mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3474 lines
		
	
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3474 lines
		
	
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| 
 | |
| /* Long (arbitrary precision) integer object implementation */
 | |
| 
 | |
| /* XXX The functional organization of this file is terrible */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "longintrepr.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| 
 | |
| /* For long multiplication, use the O(N**2) school algorithm unless
 | |
|  * both operands contain more than KARATSUBA_CUTOFF digits (this
 | |
|  * being an internal Python long digit, in base BASE).
 | |
|  */
 | |
| #define KARATSUBA_CUTOFF 70
 | |
| #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
 | |
| 
 | |
| /* For exponentiation, use the binary left-to-right algorithm
 | |
|  * unless the exponent contains more than FIVEARY_CUTOFF digits.
 | |
|  * In that case, do 5 bits at a time.  The potential drawback is that
 | |
|  * a table of 2**5 intermediate results is computed.
 | |
|  */
 | |
| #define FIVEARY_CUTOFF 8
 | |
| 
 | |
| #define ABS(x) ((x) < 0 ? -(x) : (x))
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MAX(x, y) ((x) < (y) ? (y) : (x))
 | |
| #define MIN(x, y) ((x) > (y) ? (y) : (x))
 | |
| 
 | |
| /* Forward */
 | |
| static PyLongObject *long_normalize(PyLongObject *);
 | |
| static PyLongObject *mul1(PyLongObject *, wdigit);
 | |
| static PyLongObject *muladd1(PyLongObject *, wdigit, wdigit);
 | |
| static PyLongObject *divrem1(PyLongObject *, digit, digit *);
 | |
| static PyObject *long_format(PyObject *aa, int base, int addL);
 | |
| 
 | |
| #define SIGCHECK(PyTryBlock) \
 | |
| 	if (--_Py_Ticker < 0) { \
 | |
| 		_Py_Ticker = _Py_CheckInterval; \
 | |
| 		if (PyErr_CheckSignals()) PyTryBlock \
 | |
| 	}
 | |
| 
 | |
| /* Normalize (remove leading zeros from) a long int object.
 | |
|    Doesn't attempt to free the storage--in most cases, due to the nature
 | |
|    of the algorithms used, this could save at most be one word anyway. */
 | |
| 
 | |
| static PyLongObject *
 | |
| long_normalize(register PyLongObject *v)
 | |
| {
 | |
| 	Py_ssize_t j = ABS(Py_SIZE(v));
 | |
| 	Py_ssize_t i = j;
 | |
| 
 | |
| 	while (i > 0 && v->ob_digit[i-1] == 0)
 | |
| 		--i;
 | |
| 	if (i != j)
 | |
| 		Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* Allocate a new long int object with size digits.
 | |
|    Return NULL and set exception if we run out of memory. */
 | |
| 
 | |
| PyLongObject *
 | |
| _PyLong_New(Py_ssize_t size)
 | |
| {
 | |
| 	if (size > PY_SSIZE_T_MAX) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Copy(PyLongObject *src)
 | |
| {
 | |
| 	PyLongObject *result;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	assert(src != NULL);
 | |
| 	i = src->ob_size;
 | |
| 	if (i < 0)
 | |
| 		i = -(i);
 | |
| 	result = _PyLong_New(i);
 | |
| 	if (result != NULL) {
 | |
| 		result->ob_size = src->ob_size;
 | |
| 		while (--i >= 0)
 | |
| 			result->ob_digit[i] = src->ob_digit[i];
 | |
| 	}
 | |
| 	return (PyObject *)result;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLong(long ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned long t;  /* unsigned so >> doesn't propagate sign bit */
 | |
| 	int ndigits = 0;
 | |
| 	int negative = 0;
 | |
| 
 | |
| 	if (ival < 0) {
 | |
| 		ival = -ival;
 | |
| 		negative = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Count the number of Python digits.
