mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1120 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1120 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| Basic statistics module.
 | ||
| 
 | ||
| This module provides functions for calculating statistics of data, including
 | ||
| averages, variance, and standard deviation.
 | ||
| 
 | ||
| Calculating averages
 | ||
| --------------------
 | ||
| 
 | ||
| ==================  ==================================================
 | ||
| Function            Description
 | ||
| ==================  ==================================================
 | ||
| mean                Arithmetic mean (average) of data.
 | ||
| fmean               Fast, floating point arithmetic mean.
 | ||
| geometric_mean      Geometric mean of data.
 | ||
| harmonic_mean       Harmonic mean of data.
 | ||
| median              Median (middle value) of data.
 | ||
| median_low          Low median of data.
 | ||
| median_high         High median of data.
 | ||
| median_grouped      Median, or 50th percentile, of grouped data.
 | ||
| mode                Mode (most common value) of data.
 | ||
| multimode           List of modes (most common values of data).
 | ||
| quantiles           Divide data into intervals with equal probability.
 | ||
| ==================  ==================================================
 | ||
| 
 | ||
| Calculate the arithmetic mean ("the average") of data:
 | ||
| 
 | ||
| >>> mean([-1.0, 2.5, 3.25, 5.75])
 | ||
| 2.625
 | ||
| 
 | ||
| 
 | ||
| Calculate the standard median of discrete data:
 | ||
| 
 | ||
| >>> median([2, 3, 4, 5])
 | ||
| 3.5
 | ||
| 
 | ||
| 
 | ||
| Calculate the median, or 50th percentile, of data grouped into class intervals
 | ||
| centred on the data values provided. E.g. if your data points are rounded to
 | ||
| the nearest whole number:
 | ||
| 
 | ||
| >>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
 | ||
| 2.8333333333...
 | ||
| 
 | ||
| This should be interpreted in this way: you have two data points in the class
 | ||
| interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
 | ||
| the class interval 3.5-4.5. The median of these data points is 2.8333...
 | ||
| 
 | ||
| 
 | ||
| Calculating variability or spread
 | ||
| ---------------------------------
 | ||
| 
 | ||
| ==================  =============================================
 | ||
| Function            Description
 | ||
| ==================  =============================================
 | ||
| pvariance           Population variance of data.
 | ||
| variance            Sample variance of data.
 | ||
| pstdev              Population standard deviation of data.
 | ||
| stdev               Sample standard deviation of data.
 | ||
| ==================  =============================================
 | ||
| 
 | ||
| Calculate the standard deviation of sample data:
 | ||
| 
 | ||
| >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
 | ||
| 4.38961843444...
 | ||
| 
 | ||
| If you have previously calculated the mean, you can pass it as the optional
 | ||
| second argument to the four "spread" functions to avoid recalculating it:
 | ||
| 
 | ||
| >>> data = [1, 2, 2, 4, 4, 4, 5, 6]
 | ||
| >>> mu = mean(data)
 | ||
| >>> pvariance(data, mu)
 | ||
| 2.5
 | ||
| 
 | ||
| 
 | ||
| Exceptions
 | ||
| ----------
 | ||
| 
 | ||
| A single exception is defined: StatisticsError is a subclass of ValueError.
 | ||
| 
 | ||
| """
 | ||
| 
 | ||
| __all__ = [
 | ||
|     'NormalDist',
 | ||
|     'StatisticsError',
 | ||
|     'fmean',
 | ||
|     'geometric_mean',
 | ||
|     'harmonic_mean',
 | ||
|     'mean',
 | ||
|     'median',
 | ||
|     'median_grouped',
 | ||
|     'median_high',
 | ||
|     'median_low',
 | ||
|     'mode',
 | ||
|     'multimode',
 | ||
|     'pstdev',
 | ||
|     'pvariance',
 | ||
|     'quantiles',
 | ||
|     'stdev',
 | ||
|     'variance',
 | ||
| ]
 | ||
| 
 | ||
| import math
 | ||
| import numbers
 | ||
| import random
 | ||
| 
 | ||
| from fractions import Fraction
 | ||
| from decimal import Decimal
 | ||
| from itertools import groupby
 | ||
| from bisect import bisect_left, bisect_right
 | ||
| from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
 | ||
| from operator import itemgetter
 | ||
| from collections import Counter
 | ||
| 
 | ||
| # === Exceptions ===
 | ||
| 
 | ||
| class StatisticsError(ValueError):
 | ||
|     pass
 | ||
| 
 | ||
| 
 | ||
| # === Private utilities ===
 | ||
| 
 | ||
| def _sum(data, start=0):
 | ||
|     """_sum(data [, start]) -> (type, sum, count)
 | ||
| 
 | ||
|     Return a high-precision sum of the given numeric data as a fraction,
 | ||
|     together with the type to be converted to and the count of items.
 | ||
| 
 | ||
|     If optional argument ``start`` is given, it is added to the total.
 | ||
|     If ``data`` is empty, ``start`` (defaulting to 0) is returned.
 | ||
| 
 | ||
| 
 | ||
|     Examples
 | ||
|     --------
 | ||
| 
 | ||
|     >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
 | ||
|     (<class 'float'>, Fraction(11, 1), 5)
 | ||
| 
 | ||
|     Some sources of round-off error will be avoided:
 | ||
| 
 | ||
|     # Built-in sum returns zero.
 | ||
|     >>> _sum([1e50, 1, -1e50] * 1000)
 | ||
|     (<class 'float'>, Fraction(1000, 1), 3000)
 | ||
| 
 | ||
|     Fractions and Decimals are also supported:
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
 | ||
|     (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
 | ||
|     >>> _sum(data)
 | ||
|     (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
 | ||
| 
 | ||
|     Mixed types are currently treated as an error, except that int is
 | ||
|     allowed.
