
 | |
| 
 | |
| 	if (ah == 0 && bh == 0) {
 | |
| 		x = a*b;
 | |
| 		if (x < 0)
 | |
| 			goto bad;
 | |
| 		return PyInt_FromLong(x);
 | |
| 	}
 | |
| 
 | |
| 	/* Arrange that a >= b >= 0 */
 | |
| 
 | |
| 	if (a < 0) {
 | |
| 		a = -a;
 | |
| 		if (a < 0) {
 | |
| 			/* Largest negative */
 | |
| 			if (b == 0 || b == 1) {
 | |
| 				x = a*b;
 | |
| 				goto ok;
 | |
| 			}
 | |
| 			else
 | |
| 				goto bad;
 | |
| 		}
 | |
| 		s = -s;
 | |
| 		ah = a >> (LONG_BIT/2);
 | |
| 	}
 | |
| 	if (b < 0) {
 | |
| 		b = -b;
 | |
| 		if (b < 0) {
 | |
| 			/* Largest negative */
 | |
| 			if (a == 0 || (a == 1 && s == 1)) {
 | |
| 				x = a*b;
 | |
| 				goto ok;
 | |
| 			}
 | |
| 			else
 | |
| 				goto bad;
 | |
| 		}
 | |
| 		s = -s;
 | |
| 		bh = b >> (LONG_BIT/2);
 | |
| 	}
 | |
| 
 | |
| 	/* 1) both ah and bh > 0 : then report overflow */
 | |
| 
 | |
| 	if (ah != 0 && bh != 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	/* 2) both ah and bh = 0 : then compute a*b and report
 | |
| 				   overflow if it comes out negative */
 | |
| 
 | |
| 	if (ah == 0 && bh == 0) {
 | |
| 		x = a*b;
 | |
| 		if (x < 0)
 | |
| 			goto bad;
 | |
| 		return PyInt_FromLong(x*s);
 | |
| 	}
 | |
| 
 | |
| 	if (a < b) {
 | |
| 		/* Swap */
 | |
| 		x = a;
 | |
| 		a = b;
 | |
| 		b = x;
 | |
| 		ah = bh;
 | |
| 		/* bh not used beyond this point */
 | |
| 	}
 | |
| 
 | |
| 	/* 3) ah > 0 and bh = 0  : compute ah*bl and report overflow if
 | |
| 				   it's >= 2^31
 | |
|                         compute al*bl and report overflow if it's negative
 | |
|                         add (ah*bl)<<32 to al*bl and report overflow if
 | |
|                         it's negative
 | |
| 			(NB b == bl in this case, and we make a = al) */
 | |
| 
 | |
| 	y = ah*b;
 | |
| 	if (y >= (1L << (LONG_BIT/2 - 1)))
 | |
| 		goto bad;
 | |
| 	a &= (1L << (LONG_BIT/2)) - 1;
 | |
| 	x = a*b;
 | |
| 	if (x < 0)
 | |
| 		goto bad;
 | |
| 	x += y << (LONG_BIT/2);
 | |
| 	if (x < 0)
 | |
| 		goto bad;
 | |
|  ok:
 | |
| 	return PyInt_FromLong(x * s);
 | |
| 
 | |
|  bad:
 | |
| 	if (err_ovf("integer multiplication"))
 | |
| 		return NULL;
 | |
| 	return PyLong_Type.tp_as_number->nb_multiply(v, w);
 | |
| }
 | |
| 
 | |
| /* Return type of i_divmod */
 | |
| enum divmod_result {
 | |
| 	DIVMOD_OK,		/* Correct result */
 | |
| 	DIVMOD_OVERFLOW,	/* Overflow, try again using longs */
 | |
| 	DIVMOD_ERROR		/* Exception raised */
 | |
| };
 | |
| 
 | |
| static enum divmod_result
 | |
| i_divmod(register long x, register long y,
 | |
|          long *p_xdivy, long *p_xmody)
 | |
| {
 | |
| 	long xdivy, xmody;
 | |
| 	
 | |
| 	if (y == 0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 				"integer division or modulo by zero");
 | |
| 		return DIVMOD_ERROR;
 | |
| 	}
 | |
| 	/* (-sys.maxint-1)/-1 is the only overflow case. */
 | |
| 	if (y == -1 && x < 0 && x == -x) {
 | |
| 		if (err_ovf("integer division"))
 | |
| 			return DIVMOD_ERROR;
 | |
| 		return DIVMOD_OVERFLOW;
 | |
| 	}
 | |
| 	xdivy = x / y;
 | |
| 	xmody = x - xdivy * y;
 | |
| 	/* If the signs of x and y differ, and the remainder is non-0,
 | |
| 	 * C89 doesn't define whether xdivy is now the floor or the
 | |
| 	 * ceiling of the infinitely precise quotient.  We want the floor,
 | |
| 	 * and we have it iff the remainder's sign matches y's.