 | |
| 	   We used to pick 5 ("big enough for anything"), but that's a
 | |
| 	   waste of time and space given that 5*15 = 75 bits are rarely
 | |
| 	   needed. */
 | |
| 	t = (unsigned long)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		v->ob_size = negative ? -ndigits : ndigits;
 | |
| 		t = (unsigned long)ival;
 | |
| 		while (t) {
 | |
| 			*p++ = (digit)(t & MASK);
 | |
| 			t >>= SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C unsigned long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLong(unsigned long ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned long t;
 | |
| 	int ndigits = 0;
 | |
| 
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = (unsigned long)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits;
 | |
| 		while (ival) {
 | |
| 			*p++ = (digit)(ival & MASK);
 | |
| 			ival >>= SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C double */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromDouble(double dval)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	double frac;
 | |
| 	int i, ndig, expo, neg;
 | |
| 	neg = 0;
 | |
| 	if (Py_IS_INFINITY(dval)) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			"cannot convert float infinity to long");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (dval < 0.0) {
 | |
| 		neg = 1;
 | |
| 		dval = -dval;
 | |
| 	}
 | |
| 	frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
 | |
| 	if (expo <= 0)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 	ndig = (expo-1) / SHIFT + 1; /* Number of 'digits' in result */
 | |
| 	v = _PyLong_New(ndig);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 	frac = ldexp(frac, (expo-1) % SHIFT + 1);
 | |
| 	for (i = ndig; --i >= 0; ) {
 | |
| 		long bits = (long)frac;
 | |
| 		v->ob_digit[i] = (digit) bits;
 | |
| 		frac = frac - (double)bits;
 | |
| 		frac = ldexp(frac, SHIFT);
 | |
| 	}
 | |
| 	if (neg)
 | |
| 		Py_SIZE(v) = -(Py_SIZE(v));
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
 | |
|  * anything about what happens when a signed integer operation overflows,
 | |
|  * and some compilers think they're doing you a favor by being "clever"
 | |
|  * then.  The bit pattern for the largest postive signed long is
 | |
|  * (unsigned long)LONG_MAX, and for the smallest negative signed long
 | |
|  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
 | |
|  * However, some other compilers warn about applying unary minus to an
 | |
|  * unsigned operand.  Hence the weird "0-".
 | |
|  */
 | |
| #define PY_ABS_LONG_MIN		(0-(unsigned long)LONG_MIN)
 | |
| #define PY_ABS_SSIZE_T_MIN	(0-(size_t)PY_SSIZE_T_MIN)
 | |
| 
 | |
| /* Get a C long int from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| long
 | |
| PyLong_AsLong(PyObject *vv)
 | |
| {
 | |
| 	/* This version by Tim Peters */
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		if (vv != NULL && PyInt_Check(vv))
 | |
| 			return PyInt_AsLong(vv);
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = v->ob_size;
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << SHIFT) + v->ob_digit[i];
 | |
| 		if ((x >> SHIFT) != prev)
 | |
| 			goto overflow;
 | |
| 	}
 | |
| 	/* Haven't lost any bits, but casting to long requires extra care
 | |
| 	 * (see comment above).
 | |
|          */
 | |
| 	if (x <= (unsigned long)LONG_MAX) {
 | |
| 		return (long)x * sign;
 | |
| 	}
 | |
| 	else if (sign < 0 && x == PY_ABS_LONG_MIN) {
 | |
| 		return LONG_MIN;
 | |
| 	}
 | |
| 	/* else overflow */
 | |
| 
 | |
|  overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 			"long int too large to convert to int");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Get a Py_ssize_t from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| Py_ssize_t
 | |
| _PyLong_AsSsize_t(PyObject *vv) {
 | |
| 	register PyLongObject *v;
 | |
| 	size_t x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = v->ob_size;
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << SHIFT) + v->ob_digit[i];
 | |
| 		if ((x >> SHIFT) != prev)
 | |
| 			goto overflow;
 | |
| 	}
 | |
| 	/* Haven't lost any bits, but casting to a signed type requires
 | |
| 	 * extra care (see comment above).