 | ||
|     """
 | ||
|     count = 0
 | ||
|     n, d = _exact_ratio(start)
 | ||
|     partials = {d: n}
 | ||
|     partials_get = partials.get
 | ||
|     T = _coerce(int, type(start))
 | ||
|     for typ, values in groupby(data, type):
 | ||
|         T = _coerce(T, typ)  # or raise TypeError
 | ||
|         for n, d in map(_exact_ratio, values):
 | ||
|             count += 1
 | ||
|             partials[d] = partials_get(d, 0) + n
 | ||
|     if None in partials:
 | ||
|         # The sum will be a NAN or INF. We can ignore all the finite
 | ||
|         # partials, and just look at this special one.
 | ||
|         total = partials[None]
 | ||
|         assert not _isfinite(total)
 | ||
|     else:
 | ||
|         # Sum all the partial sums using builtin sum.
 | ||
|         # FIXME is this faster if we sum them in order of the denominator?
 | ||
|         total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
 | ||
|     return (T, total, count)
 | ||
| 
 | ||
| 
 | ||
| def _isfinite(x):
 | ||
|     try:
 | ||
|         return x.is_finite()  # Likely a Decimal.
 | ||
|     except AttributeError:
 | ||
|         return math.isfinite(x)  # Coerces to float first.
 | ||
| 
 | ||
| 
 | ||
| def _coerce(T, S):
 | ||
|     """Coerce types T and S to a common type, or raise TypeError.
 | ||
| 
 | ||
|     Coercion rules are currently an implementation detail. See the CoerceTest
 | ||
|     test class in test_statistics for details.
 | ||
|     """
 | ||
|     # See http://bugs.python.org/issue24068.
 | ||
|     assert T is not bool, "initial type T is bool"
 | ||
|     # If the types are the same, no need to coerce anything. Put this
 | ||
|     # first, so that the usual case (no coercion needed) happens as soon
 | ||
|     # as possible.
 | ||
|     if T is S:  return T
 | ||
|     # Mixed int & other coerce to the other type.
 | ||
|     if S is int or S is bool:  return T
 | ||
|     if T is int:  return S
 | ||
|     # If one is a (strict) subclass of the other, coerce to the subclass.
 | ||
|     if issubclass(S, T):  return S
 | ||
|     if issubclass(T, S):  return T
 | ||
|     # Ints coerce to the other type.
 | ||
|     if issubclass(T, int):  return S
 | ||
|     if issubclass(S, int):  return T
 | ||
|     # Mixed fraction & float coerces to float (or float subclass).
 | ||
|     if issubclass(T, Fraction) and issubclass(S, float):
 | ||
|         return S
 | ||
|     if issubclass(T, float) and issubclass(S, Fraction):
 | ||
|         return T
 | ||
|     # Any other combination is disallowed.
 | ||
|     msg = "don't know how to coerce %s and %s"
 | ||
|     raise TypeError(msg % (T.__name__, S.__name__))
 | ||
| 
 | ||
| 
 | ||
| def _exact_ratio(x):
 | ||
|     """Return Real number x to exact (numerator, denominator) pair.
 | ||
| 
 | ||
|     >>> _exact_ratio(0.25)
 | ||
|     (1, 4)
 | ||
| 
 | ||
|     x is expected to be an int, Fraction, Decimal or float.
 | ||
|     """
 | ||
|     try:
 | ||
|         # Optimise the common case of floats. We expect that the most often
 | ||
|         # used numeric type will be builtin floats, so try to make this as
 | ||
|         # fast as possible.
 | ||
|         if type(x) is float or type(x) is Decimal:
 | ||
|             return x.as_integer_ratio()
 | ||
|         try:
 | ||
|             # x may be an int, Fraction, or Integral ABC.
 | ||
|             return (x.numerator, x.denominator)
 | ||
|         except AttributeError:
 | ||
|             try:
 | ||
|                 # x may be a float or Decimal subclass.
 | ||
|                 return x.as_integer_ratio()
 | ||
|             except AttributeError:
 | ||
|                 # Just give up?
 | ||
|                 pass
 | ||
|     except (OverflowError, ValueError):
 | ||
|         # float NAN or INF.
 | ||
|         assert not _isfinite(x)
 | ||
|         return (x, None)
 | ||
|     msg = "can't convert type '{}' to numerator/denominator"
 | ||
|     raise TypeError(msg.format(type(x).__name__))
 | ||
| 
 | ||
| 
 | ||
| def _convert(value, T):
 | ||
|     """Convert value to given numeric type T."""
 | ||
|     if type(value) is T:
 | ||
|         # This covers the cases where T is Fraction, or where value is
 | ||
|         # a NAN or INF (Decimal or float).
 | ||
|         return value
 | ||
|     if issubclass(T, int) and value.denominator != 1:
 | ||
|         T = float
 | ||
|     try:
 | ||
|         # FIXME: what do we do if this overflows?
 | ||
|         return T(value)
 | ||
|     except TypeError:
 | ||
|         if issubclass(T, Decimal):
 | ||
|             return T(value.numerator) / T(value.denominator)
 | ||
|         else:
 | ||
|             raise
 | ||
| 
 | ||
| 
 | ||
| def _find_lteq(a, x):
 | ||
|     'Locate the leftmost value exactly equal to x'
 | ||
|     i = bisect_left(a, x)
 | ||
|     if i != len(a) and a[i] == x:
 | ||
|         return i
 | ||
|     raise ValueError
 | ||
| 
 | ||
| 
 | ||
| def _find_rteq(a, l, x):
 | ||
|     'Locate the rightmost value exactly equal to x'
 | ||
|     i = bisect_right(a, x, lo=l)
 | ||
|     if i != (len(a) + 1) and a[i - 1] == x:
 | ||
|         return i - 1
 | ||
|     raise ValueError
 | ||
| 
 | ||
| 
 | ||
| def _fail_neg(values, errmsg='negative value'):
 | ||
|     """Iterate over values, failing if any are less than zero."""