 | |
| 	 */
 | |
| 	if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
 | |
| 		xmody += y;
 | |
| 		--xdivy;
 | |
| 		assert(xmody && ((y ^ xmody) >= 0));
 | |
| 	}
 | |
| 	*p_xdivy = xdivy;
 | |
| 	*p_xmody = xmody;
 | |
| 	return DIVMOD_OK;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_div(PyIntObject *x, PyIntObject *y)
 | |
| {
 | |
| 	long xi, yi;
 | |
| 	long d, m;
 | |
| 	CONVERT_TO_LONG(x, xi);
 | |
| 	CONVERT_TO_LONG(y, yi);
 | |
| 	switch (i_divmod(xi, yi, &d, &m)) {
 | |
| 	case DIVMOD_OK:
 | |
| 		return PyInt_FromLong(d);
 | |
| 	case DIVMOD_OVERFLOW:
 | |
| 		return PyLong_Type.tp_as_number->nb_divide((PyObject *)x,
 | |
| 							   (PyObject *)y);
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_mod(PyIntObject *x, PyIntObject *y)
 | |
| {
 | |
| 	long xi, yi;
 | |
| 	long d, m;
 | |
| 	CONVERT_TO_LONG(x, xi);
 | |
| 	CONVERT_TO_LONG(y, yi);
 | |
| 	switch (i_divmod(xi, yi, &d, &m)) {
 | |
| 	case DIVMOD_OK:
 | |
| 		return PyInt_FromLong(m);
 | |
| 	case DIVMOD_OVERFLOW:
 | |
| 		return PyLong_Type.tp_as_number->nb_remainder((PyObject *)x,
 | |
| 							      (PyObject *)y);
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_divmod(PyIntObject *x, PyIntObject *y)
 | |
| {
 | |
| 	long xi, yi;
 | |
| 	long d, m;
 | |
| 	CONVERT_TO_LONG(x, xi);
 | |
| 	CONVERT_TO_LONG(y, yi);
 | |
| 	switch (i_divmod(xi, yi, &d, &m)) {
 | |
| 	case DIVMOD_OK:
 | |
| 		return Py_BuildValue("(ll)", d, m);
 | |
| 	case DIVMOD_OVERFLOW:
 | |
| 		return PyLong_Type.tp_as_number->nb_divmod((PyObject *)x,
 | |
| 							   (PyObject *)y);
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z)
 | |
| {
 | |
| 	register long iv, iw, iz=0, ix, temp, prev;
 | |
| 	CONVERT_TO_LONG(v, iv);
 | |
| 	CONVERT_TO_LONG(w, iw);
 | |
| 	if (iw < 0) {
 | |
| 		/* Return a float.  This works because we know that
 | |
| 		   this calls float_pow() which converts its
 | |
| 		   arguments to double. */
 | |
| 		return PyFloat_Type.tp_as_number->nb_power(
 | |
| 			(PyObject *)v, (PyObject *)w, (PyObject *)z);
 | |
| 	}
 | |
|  	if ((PyObject *)z != Py_None) {
 | |
| 		CONVERT_TO_LONG(z, iz);
 | |
| 		if (iz == 0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"pow() arg 3 cannot be 0");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * XXX: The original exponentiation code stopped looping
 | |
| 	 * when temp hit zero; this code will continue onwards
 | |
| 	 * unnecessarily, but at least it won't cause any errors.
 | |
| 	 * Hopefully the speed improvement from the fast exponentiation
 | |
| 	 * will compensate for the slight inefficiency.
 | |
| 	 * XXX: Better handling of overflows is desperately needed.