 | |
| 	 */
 | |
| 	if (x <= (size_t)PY_SSIZE_T_MAX) {
 | |
| 		return (Py_ssize_t)x * sign;
 | |
| 	}
 | |
| 	else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
 | |
| 		return PY_SSIZE_T_MIN;
 | |
| 	}
 | |
| 	/* else overflow */
 | |
| 
 | |
|  overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 			"long int too large to convert to int");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLong(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		if (vv != NULL && PyInt_Check(vv)) {
 | |
| 			long val = PyInt_AsLong(vv);
 | |
| 			if (val < 0) {
 | |
| 				PyErr_SetString(PyExc_OverflowError,
 | |
| 				"can't convert negative value to unsigned long");
 | |
| 				return (unsigned long) -1;
 | |
| 			}
 | |
| 			return val;
 | |
| 		}
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			   "can't convert negative value to unsigned long");
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << SHIFT) + v->ob_digit[i];
 | |
| 		if ((x >> SHIFT) != prev) {
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 				"long int too large to convert");
 | |
| 			return (unsigned long) -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLongMask(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		if (vv != NULL && PyInt_Check(vv))
 | |
| 			return PyInt_AsUnsignedLongMask(vv);
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = v->ob_size;
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -i;
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		x = (x << SHIFT) + v->ob_digit[i];
 | |
| 	}
 | |
| 	return x * sign;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_Sign(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v = (PyLongObject *)vv;
 | |
| 
 | |
| 	assert(v != NULL);
 | |
| 	assert(PyLong_Check(v));
 | |
| 
 | |
| 	return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
 | |
| }
 | |
| 
 | |
| size_t
 | |
| _PyLong_NumBits(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v = (PyLongObject *)vv;
 | |
| 	size_t result = 0;
 | |
| 	Py_ssize_t ndigits;
 | |
| 
 | |
| 	assert(v != NULL);
 | |
| 	assert(PyLong_Check(v));
 | |
| 	ndigits = ABS(Py_SIZE(v));
 | |
| 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | |
| 	if (ndigits > 0) {
 | |
| 		digit msd = v->ob_digit[ndigits - 1];
 | |
| 
 | |
| 		result = (ndigits - 1) * SHIFT;
 | |
| 		if (result / SHIFT != (size_t)(ndigits - 1))
 | |
| 			goto Overflow;
 | |
| 		do {
 | |
| 			++result;
 | |
| 			if (result == 0)
 | |
| 				goto Overflow;
 | |
| 			msd >>= 1;
 | |
| 		} while (msd);
 | |
| 	}
 | |
| 	return result;
 | |
| 
 | |
| Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError, "long has too many bits "
 | |
| 			"to express in a platform size_t");
 | |
| 	return (size_t)-1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
 | |
| 		      int little_endian, int is_signed)
 | |
| {
 | |
| 	const unsigned char* pstartbyte;/* LSB of bytes */
 | |
| 	int incr;			/* direction to move pstartbyte */
 | |
| 	const unsigned char* pendbyte;	/* MSB of bytes */
 | |
| 	size_t numsignificantbytes;	/* number of bytes that matter */
 | |
| 	size_t ndigits;			/* number of Python long digits */
 | |
| 	PyLongObject* v;		/* result */
 | |
| 	int idigit = 0;  		/* next free index in v->ob_digit */
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 
 | |
| 	if (little_endian) {
 | |
| 		pstartbyte = bytes;
 | |
| 		pendbyte = bytes + n - 1;
 | |
| 		incr = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		pstartbyte = bytes + n - 1;
 | |
| 		pendbyte = bytes;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (is_signed)
 | |
| 		is_signed = *pendbyte >= 0x80;
 | |
| 
 | |
| 	/* Compute numsignificantbytes.  This consists of finding the most
 | |
| 	   significant byte.  Leading 0 bytes are insignficant if the number
 | |
| 	   is positive, and leading 0xff bytes if negative. */
 | |
| 	{
 | |
| 		size_t i;
 | |
| 		const unsigned char* p = pendbyte;
 | |
| 		const int pincr = -incr;  /* search MSB to LSB */
 | |
| 		const unsigned char insignficant = is_signed ? 0xff : 0x00;