 | ||
|     for x in values:
 | ||
|         if x < 0:
 | ||
|             raise StatisticsError(errmsg)
 | ||
|         yield x
 | ||
| 
 | ||
| 
 | ||
| # === Measures of central tendency (averages) ===
 | ||
| 
 | ||
| def mean(data):
 | ||
|     """Return the sample arithmetic mean of data.
 | ||
| 
 | ||
|     >>> mean([1, 2, 3, 4, 4])
 | ||
|     2.8
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
 | ||
|     Fraction(13, 21)
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
 | ||
|     Decimal('0.5625')
 | ||
| 
 | ||
|     If ``data`` is empty, StatisticsError will be raised.
 | ||
|     """
 | ||
|     if iter(data) is data:
 | ||
|         data = list(data)
 | ||
|     n = len(data)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('mean requires at least one data point')
 | ||
|     T, total, count = _sum(data)
 | ||
|     assert count == n
 | ||
|     return _convert(total / n, T)
 | ||
| 
 | ||
| 
 | ||
| def fmean(data):
 | ||
|     """Convert data to floats and compute the arithmetic mean.
 | ||
| 
 | ||
|     This runs faster than the mean() function and it always returns a float.
 | ||
|     If the input dataset is empty, it raises a StatisticsError.
 | ||
| 
 | ||
|     >>> fmean([3.5, 4.0, 5.25])
 | ||
|     4.25
 | ||
|     """
 | ||
|     try:
 | ||
|         n = len(data)
 | ||
|     except TypeError:
 | ||
|         # Handle iterators that do not define __len__().
 | ||
|         n = 0
 | ||
|         def count(iterable):
 | ||
|             nonlocal n
 | ||
|             for n, x in enumerate(iterable, start=1):
 | ||
|                 yield x
 | ||
|         total = fsum(count(data))
 | ||
|     else:
 | ||
|         total = fsum(data)
 | ||
|     try:
 | ||
|         return total / n
 | ||
|     except ZeroDivisionError:
 | ||
|         raise StatisticsError('fmean requires at least one data point') from None
 | ||
| 
 | ||
| 
 | ||
| def geometric_mean(data):
 | ||
|     """Convert data to floats and compute the geometric mean.
 | ||
| 
 | ||
|     Raises a StatisticsError if the input dataset is empty,
 | ||
|     if it contains a zero, or if it contains a negative value.
 | ||
| 
 | ||
|     No special efforts are made to achieve exact results.
 | ||
|     (However, this may change in the future.)
 | ||
| 
 | ||
|     >>> round(geometric_mean([54, 24, 36]), 9)
 | ||
|     36.0
 | ||
|     """
 | ||
|     try:
 | ||
|         return exp(fmean(map(log, data)))
 | ||
|     except ValueError:
 | ||
|         raise StatisticsError('geometric mean requires a non-empty dataset '
 | ||
|                               ' containing positive numbers') from None
 | ||
| 
 | ||
| 
 | ||
| def harmonic_mean(data):
 | ||
|     """Return the harmonic mean of data.
 | ||
| 
 | ||
|     The harmonic mean, sometimes called the subcontrary mean, is the
 | ||
|     reciprocal of the arithmetic mean of the reciprocals of the data,
 | ||
|     and is often appropriate when averaging quantities which are rates
 | ||
|     or ratios, for example speeds. Example:
 | ||
| 
 | ||
|     Suppose an investor purchases an equal value of shares in each of
 | ||
|     three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
 | ||
|     What is the average P/E ratio for the investor's portfolio?
 | ||
| 
 | ||
|     >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio.
 | ||
|     3.6
 | ||
| 
 | ||
|     Using the arithmetic mean would give an average of about 5.167, which
 | ||
|     is too high.
 | ||
| 
 | ||
|     If ``data`` is empty, or any element is less than zero,
 | ||
|     ``harmonic_mean`` will raise ``StatisticsError``.
 | ||
|     """
 | ||
|     # For a justification for using harmonic mean for P/E ratios, see
 | ||
|     # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
 | ||
|     # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
 | ||
|     if iter(data) is data:
 | ||
|         data = list(data)
 | ||
|     errmsg = 'harmonic mean does not support negative values'
 | ||
|     n = len(data)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('harmonic_mean requires at least one data point')
 | ||
|     elif n == 1:
 | ||
|         x = data[0]
 | ||
|         if isinstance(x, (numbers.Real, Decimal)):
 | ||
|             if x < 0:
 | ||
|                 raise StatisticsError(errmsg)
 | ||
|             return x
 | ||
|         else:
 | ||
|             raise TypeError('unsupported type')
 | ||
|     try:
 | ||
|         T, total, count = _sum(1 / x for x in _fail_neg(data, errmsg))
 | ||
|     except ZeroDivisionError:
 | ||
|         return 0
 | ||
|     assert count == n
 | ||
|     return _convert(n / total, T)
 | ||
| 
 | ||
| 
 | ||
| # FIXME: investigate ways to calculate medians without sorting? Quickselect?
 | ||
| def median(data):
 | ||
|     """Return the median (middle value) of numeric data.
 | ||
| 
 | ||
|     When the number of data points is odd, return the middle data point.
 | ||
|     When the number of data points is even, the median is interpolated by
 | ||
|     taking the average of the two middle values:
 | ||
| 
 | ||
|     >>> median([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median([1, 3, 5, 7])
 | ||
|     4.0
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     if n % 2 == 1:
 | ||
|         return data[n // 2]
 | ||
|     else:
 | ||
|         i = n // 2
 | ||
|         return (data[i - 1] + data[i]) / 2
 | ||
| 
 | ||
| 
 | ||
| def median_low(data):
 | ||
|     """Return the low median of numeric data.
 | ||
| 
 | ||
|     When the number of data points is odd, the middle value is returned.
 | ||
|     When it is even, the smaller of the two middle values is returned.
 | ||
| 
 | ||
|     >>> median_low([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median_low([1, 3, 5, 7])
 | ||
|     3
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     if n % 2 == 1:
 | ||
|         return data[n // 2]
 | ||
|     else:
 | ||
|         return data[n // 2 - 1]
 | ||
| 
 | ||
| 
 | ||
| def median_high(data):
 | ||
|     """Return the high median of data.