 | |
| 	 */
 | |
|  	temp = iv;
 | |
| 	ix = 1;
 | |
| 	while (iw > 0) {
 | |
| 	 	prev = ix;	/* Save value for overflow check */
 | |
| 	 	if (iw & 1) {	
 | |
| 		 	ix = ix*temp;
 | |
| 			if (temp == 0)
 | |
| 				break; /* Avoid ix / 0 */
 | |
| 			if (ix / temp != prev) {
 | |
| 				if (err_ovf("integer exponentiation"))
 | |
| 					return NULL;
 | |
| 				return PyLong_Type.tp_as_number->nb_power(
 | |
| 					(PyObject *)v,
 | |
| 					(PyObject *)w,
 | |
| 					(PyObject *)z);
 | |
| 			}
 | |
| 		}
 | |
| 	 	iw >>= 1;	/* Shift exponent down by 1 bit */
 | |
| 	        if (iw==0) break;
 | |
| 	 	prev = temp;
 | |
| 	 	temp *= temp;	/* Square the value of temp */
 | |
| 	 	if (prev!=0 && temp/prev!=prev) {
 | |
| 			if (err_ovf("integer exponentiation"))
 | |
| 				return NULL;
 | |
| 			return PyLong_Type.tp_as_number->nb_power(
 | |
| 				(PyObject *)v, (PyObject *)w, (PyObject *)z);
 | |
| 		}
 | |
| 	 	if (iz) {
 | |
| 			/* If we did a multiplication, perform a modulo */
 | |
| 		 	ix = ix % iz;
 | |
| 		 	temp = temp % iz;
 | |
| 		}
 | |
| 	}
 | |
| 	if (iz) {
 | |
| 	 	long div, mod;
 | |
| 		switch (i_divmod(ix, iz, &div, &mod)) {
 | |
| 		case DIVMOD_OK:
 | |
| 			ix = mod;
 | |
| 			break;
 | |
| 		case DIVMOD_OVERFLOW:
 | |
| 			return PyLong_Type.tp_as_number->nb_power(
 | |
| 				(PyObject *)v, (PyObject *)w, (PyObject *)z);
 | |
| 		default:
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return PyInt_FromLong(ix);
 | |
| }				
 | |
| 
 | |
| static PyObject *
 | |
| int_neg(PyIntObject *v)
 | |
| {
 | |
| 	register long a, x;
 | |
| 	a = v->ob_ival;
 | |
| 	x = -a;
 | |
| 	if (a < 0 && x < 0) {
 | |
| 		if (err_ovf("integer negation"))
 | |
| 			return NULL;
 | |
| 		return PyNumber_Negative(PyLong_FromLong(a));
 | |
| 	}
 | |
| 	return PyInt_FromLong(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_pos(PyIntObject *v)
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_abs(PyIntObject *v)
 | |
| {
 | |
| 	if (v->ob_ival >= 0)
 | |
| 		return int_pos(v);
 | |
| 	else
 | |
| 		return int_neg(v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_nonzero(PyIntObject *v)
 | |
| {
 | |
| 	return v->ob_ival != 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_invert(PyIntObject *v)
 | |
| {
 | |
| 	return PyInt_FromLong(~v->ob_ival);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_lshift(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	if (b < 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (a == 0 || b == 0) {
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *) v;
 | |
| 	}
 | |
| 	if (b >= LONG_BIT) {
 | |
| 		return PyInt_FromLong(0L);
 | |
| 	}
 | |
| 	a = (long)((unsigned long)a << b);
 | |
| 	return PyInt_FromLong(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_rshift(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	if (b < 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (a == 0 || b == 0) {
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *) v;
 | |
| 	}
 | |
| 	if (b >= LONG_BIT) {
 | |
| 		if (a < 0)
 | |
| 			a = -1;
 | |
| 		else
 | |
| 			a = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
 | |
| 	}
 | |
| 	return PyInt_FromLong(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_and(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	return PyInt_FromLong(a & b);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_xor(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	return PyInt_FromLong(a ^ b);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_or(PyIntObject *v, PyIntObject *w)
 | |
| {
 | |
| 	register long a, b;
 | |
| 	CONVERT_TO_LONG(v, a);
 | |
| 	CONVERT_TO_LONG(w, b);
 | |
| 	return PyInt_FromLong(a | b);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_true_divide(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	return PyFloat_Type.tp_as_number->nb_divide(v, w);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_int(PyIntObject *v)