 | |
| 
 | |
| 		for (i = 0; i < n; ++i, p += pincr) {
 | |
| 			if (*p != insignficant)
 | |
| 				break;
 | |
| 		}
 | |
| 		numsignificantbytes = n - i;
 | |
| 		/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
 | |
| 		   actually has 2 significant bytes.  OTOH, 0xff0001 ==
 | |
| 		   -0x00ffff, so we wouldn't *need* to bump it there; but we
 | |
| 		   do for 0xffff = -0x0001.  To be safe without bothering to
 | |
| 		   check every case, bump it regardless. */
 | |
| 		if (is_signed && numsignificantbytes < n)
 | |
| 			++numsignificantbytes;
 | |
| 	}
 | |
| 
 | |
| 	/* How many Python long digits do we need?  We have
 | |
| 	   8*numsignificantbytes bits, and each Python long digit has SHIFT
 | |
| 	   bits, so it's the ceiling of the quotient. */
 | |
| 	ndigits = (numsignificantbytes * 8 + SHIFT - 1) / SHIFT;
 | |
| 	if (ndigits > (size_t)INT_MAX)
 | |
| 		return PyErr_NoMemory();
 | |
| 	v = _PyLong_New((int)ndigits);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Copy the bits over.  The tricky parts are computing 2's-comp on
 | |
| 	   the fly for signed numbers, and dealing with the mismatch between
 | |
| 	   8-bit bytes and (probably) 15-bit Python digits.*/
 | |
| 	{
 | |
| 		size_t i;
 | |
| 		twodigits carry = 1;		/* for 2's-comp calculation */
 | |
| 		twodigits accum = 0;		/* sliding register */
 | |
| 		unsigned int accumbits = 0; 	/* number of bits in accum */
 | |
| 		const unsigned char* p = pstartbyte;
 | |
| 
 | |
| 		for (i = 0; i < numsignificantbytes; ++i, p += incr) {
 | |
| 			twodigits thisbyte = *p;
 | |
| 			/* Compute correction for 2's comp, if needed. */
 | |
| 			if (is_signed) {
 | |
| 				thisbyte = (0xff ^ thisbyte) + carry;
 | |
| 				carry = thisbyte >> 8;
 | |
| 				thisbyte &= 0xff;
 | |
| 			}
 | |
| 			/* Because we're going LSB to MSB, thisbyte is
 | |
| 			   more significant than what's already in accum,
 | |
| 			   so needs to be prepended to accum. */
 | |
| 			accum |= thisbyte << accumbits;
 | |
| 			accumbits += 8;
 | |
| 			if (accumbits >= SHIFT) {
 | |
| 				/* There's enough to fill a Python digit. */
 | |
| 				assert(idigit < (int)ndigits);
 | |
| 				v->ob_digit[idigit] = (digit)(accum & MASK);
 | |
| 				++idigit;
 | |
| 				accum >>= SHIFT;
 | |
| 				accumbits -= SHIFT;
 | |
| 				assert(accumbits < SHIFT);
 | |
| 			}
 | |
| 		}
 | |
| 		assert(accumbits < SHIFT);
 | |
| 		if (accumbits) {
 | |
| 			assert(idigit < (int)ndigits);
 | |
| 			v->ob_digit[idigit] = (digit)accum;
 | |
| 			++idigit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_SIZE(v) = is_signed ? -idigit : idigit;
 | |
| 	return (PyObject *)long_normalize(v);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_AsByteArray(PyLongObject* v,
 | |
| 		    unsigned char* bytes, size_t n,
 | |
| 		    int little_endian, int is_signed)
 | |
| {
 | |
| 	int i;			/* index into v->ob_digit */
 | |
| 	Py_ssize_t ndigits;		/* |v->ob_size| */
 | |
| 	twodigits accum;	/* sliding register */
 | |
| 	unsigned int accumbits; /* # bits in accum */
 | |
| 	int do_twos_comp;	/* store 2's-comp?  is_signed and v < 0 */
 | |
| 	twodigits carry;	/* for computing 2's-comp */
 | |
| 	size_t j;		/* # bytes filled */
 | |
| 	unsigned char* p;	/* pointer to next byte in bytes */
 | |
| 	int pincr;		/* direction to move p */
 | |
| 
 | |
| 	assert(v != NULL && PyLong_Check(v));
 | |
| 
 | |
| 	if (Py_SIZE(v) < 0) {
 | |
| 		ndigits = -(Py_SIZE(v));
 | |
| 		if (!is_signed) {
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 				"can't convert negative long to unsigned");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		do_twos_comp = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		ndigits = Py_SIZE(v);
 | |
| 		do_twos_comp = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (little_endian) {
 | |
| 		p = bytes;
 | |
| 		pincr = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		p = bytes + n - 1;
 | |
| 		pincr = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy over all the Python digits.