 | ||
| 
 | ||
|     When the number of data points is odd, the middle value is returned.
 | ||
|     When it is even, the larger of the two middle values is returned.
 | ||
| 
 | ||
|     >>> median_high([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median_high([1, 3, 5, 7])
 | ||
|     5
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     return data[n // 2]
 | ||
| 
 | ||
| 
 | ||
| def median_grouped(data, interval=1):
 | ||
|     """Return the 50th percentile (median) of grouped continuous data.
 | ||
| 
 | ||
|     >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
 | ||
|     3.7
 | ||
|     >>> median_grouped([52, 52, 53, 54])
 | ||
|     52.5
 | ||
| 
 | ||
|     This calculates the median as the 50th percentile, and should be
 | ||
|     used when your data is continuous and grouped. In the above example,
 | ||
|     the values 1, 2, 3, etc. actually represent the midpoint of classes
 | ||
|     0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
 | ||
|     class 3.5-4.5, and interpolation is used to estimate it.
 | ||
| 
 | ||
|     Optional argument ``interval`` represents the class interval, and
 | ||
|     defaults to 1. Changing the class interval naturally will change the
 | ||
|     interpolated 50th percentile value:
 | ||
| 
 | ||
|     >>> median_grouped([1, 3, 3, 5, 7], interval=1)
 | ||
|     3.25
 | ||
|     >>> median_grouped([1, 3, 3, 5, 7], interval=2)
 | ||
|     3.5
 | ||
| 
 | ||
|     This function does not check whether the data points are at least
 | ||
|     ``interval`` apart.
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     elif n == 1:
 | ||
|         return data[0]
 | ||
|     # Find the value at the midpoint. Remember this corresponds to the
 | ||
|     # centre of the class interval.
 | ||
|     x = data[n // 2]
 | ||
|     for obj in (x, interval):
 | ||
|         if isinstance(obj, (str, bytes)):
 | ||
|             raise TypeError('expected number but got %r' % obj)
 | ||
|     try:
 | ||
|         L = x - interval / 2  # The lower limit of the median interval.
 | ||
|     except TypeError:
 | ||
|         # Mixed type. For now we just coerce to float.
 | ||
|         L = float(x) - float(interval) / 2
 | ||
| 
 | ||
|     # Uses bisection search to search for x in data with log(n) time complexity
 | ||
|     # Find the position of leftmost occurrence of x in data
 | ||
|     l1 = _find_lteq(data, x)
 | ||
|     # Find the position of rightmost occurrence of x in data[l1...len(data)]
 | ||
|     # Assuming always l1 <= l2
 | ||
|     l2 = _find_rteq(data, l1, x)
 | ||
|     cf = l1
 | ||
|     f = l2 - l1 + 1
 | ||
|     return L + interval * (n / 2 - cf) / f
 | ||
| 
 | ||
| 
 | ||
| def mode(data):
 | ||
|     """Return the most common data point from discrete or nominal data.
 | ||
| 
 | ||
|     ``mode`` assumes discrete data, and returns a single value. This is the
 | ||
|     standard treatment of the mode as commonly taught in schools:
 | ||
| 
 | ||
|         >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 | ||
|         3
 | ||
| 
 | ||
|     This also works with nominal (non-numeric) data:
 | ||
| 
 | ||
|         >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 | ||
|         'red'
 | ||
| 
 | ||
|     If there are multiple modes with same frequency, return the first one
 | ||
|     encountered:
 | ||
| 
 | ||
|         >>> mode(['red', 'red', 'green', 'blue', 'blue'])
 | ||
|         'red'
 | ||
| 
 | ||
|     If *data* is empty, ``mode``, raises StatisticsError.
 | ||
| 
 | ||
|     """
 | ||
|     pairs = Counter(iter(data)).most_common(1)
 | ||
|     try:
 | ||
|         return pairs[0][0]
 | ||
|     except IndexError:
 | ||
|         raise StatisticsError('no mode for empty data') from None
 | ||
| 
 | ||
| 
 | ||
| def multimode(data):
 | ||
|     """Return a list of the most frequently occurring values.
 | ||
| 
 | ||
|     Will return more than one result if there are multiple modes
 | ||
|     or an empty list if *data* is empty.
 | ||
| 
 | ||
|     >>> multimode('aabbbbbbbbcc')
 | ||
|     ['b']
 | ||
|     >>> multimode('aabbbbccddddeeffffgg')
 | ||
|     ['b', 'd', 'f']
 | ||
|     >>> multimode('')
 | ||
|     []
 | ||
|     """
 | ||
|     counts = Counter(iter(data)).most_common()
 | ||
|     maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
 | ||
|     return list(map(itemgetter(0), mode_items))
 | ||
| 
 | ||
| 
 | ||
| # Notes on methods for computing quantiles
 | ||
| # ----------------------------------------
 | ||
| #
 | ||
| # There is no one perfect way to compute quantiles.  Here we offer
 | ||
| # two methods that serve common needs.  Most other packages
 | ||
| # surveyed offered at least one or both of these two, making them
 | ||
| # "standard" in the sense of "widely-adopted and reproducible".
 | ||
| # They are also easy to explain, easy to compute manually, and have
 | ||
| # straight-forward interpretations that aren't surprising.
 | ||
| 
 | ||
| # The default method is known as "R6", "PERCENTILE.EXC", or "expected
 | ||
| # value of rank order statistics". The alternative method is known as
 | ||
| # "R7", "PERCENTILE.INC", or "mode of rank order statistics".
 | ||
| 
 | ||
| # For sample data where there is a positive probability for values
 | ||
| # beyond the range of the data, the R6 exclusive method is a
 | ||
| # reasonable choice.  Consider a random sample of nine values from a
 | ||
| # population with a uniform distribution from 0.0 to 1.0.  The
 | ||
| # distribution of the third ranked sample point is described by
 | ||
| # betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
 | ||
| # mean=0.300.  Only the latter (which corresponds with R6) gives the
 | ||
| # desired cut point with 30% of the population falling below that
 | ||
| # value, making it comparable to a result from an inv_cdf() function.