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_long(PyIntObject *v)
 | |
| {
 | |
| 	return PyLong_FromLong((v -> ob_ival));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_float(PyIntObject *v)
 | |
| {
 | |
| 	return PyFloat_FromDouble((double)(v -> ob_ival));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_oct(PyIntObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	long x = v -> ob_ival;
 | |
| 	if (x == 0)
 | |
| 		strcpy(buf, "0");
 | |
| 	else
 | |
| 		sprintf(buf, "0%lo", x);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| int_hex(PyIntObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	long x = v -> ob_ival;
 | |
| 	sprintf(buf, "0x%lx", x);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| staticforward PyObject *
 | |
| int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| int_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x = NULL;
 | |
| 	int base = -909;
 | |
| 	static char *kwlist[] = {"x", "base", 0};
 | |
| 
 | |
| 	if (type != &PyInt_Type)
 | |
| 		return int_subtype_new(type, args, kwds); /* Wimp out */
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
 | |
| 					 &x, &base))
 | |
| 		return NULL;
 | |
| 	if (x == NULL)
 | |
| 		return PyInt_FromLong(0L);
 | |
| 	if (base == -909)
 | |
| 		return PyNumber_Int(x);
 | |
| 	if (PyString_Check(x))
 | |
| 		return PyInt_FromString(PyString_AS_STRING(x), NULL, base);
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	if (PyUnicode_Check(x))
 | |
| 		return PyInt_FromUnicode(PyUnicode_AS_UNICODE(x),
 | |
| 					 PyUnicode_GET_SIZE(x),
 | |
| 					 base);
 | |
| #endif
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 			"int() can't convert non-string with explicit base");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of int:
 | |
|    first create a regular int from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize its ob_ival
 | |
|    from the regular int.  The regular int is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *tmp, *new;
 | |
| 
 | |
| 	assert(PyType_IsSubtype(type, &PyInt_Type));
 | |
| 	tmp = int_new(&PyInt_Type, args, kwds);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyInt_Check(tmp));
 | |
| 	new = type->tp_alloc(type, 0);
 | |
| 	if (new == NULL)
 | |
| 		return NULL;
 | |
| 	((PyIntObject *)new)->ob_ival = ((PyIntObject *)tmp)->ob_ival;
 | |
| 	Py_DECREF(tmp);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| static char int_doc[] =
 | |
| "int(x[, base]) -> integer\n\
 | |
| \n\
 | |
| Convert a string or number to an integer, if possible.  A floating point\n\
 | |
| argument will be truncated towards zero (this does not include a string\n\
 | |
| representation of a floating point number!)  When converting a string, use\n\
 | |
| the optional base.  It is an error to supply a base when converting a\n\
 | |
| non-string.";
 | |
| 
 | |
| static PyNumberMethods int_as_number = {
 | |
| 	(binaryfunc)int_add,	/*nb_add*/
 | |
| 	(binaryfunc)int_sub,	/*nb_subtract*/
 | |
| 	(binaryfunc)int_mul,	/*nb_multiply*/
 | |
| 	(binaryfunc)int_div,	/*nb_divide*/
 | |
| 	(binaryfunc)int_mod,	/*nb_remainder*/
 | |
| 	(binaryfunc)int_divmod,	/*nb_divmod*/
 | |
| 	(ternaryfunc)int_pow,	/*nb_power*/
 | |
| 	(unaryfunc)int_neg,	/*nb_negative*/
 | |
| 	(unaryfunc)int_pos,	/*nb_positive*/
 | |
| 	(unaryfunc)int_abs,	/*nb_absolute*/
 | |
| 	(inquiry)int_nonzero,	/*nb_nonzero*/
 | |
| 	(unaryfunc)int_invert,	/*nb_invert*/
 | |
| 	(binaryfunc)int_lshift,	/*nb_lshift*/
 | |
| 	(binaryfunc)int_rshift,	/*nb_rshift*/
 | |
| 	(binaryfunc)int_and,	/*nb_and*/
 | |
| 	(binaryfunc)int_xor,	/*nb_xor*/
 | |
| 	(binaryfunc)int_or,	/*nb_or*/
 | |
| 	0,			/*nb_coerce*/
 | |
| 	(unaryfunc)int_int,	/*nb_int*/
 | |
| 	(unaryfunc)int_long,	/*nb_long*/
 | |
| 	(unaryfunc)int_float,	/*nb_float*/
 | |
| 	(unaryfunc)int_oct,	/*nb_oct*/
 | |
| 	(unaryfunc)int_hex, 	/*nb_hex*/
 | |
| 	0,			/*nb_inplace_add*/
 | |
| 	0,			/*nb_inplace_subtract*/