 | |
| 	   It's crucial that every Python digit except for the MSD contribute
 | |
| 	   exactly SHIFT bits to the total, so first assert that the long is
 | |
| 	   normalized. */
 | |
| 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | |
| 	j = 0;
 | |
| 	accum = 0;
 | |
| 	accumbits = 0;
 | |
| 	carry = do_twos_comp ? 1 : 0;
 | |
| 	for (i = 0; i < ndigits; ++i) {
 | |
| 		twodigits thisdigit = v->ob_digit[i];
 | |
| 		if (do_twos_comp) {
 | |
| 			thisdigit = (thisdigit ^ MASK) + carry;
 | |
| 			carry = thisdigit >> SHIFT;
 | |
| 			thisdigit &= MASK;
 | |
| 		}
 | |
| 		/* Because we're going LSB to MSB, thisdigit is more
 | |
| 		   significant than what's already in accum, so needs to be
 | |
| 		   prepended to accum. */
 | |
| 		accum |= thisdigit << accumbits;
 | |
| 		accumbits += SHIFT;
 | |
| 
 | |
| 		/* The most-significant digit may be (probably is) at least
 | |
| 		   partly empty. */
 | |
| 		if (i == ndigits - 1) {
 | |
| 			/* Count # of sign bits -- they needn't be stored,
 | |
| 			 * although for signed conversion we need later to
 | |
| 			 * make sure at least one sign bit gets stored.
 | |
| 			 * First shift conceptual sign bit to real sign bit.
 | |
| 			 */
 | |
| 			stwodigits s = (stwodigits)(thisdigit <<
 | |
| 				(8*sizeof(stwodigits) - SHIFT));
 | |
| 			unsigned int nsignbits = 0;
 | |
| 			while ((s < 0) == do_twos_comp && nsignbits < SHIFT) {
 | |
| 				++nsignbits;
 | |
| 				s <<= 1;
 | |
| 			}
 | |
| 			accumbits -= nsignbits;
 | |
| 		}
 | |
| 
 | |
| 		/* Store as many bytes as possible. */
 | |
| 		while (accumbits >= 8) {
 | |
| 			if (j >= n)
 | |
| 				goto Overflow;
 | |
| 			++j;
 | |
| 			*p = (unsigned char)(accum & 0xff);
 | |
| 			p += pincr;
 | |
| 			accumbits -= 8;
 | |
| 			accum >>= 8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Store the straggler (if any). */
 | |
| 	assert(accumbits < 8);
 | |
| 	assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
 | |
| 	if (accumbits > 0) {
 | |
| 		if (j >= n)
 | |
| 			goto Overflow;
 | |
| 		++j;
 | |
| 		if (do_twos_comp) {
 | |
| 			/* Fill leading bits of the byte with sign bits
 | |
| 			   (appropriately pretending that the long had an
 | |
| 			   infinite supply of sign bits). */
 | |
| 			accum |= (~(twodigits)0) << accumbits;
 | |
| 		}
 | |
| 		*p = (unsigned char)(accum & 0xff);
 | |
| 		p += pincr;
 | |
| 	}
 | |
| 	else if (j == n && n > 0 && is_signed) {
 | |
| 		/* The main loop filled the byte array exactly, so the code
 | |
| 		   just above didn't get to ensure there's a sign bit, and the
 | |
| 		   loop below wouldn't add one either.  Make sure a sign bit
 | |
| 		   exists. */
 | |
| 		unsigned char msb = *(p - pincr);
 | |
| 		int sign_bit_set = msb >= 0x80;
 | |
| 		assert(accumbits == 0);
 | |
| 		if (sign_bit_set == do_twos_comp)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			goto Overflow;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill remaining bytes with copies of the sign bit. */
 | |
| 	{
 | |
| 		unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
 | |
| 		for ( ; j < n; ++j, p += pincr)
 | |
| 			*p = signbyte;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError, "long too big to convert");
 | |
| 	return -1;
 | |
| 
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
 | |
| {
 | |
| /* NBITS_WANTED should be > the number of bits in a double's precision,
 | |
|    but small enough so that 2**NBITS_WANTED is within the normal double
 | |
|    range.  nbitsneeded is set to 1 less than that because the most-significant
 | |
|    Python digit contains at least 1 significant bit, but we don't want to
 | |
|    bother counting them (catering to the worst case cheaply).