 | ||
| # The R6 exclusive method is also idempotent.
 | ||
| 
 | ||
| # For describing population data where the end points are known to
 | ||
| # be included in the data, the R7 inclusive method is a reasonable
 | ||
| # choice.  Instead of the mean, it uses the mode of the beta
 | ||
| # distribution for the interior points.  Per Hyndman & Fan, "One nice
 | ||
| # property is that the vertices of Q7(p) divide the range into n - 1
 | ||
| # intervals, and exactly 100p% of the intervals lie to the left of
 | ||
| # Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
 | ||
| 
 | ||
| # If needed, other methods could be added.  However, for now, the
 | ||
| # position is that fewer options make for easier choices and that
 | ||
| # external packages can be used for anything more advanced.
 | ||
| 
 | ||
| def quantiles(data, *, n=4, method='exclusive'):
 | ||
|     """Divide *data* into *n* continuous intervals with equal probability.
 | ||
| 
 | ||
|     Returns a list of (n - 1) cut points separating the intervals.
 | ||
| 
 | ||
|     Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | ||
|     Set *n* to 100 for percentiles which gives the 99 cuts points that
 | ||
|     separate *data* in to 100 equal sized groups.
 | ||
| 
 | ||
|     The *data* can be any iterable containing sample.
 | ||
|     The cut points are linearly interpolated between data points.
 | ||
| 
 | ||
|     If *method* is set to *inclusive*, *data* is treated as population
 | ||
|     data.  The minimum value is treated as the 0th percentile and the
 | ||
|     maximum value is treated as the 100th percentile.
 | ||
|     """
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('n must be at least 1')
 | ||
|     data = sorted(data)
 | ||
|     ld = len(data)
 | ||
|     if ld < 2:
 | ||
|         raise StatisticsError('must have at least two data points')
 | ||
|     if method == 'inclusive':
 | ||
|         m = ld - 1
 | ||
|         result = []
 | ||
|         for i in range(1, n):
 | ||
|             j, delta = divmod(i * m, n)
 | ||
|             interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
 | ||
|             result.append(interpolated)
 | ||
|         return result
 | ||
|     if method == 'exclusive':
 | ||
|         m = ld + 1
 | ||
|         result = []
 | ||
|         for i in range(1, n):
 | ||
|             j = i * m // n                               # rescale i to m/n
 | ||
|             j = 1 if j < 1 else ld-1 if j > ld-1 else j  # clamp to 1 .. ld-1
 | ||
|             delta = i*m - j*n                            # exact integer math
 | ||
|             interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
 | ||
|             result.append(interpolated)
 | ||
|         return result
 | ||
|     raise ValueError(f'Unknown method: {method!r}')
 | ||
| 
 | ||
| 
 | ||
| # === Measures of spread ===
 | ||
| 
 | ||
| # See http://mathworld.wolfram.com/Variance.html
 | ||
| #     http://mathworld.wolfram.com/SampleVariance.html
 | ||
| #     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
 | ||
| #
 | ||
| # Under no circumstances use the so-called "computational formula for
 | ||
| # variance", as that is only suitable for hand calculations with a small
 | ||
| # amount of low-precision data. It has terrible numeric properties.
 | ||
| #
 | ||
| # See a comparison of three computational methods here:
 | ||
| # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
 | ||
| 
 | ||
| def _ss(data, c=None):
 | ||
|     """Return sum of square deviations of sequence data.
 | ||
| 
 | ||
|     If ``c`` is None, the mean is calculated in one pass, and the deviations
 | ||
|     from the mean are calculated in a second pass. Otherwise, deviations are
 | ||
|     calculated from ``c`` as given. Use the second case with care, as it can
 | ||
|     lead to garbage results.
 | ||
|     """
 | ||
|     if c is not None:
 | ||
|         T, total, count = _sum((x-c)**2 for x in data)
 | ||
|         return (T, total)
 | ||
|     c = mean(data)
 | ||
|     T, total, count = _sum((x-c)**2 for x in data)
 | ||
|     # The following sum should mathematically equal zero, but due to rounding
 | ||
|     # error may not.
 | ||
|     U, total2, count2 = _sum((x - c) for x in data)
 | ||
|     assert T == U and count == count2
 | ||
|     total -= total2 ** 2 / len(data)
 | ||
|     assert not total < 0, 'negative sum of square deviations: %f' % total
 | ||
|     return (T, total)
 | ||
| 
 | ||
| 
 | ||
| def variance(data, xbar=None):
 | ||
|     """Return the sample variance of data.
 | ||
| 
 | ||
|     data should be an iterable of Real-valued numbers, with at least two
 | ||
|     values. The optional argument xbar, if given, should be the mean of
 | ||
|     the data. If it is missing or None, the mean is automatically calculated.
 | ||
| 
 | ||
|     Use this function when your data is a sample from a population. To
 | ||
|     calculate the variance from the entire population, see ``pvariance``.
 | ||
| 
 | ||
|     Examples:
 | ||
| 
 | ||
|     >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
 | ||
|     >>> variance(data)
 | ||
|     1.3720238095238095
 | ||
| 
 | ||
|     If you have already calculated the mean of your data, you can pass it as
 | ||
|     the optional second argument ``xbar`` to avoid recalculating it:
 | ||
| 
 | ||
|     >>> m = mean(data)
 | ||
|     >>> variance(data, m)
 | ||
|     1.3720238095238095
 | ||
| 
 | ||
|     This function does not check that ``xbar`` is actually the mean of
 | ||
|     ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
 | ||
|     impossible results.