 | |
| 	0,			/*nb_inplace_multiply*/
 | |
| 	0,			/*nb_inplace_divide*/
 | |
| 	0,			/*nb_inplace_remainder*/
 | |
| 	0,			/*nb_inplace_power*/
 | |
| 	0,			/*nb_inplace_lshift*/
 | |
| 	0,			/*nb_inplace_rshift*/
 | |
| 	0,			/*nb_inplace_and*/
 | |
| 	0,			/*nb_inplace_xor*/
 | |
| 	0,			/*nb_inplace_or*/
 | |
| 	(binaryfunc)int_div,	/* nb_floor_divide */
 | |
| 	int_true_divide,	/* nb_true_divide */
 | |
| 	0,			/* nb_inplace_floor_divide */
 | |
| 	0,			/* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyInt_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"int",
 | |
| 	sizeof(PyIntObject),
 | |
| 	0,
 | |
| 	(destructor)int_dealloc,		/* tp_dealloc */
 | |
| 	(printfunc)int_print,			/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	(cmpfunc)int_compare,			/* tp_compare */
 | |
| 	(reprfunc)int_repr,			/* tp_repr */
 | |
| 	&int_as_number,				/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)int_hash,			/* tp_hash */
 | |
|         0,					/* tp_call */
 | |
|         0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | |
| 		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | |
| 	int_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	0,					/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	int_new,				/* tp_new */
 | |
| };
 | |
| 
 | |
| void
 | |
| PyInt_Fini(void)
 | |
| {
 | |
| 	PyIntObject *p;
 | |
| 	PyIntBlock *list, *next;
 | |
| 	int i;
 | |
| 	int bc, bf;	/* block count, number of freed blocks */
 | |
| 	int irem, isum;	/* remaining unfreed ints per block, total */
 | |
| 
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
|         PyIntObject **q;
 | |
| 
 | |
|         i = NSMALLNEGINTS + NSMALLPOSINTS;
 | |
|         q = small_ints;
 | |
|         while (--i >= 0) {
 | |
|                 Py_XDECREF(*q);
 | |
|                 *q++ = NULL;
 | |
|         }
 | |
| #endif
 | |
| 	bc = 0;
 | |
| 	bf = 0;
 | |
| 	isum = 0;
 | |
| 	list = block_list;
 | |
| 	block_list = NULL;
 | |
| 	free_list = NULL;
 | |
| 	while (list != NULL) {
 | |
| 		bc++;
 | |
| 		irem = 0;
 | |
| 		for (i = 0, p = &list->objects[0];
 | |
| 		     i < N_INTOBJECTS;
 | |
| 		     i++, p++) {
 | |
| 			if (p->ob_type == &PyInt_Type && p->ob_refcnt != 0)
 | |
| 				irem++;
 | |
| 		}
 | |
| 		next = list->next;
 | |
| 		if (irem) {
 | |
| 			list->next = block_list;
 | |
| 			block_list = list;
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_INTOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (p->ob_type != &PyInt_Type ||
 | |
| 				    p->ob_refcnt == 0) {
 | |
| 					p->ob_type = (struct _typeobject *)
 | |
| 						free_list;
 | |
| 					free_list = p;
 | |
| 				}
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| 				else if (-NSMALLNEGINTS <= p->ob_ival &&
 | |
| 					 p->ob_ival < NSMALLPOSINTS &&
 | |
| 					 small_ints[p->ob_ival +
 | |
| 						    NSMALLNEGINTS] == NULL) {
 | |
| 					Py_INCREF(p);
 | |
| 					small_ints[p->ob_ival +
 | |
| 						   NSMALLNEGINTS] = p;
 | |
| 				}
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
 | |
| 			bf++;
 | |
| 		}
 | |
| 		isum += irem;
 | |
| 		list = next;
 | |
| 	}
 | |
| 	if (!Py_VerboseFlag)
 | |
| 		return;
 | |
| 	fprintf(stderr, "# cleanup ints");
 | |
| 	if (!isum) {
 | |
| 		fprintf(stderr, "\n");
 | |
| 	}
 | |
| 	else {
 | |
| 		fprintf(stderr,
 | |
| 			": %d unfreed int%s in %d out of %d block%s\n",
 | |
| 			isum, isum == 1 ? "" : "s",
 | |
| 			bc - bf, bc, bc == 1 ? "" : "s");
 | |
| 	}
 | |
| 	if (Py_VerboseFlag > 1) {
 | |
| 		list = block_list;
 | |
| 		while (list != NULL) {
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_INTOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (p->ob_type == &PyInt_Type && p->ob_refcnt != 0)
 | |
| 					fprintf(stderr,
 | |
| 				"#   <int at %p, refcnt=%d, val=%ld>\n",
 | |
| 						p, p->ob_refcnt, p->ob_ival);
 | |
| 			}
 | |
| 			list = list->next;
 | |
| 		}
 | |
| 	}
 | |
| }
 | 