 | |
| 
 | |
|    57 is one more than VAX-D double precision; I (Tim) don't know of a double
 | |
|    format with more precision than that; it's 1 larger so that we add in at
 | |
|    least one round bit to stand in for the ignored least-significant bits.
 | |
| */
 | |
| #define NBITS_WANTED 57
 | |
| 	PyLongObject *v;
 | |
| 	double x;
 | |
| 	const double multiplier = (double)(1L << SHIFT);
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 	int nbitsneeded;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	sign = 1;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	else if (i == 0) {
 | |
| 		*exponent = 0;
 | |
| 		return 0.0;
 | |
| 	}
 | |
| 	--i;
 | |
| 	x = (double)v->ob_digit[i];
 | |
| 	nbitsneeded = NBITS_WANTED - 1;
 | |
| 	/* Invariant:  i Python digits remain unaccounted for. */
 | |
| 	while (i > 0 && nbitsneeded > 0) {
 | |
| 		--i;
 | |
| 		x = x * multiplier + (double)v->ob_digit[i];
 | |
| 		nbitsneeded -= SHIFT;
 | |
| 	}
 | |
| 	/* There are i digits we didn't shift in.  Pretending they're all
 | |
| 	   zeroes, the true value is x * 2**(i*SHIFT). */
 | |
| 	*exponent = i;
 | |
| 	assert(x > 0.0);
 | |
| 	return x * sign;
 | |
| #undef NBITS_WANTED
 | |
| }
 | |
| 
 | |
| /* Get a C double from a long int object. */
 | |
| 
 | |
| double
 | |
| PyLong_AsDouble(PyObject *vv)
 | |
| {
 | |
| 	int e = -1;
 | |
| 	double x;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	x = _PyLong_AsScaledDouble(vv, &e);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return -1.0;
 | |
| 	/* 'e' initialized to -1 to silence gcc-4.0.x, but it should be
 | |
| 	   set correctly after a successful _PyLong_AsScaledDouble() call */
 | |
| 	assert(e >= 0);
 | |
| 	if (e > INT_MAX / SHIFT)
 | |
| 		goto overflow;
 | |
| 	errno = 0;
 | |
| 	x = ldexp(x, e * SHIFT);
 | |
| 	if (Py_OVERFLOWED(x))
 | |
| 		goto overflow;
 | |
| 	return x;
 | |
| 
 | |
| overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 		"long int too large to convert to float");
 | |
| 	return -1.0;
 | |
| }
 | |
| 
 | |
| /* Create a new long (or int) object from a C pointer */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromVoidPtr(void *p)
 | |
| {
 | |
| #if SIZEOF_VOID_P <= SIZEOF_LONG
 | |
| 	if ((long)p < 0)
 | |
| 		return PyLong_FromUnsignedLong((unsigned long)p);
 | |
| 	return PyInt_FromLong((long)p);
 | |
| #else
 | |
| 
 | |
| #ifndef HAVE_LONG_LONG
 | |
| #   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | |
| #endif
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | |
| #endif
 | |
| 	/* optimize null pointers */
 | |
| 	if (p == NULL)
 | |
| 		return PyInt_FromLong(0);
 | |
| 	return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
 | |
| 
 | |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | |
| }
 | |
| 
 | |
| /* Get a C pointer from a long object (or an int object in some cases) */
 | |
| 
 | |
| void *
 | |
| PyLong_AsVoidPtr(PyObject *vv)
 | |
| {
 | |
| 	/* This function will allow int or long objects. If vv is neither,
 | |
| 	   then the PyLong_AsLong*() functions will raise the exception:
 | |
| 	   PyExc_SystemError, "bad argument to internal function"
 | |
| 	*/
 | |
| #if SIZEOF_VOID_P <= SIZEOF_LONG
 | |
| 	long x;
 | |
| 
 | |
| 	if (PyInt_Check(vv))