 | ||
| 
 | ||
|     Decimals and Fractions are supported:
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | ||
|     Decimal('31.01875')
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> variance([F(1, 6), F(1, 2), F(5, 3)])
 | ||
|     Fraction(67, 108)
 | ||
| 
 | ||
|     """
 | ||
|     if iter(data) is data:
 | ||
|         data = list(data)
 | ||
|     n = len(data)
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('variance requires at least two data points')
 | ||
|     T, ss = _ss(data, xbar)
 | ||
|     return _convert(ss / (n - 1), T)
 | ||
| 
 | ||
| 
 | ||
| def pvariance(data, mu=None):
 | ||
|     """Return the population variance of ``data``.
 | ||
| 
 | ||
|     data should be a sequence or iterable of Real-valued numbers, with at least one
 | ||
|     value. The optional argument mu, if given, should be the mean of
 | ||
|     the data. If it is missing or None, the mean is automatically calculated.
 | ||
| 
 | ||
|     Use this function to calculate the variance from the entire population.
 | ||
|     To estimate the variance from a sample, the ``variance`` function is
 | ||
|     usually a better choice.
 | ||
| 
 | ||
|     Examples:
 | ||
| 
 | ||
|     >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
 | ||
|     >>> pvariance(data)
 | ||
|     1.25
 | ||
| 
 | ||
|     If you have already calculated the mean of the data, you can pass it as
 | ||
|     the optional second argument to avoid recalculating it:
 | ||
| 
 | ||
|     >>> mu = mean(data)
 | ||
|     >>> pvariance(data, mu)
 | ||
|     1.25
 | ||
| 
 | ||
|     Decimals and Fractions are supported:
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | ||
|     Decimal('24.815')
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
 | ||
|     Fraction(13, 72)
 | ||
| 
 | ||
|     """
 | ||
|     if iter(data) is data:
 | ||
|         data = list(data)
 | ||
|     n = len(data)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('pvariance requires at least one data point')
 | ||
|     T, ss = _ss(data, mu)
 | ||
|     return _convert(ss / n, T)
 | ||
| 
 | ||
| 
 | ||
| def stdev(data, xbar=None):
 | ||
|     """Return the square root of the sample variance.
 | ||
| 
 | ||
|     See ``variance`` for arguments and other details.
 | ||
| 
 | ||
|     >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | ||
|     1.0810874155219827
 | ||
| 
 | ||
|     """
 | ||
|     var = variance(data, xbar)
 | ||
|     try:
 | ||
|         return var.sqrt()
 | ||
|     except AttributeError:
 | ||
|         return math.sqrt(var)
 | ||
| 
 | ||
| 
 | ||
| def pstdev(data, mu=None):
 | ||
|     """Return the square root of the population variance.
 | ||
| 
 | ||
|     See ``pvariance`` for arguments and other details.
 | ||
| 
 | ||
|     >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | ||
|     0.986893273527251
 | ||
| 
 | ||
|     """
 | ||
|     var = pvariance(data, mu)
 | ||
|     try:
 | ||
|         return var.sqrt()
 | ||
|     except AttributeError:
 | ||
|         return math.sqrt(var)
 | ||
| 
 | ||
| 
 | ||
| ## Normal Distribution #####################################################
 | ||
| 
 | ||
| 
 | ||
| def _normal_dist_inv_cdf(p, mu, sigma):
 | ||
|     # There is no closed-form solution to the inverse CDF for the normal
 | ||
|     # distribution, so we use a rational approximation instead:
 | ||
|     # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
 | ||
|     # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
 | ||
|     # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
 | ||
|     q = p - 0.5
 | ||
|     if fabs(q) <= 0.425:
 | ||
|         r = 0.180625 - q * q
 | ||
|         # Hash sum: 55.88319_28806_14901_4439
 | ||
|         num = (((((((2.50908_09287_30122_6727e+3 * r +
 | ||
|                      3.34305_75583_58812_8105e+4) * r +
 | ||
|                      6.72657_70927_00870_0853e+4) * r +
 | ||
|                      4.59219_53931_54987_1457e+4) * r +
 | ||
|                      1.37316_93765_50946_1125e+4) * r +
 | ||
|                      1.97159_09503_06551_4427e+3) * r +
 | ||
|                      1.33141_66789_17843_7745e+2) * r +
 | ||
|                      3.38713_28727_96366_6080e+0) * q
 | ||
|         den = (((((((5.22649_52788_52854_5610e+3 * r +
 | ||
|                      2.87290_85735_72194_2674e+4) * r +
 | ||
|                      3.93078_95800_09271_0610e+4) * r +
 | ||
|                      2.12137_94301_58659_5867e+4) * r +
 | ||
|                      5.39419_60214_24751_1077e+3) * r +
 | ||
|                      6.87187_00749_20579_0830e+2) * r +
 | ||
|                      4.23133_30701_60091_1252e+1) * r +
 | ||
|                      1.0)
 | ||
|         x = num / den
 | ||
|         return mu + (x * sigma)
 | ||
|     r = p if q <= 0.0 else 1.0 - p
 | ||
|     r = sqrt(-log(r))
 | ||
|     if r <= 5.0:
 | ||
|         r = r - 1.6
 | ||
|         # Hash sum: 49.33206_50330_16102_89036
 | ||
|         num = (((((((7.74545_01427_83414_07640e-4 * r +
 | ||
|                      2.27238_44989_26918_45833e-2) * r +
 | ||
|                      2.41780_72517_74506_11770e-1) * r +
 | ||
|                      1.27045_82524_52368_38258e+0) * r +
 | ||
|                      3.64784_83247_63204_60504e+0) * r +
 | ||
|                      5.76949_72214_60691_40550e+0) * r +
 | ||
|                      4.63033_78461_56545_29590e+0) * r +
 | ||
|                      1.42343_71107_49683_57734e+0)
 | ||
|         den = (((((((1.05075_00716_44416_84324e-9 * r +
 | ||
|                      5.47593_80849_95344_94600e-4) * r +
 | ||
|                      1.51986_66563_61645_71966e-2) * r +
 | ||
|                      1.48103_97642_74800_74590e-1) * r +
 | ||
|                      6.89767_33498_51000_04550e-1) * r +
 | ||
|                      1.67638_48301_83803_84940e+0) * r +
 | ||
|                      2.05319_16266_37758_82187e+0) * r +
 | ||
|                      1.0)
 | ||
|     else:
 | ||
|         r = r - 5.0
 | ||
|         # Hash sum: 47.52583_31754_92896_71629
 | ||
|         num = (((((((2.01033_43992_92288_13265e-7 * r +
 | ||
|                      2.71155_55687_43487_57815e-5) * r +
 | ||
|                      1.24266_09473_88078_43860e-3) * r +
 | ||
|                      2.65321_89526_57612_30930e-2) * r +
 | ||
|                      2.96560_57182_85048_91230e-1) * r +
 | ||
|                      1.78482_65399_17291_33580e+0) * r +
 | ||
|                      5.46378_49111_64114_36990e+0) * r +
 | ||
|                      6.65790_46435_01103_77720e+0)
 | ||
|         den = (((((((2.04426_31033_89939_78564e-15 * r +
 | ||
|                      1.42151_17583_16445_88870e-7) * r +
 | ||
|                      1.84631_83175_10054_68180e-5) * r +
 | ||
|                      7.86869_13114_56132_59100e-4) * r +
 | ||
|                      1.48753_61290_85061_48525e-2) * r +
 | ||
|                      1.36929_88092_27358_05310e-1) * r +
 | ||
|                      5.99832_20655_58879_37690e-1) * r +
 | ||
|                      1.0)
 | ||
|     x = num / den
 | ||
|     if q < 0.0:
 | ||
|         x = -x
 | ||
|     return mu + (x * sigma)
 | ||
| 
 | ||
| 
 | ||
| # If available, use C implementation
 | ||
| try:
 | ||
|     from _statistics import _normal_dist_inv_cdf
 | ||
| except ImportError:
 | ||
|     pass
 | ||
| 
 | ||
| 
 | ||
| class NormalDist:
 | ||
|     "Normal distribution of a random variable"
 | ||
|     # https://en.wikipedia.org/wiki/Normal_distribution
 | ||
|     # https://en.wikipedia.org/wiki/Variance#Properties
 | ||
| 
 | ||
|     __slots__ = {
 | ||
|         '_mu': 'Arithmetic mean of a normal distribution',
 | ||
|         '_sigma': 'Standard deviation of a normal distribution',
 | ||
|     }
 | ||
| 
 | ||
|     def __init__(self, mu=0.0, sigma=1.0):
 | ||
|         "NormalDist where mu is the mean and sigma is the standard deviation."
 | ||
|         if sigma < 0.0:
 | ||
|             raise StatisticsError('sigma must be non-negative')
 | ||
|         self._mu = float(mu)
 | ||
|         self._sigma = float(sigma)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def from_samples(cls, data):
 | ||
|         "Make a normal distribution instance from sample data."
 | ||
|         if not isinstance(data, (list, tuple)):
 | ||
|             data = list(data)
 | ||
|         xbar = fmean(data)
 | ||
|         return cls(xbar, stdev(data, xbar))
 | ||
| 
 | ||
|     def samples(self, n, *, seed=None):
 | ||
|         "Generate *n* samples for a given mean and standard deviation."
 | ||
|         gauss = random.gauss if seed is None else random.Random(seed).gauss
 | ||
|         mu, sigma = self._mu, self._sigma
 | ||
|         return [gauss(mu, sigma) for i in range(n)]
 | ||
| 
 | ||
|     def pdf(self, x):
 | ||
|         "Probability density function.  P(x <= X < x+dx) / dx"
 | ||
|         variance = self._sigma ** 2.0
 | ||
|         if not variance:
 | ||
|             raise StatisticsError('pdf() not defined when sigma is zero')
 | ||
|         return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
 | ||
| 
 | ||
|     def cdf(self, x):
 | ||
|         "Cumulative distribution function.  P(X <= x)"
 | ||
|         if not self._sigma:
 | ||
|             raise StatisticsError('cdf() not defined when sigma is zero')
 | ||
|         return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
 | ||
| 
 | ||
|     def inv_cdf(self, p):
 | ||
|         """Inverse cumulative distribution function.  x : P(X <= x) = p
 | ||
| 
 | ||
|         Finds the value of the random variable such that the probability of
 | ||
|         the variable being less than or equal to that value equals the given
 | ||
|         probability.
 | ||
| 
 | ||
|         This function is also called the percent point function or quantile
 | ||
|         function.
 | ||
|         """
 | ||
|         if p <= 0.0 or p >= 1.0:
 | ||
|             raise StatisticsError('p must be in the range 0.0 < p < 1.0')
 | ||
|         if self._sigma <= 0.0:
 | ||
|             raise StatisticsError('cdf() not defined when sigma at or below zero')
 | ||
|         return _normal_dist_inv_cdf(p, self._mu, self._sigma)
 | ||
| 
 | ||
|     def quantiles(self, n=4):
 | ||
|         """Divide into *n* continuous intervals with equal probability.
 | ||
| 
 | ||
|         Returns a list of (n - 1) cut points separating the intervals.
 | ||
| 
 | ||
|         Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | ||
|         Set *n* to 100 for percentiles which gives the 99 cuts points that
 | ||
|         separate the normal distribution in to 100 equal sized groups.
 | ||
|         """
 | ||
|         return [self.inv_cdf(i / n) for i in range(1, n)]
 | ||
| 
 | ||
|     def overlap(self, other):
 | ||
|         """Compute the overlapping coefficient (OVL) between two normal distributions.
 | ||
| 
 | ||
|         Measures the agreement between two normal probability distributions.
 | ||
|         Returns a value between 0.0 and 1.0 giving the overlapping area in
 | ||
|         the two underlying probability density functions.
 | ||
| 
 | ||
|             >>> N1 = NormalDist(2.4, 1.6)
 | ||
|             >>> N2 = NormalDist(3.2, 2.0)
 | ||
|             >>> N1.overlap(N2)
 | ||
|             0.8035050657330205
 | ||
|         """
 | ||
|         # See: "The overlapping coefficient as a measure of agreement between
 | ||
|         # probability distributions and point estimation of the overlap of two
 | ||
|         # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
 | ||
|         # http://dx.doi.org/10.1080/03610928908830127
 | ||
|         if not isinstance(other, NormalDist):
 | ||
|             raise TypeError('Expected another NormalDist instance')
 | ||
|         X, Y = self, other
 | ||
|         if (Y._sigma, Y._mu) < (X._sigma, X._mu):  # sort to assure commutativity
 | ||
|             X, Y = Y, X
 | ||
|         X_var, Y_var = X.variance, Y.variance
 | ||
|         if not X_var or not Y_var:
 | ||
|             raise StatisticsError('overlap() not defined when sigma is zero')
 | ||
|         dv = Y_var - X_var
 | ||
|         dm = fabs(Y._mu - X._mu)
 | ||
|         if not dv:
 | ||
|             return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
 | ||
|         a = X._mu * Y_var - Y._mu * X_var
 | ||
|         b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
 | ||
|         x1 = (a + b) / dv
 | ||
|         x2 = (a - b) / dv
 | ||
|         return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
 | ||
| 
 | ||
|     def zscore(self, x):
 | ||
|         """Compute the Standard Score.  (x - mean) / stdev
 | ||
| 
 | ||
|         Describes *x* in terms of the number of standard deviations
 | ||
|         above or below the mean of the normal distribution.
 | ||
|         """
 | ||
|         # https://www.statisticshowto.com/probability-and-statistics/z-score/
 | ||
|         if not self._sigma:
 | ||
|             raise StatisticsError('zscore() not defined when sigma is zero')
 | ||
|         return (x - self._mu) / self._sigma
 | ||
| 
 | ||
|     @property
 | ||
|     def mean(self):
 | ||
|         "Arithmetic mean of the normal distribution."
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def median(self):
 | ||
|         "Return the median of the normal distribution"
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def mode(self):
 | ||
|         """Return the mode of the normal distribution
 | ||
| 
 | ||
|         The mode is the value x where which the probability density
 | ||
|         function (pdf) takes its maximum value.
 | ||
|         """
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def stdev(self):
 | ||
|         "Standard deviation of the normal distribution."
 | ||
|         return self._sigma
 | ||
| 
 | ||
|     @property
 | ||
|     def variance(self):
 | ||
|         "Square of the standard deviation."
 | ||
|         return self._sigma ** 2.0
 | ||
| 
 | ||
|     def __add__(x1, x2):
 | ||
|         """Add a constant or another NormalDist instance.
 | ||
| 
 | ||
|         If *other* is a constant, translate mu by the constant,
 | ||
|         leaving sigma unchanged.
 | ||
| 
 | ||
|         If *other* is a NormalDist, add both the means and the variances.
 | ||
|         Mathematically, this works only if the two distributions are
 | ||
|         independent or if they are jointly normally distributed.
 | ||
|         """
 | ||
|         if isinstance(x2, NormalDist):
 | ||
|             return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
 | ||
|         return NormalDist(x1._mu + x2, x1._sigma)
 | ||
| 
 | ||
|     def __sub__(x1, x2):
 | ||
|         """Subtract a constant or another NormalDist instance.
 | ||
| 
 | ||
|         If *other* is a constant, translate by the constant mu,
 | ||
|         leaving sigma unchanged.
 | ||
| 
 | ||
|         If *other* is a NormalDist, subtract the means and add the variances.
 | ||
|         Mathematically, this works only if the two distributions are
 | ||
|         independent or if they are jointly normally distributed.
 | ||
|         """
 | ||
|         if isinstance(x2, NormalDist):
 | ||
|             return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
 | ||
|         return NormalDist(x1._mu - x2, x1._sigma)
 | ||
| 
 | ||
|     def __mul__(x1, x2):
 | ||
|         """Multiply both mu and sigma by a constant.
 | ||
| 
 | ||
|         Used for rescaling, perhaps to change measurement units.
 | ||
|         Sigma is scaled with the absolute value of the constant.
 | ||
|         """
 | ||
|         return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
 | ||
| 
 | ||
|     def __truediv__(x1, x2):
 | ||
|         """Divide both mu and sigma by a constant.
 | ||
| 
 | ||
|         Used for rescaling, perhaps to change measurement units.
 | ||
|         Sigma is scaled with the absolute value of the constant.
 | ||
|         """
 | ||
|         return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
 | ||
| 
 | ||
|     def __pos__(x1):
 | ||
|         "Return a copy of the instance."
 | ||
|         return NormalDist(x1._mu, x1._sigma)
 | ||
| 
 | ||
|     def __neg__(x1):
 | ||
|         "Negates mu while keeping sigma the same."
 | ||
|         return NormalDist(-x1._mu, x1._sigma)
 | ||
| 
 | ||
|     __radd__ = __add__
 | ||
| 
 | ||
|     def __rsub__(x1, x2):
 | ||
|         "Subtract a NormalDist from a constant or another NormalDist."
 | ||
|         return -(x1 - x2)
 | ||
| 
 | ||
|     __rmul__ = __mul__
 | ||
| 
 | ||
|     def __eq__(x1, x2):
 | ||
|         "Two NormalDist objects are equal if their mu and sigma are both equal."
 | ||
|         if not isinstance(x2, NormalDist):
 | ||
|             return NotImplemented
 | ||
|         return x1._mu == x2._mu and x1._sigma == x2._sigma
 | ||
| 
 | ||
|     def __hash__(self):
 | ||
|         "NormalDist objects hash equal if their mu and sigma are both equal."
 | ||
|         return hash((self._mu, self._sigma))
 | ||
| 
 | ||
|     def __repr__(self):
 | ||
|         return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
 | 