 | |
| 		x = PyInt_AS_LONG(vv);
 | |
| 	else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | |
| 		x = PyLong_AsLong(vv);
 | |
| 	else
 | |
| 		x = PyLong_AsUnsignedLong(vv);
 | |
| #else
 | |
| 
 | |
| #ifndef HAVE_LONG_LONG
 | |
| #   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | |
| #endif
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | |
| #endif
 | |
| 	PY_LONG_LONG x;
 | |
| 
 | |
| 	if (PyInt_Check(vv))
 | |
| 		x = PyInt_AS_LONG(vv);
 | |
| 	else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | |
| 		x = PyLong_AsLongLong(vv);
 | |
| 	else
 | |
| 		x = PyLong_AsUnsignedLongLong(vv);
 | |
| 
 | |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | |
| 
 | |
| 	if (x == -1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return (void *)x;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_LONG_LONG
 | |
| 
 | |
| /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
 | |
|  * rewritten to use the newer PyLong_{As,From}ByteArray API.
 | |
|  */
 | |
| 
 | |
| #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
 | |
| 
 | |
| /* Create a new long int object from a C PY_LONG_LONG int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLongLong(PY_LONG_LONG ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */
 | |
| 	int ndigits = 0;
 | |
| 	int negative = 0;
 | |
| 
 | |
| 	if (ival < 0) {
 | |
| 		ival = -ival;
 | |
| 		negative = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Count the number of Python digits.
 | |
| 	   We used to pick 5 ("big enough for anything"), but that's a
 | |
| 	   waste of time and space given that 5*15 = 75 bits are rarely
 | |
| 	   needed. */
 | |
| 	t = (unsigned PY_LONG_LONG)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = negative ? -ndigits : ndigits;
 | |
| 		t = (unsigned PY_LONG_LONG)ival;
 | |
| 		while (t) {
 | |
| 			*p++ = (digit)(t & MASK);
 | |
| 			t >>= SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG t;
 | |
| 	int ndigits = 0;
 | |
| 
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = (unsigned PY_LONG_LONG)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits;
 | |
| 		while (ival) {
 | |
| 			*p++ = (digit)(ival & MASK);
 | |
| 			ival >>= SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C Py_ssize_t. */
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromSsize_t(Py_ssize_t ival)
 | |
| {
 | |
| 	Py_ssize_t bytes = ival;
 | |
| 	int one = 1;
 | |
| 	return _PyLong_FromByteArray(
 | |
| 			(unsigned char *)&bytes,
 | |
| 			SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1);
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C size_t. */
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromSize_t(size_t ival)
 | |
| {
 | |
| 	size_t bytes = ival;
 | |
| 	int one = 1;
 | |
| 	return _PyLong_FromByteArray(
 | |
| 			(unsigned char *)&bytes,
 | |
| 			SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
 | |
| }
 | |
| 
 | |
| /* Get a C PY_LONG_LONG int from a long int object.
 | |
|    Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| PY_LONG_LONG
 | |
| PyLong_AsLongLong(PyObject *vv)
 | |
| {
 | |
| 	PY_LONG_LONG bytes;
 | |
| 	int one = 1;
 | |
| 	int res;
 | |
| 
 | |
| 	if (vv == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (!PyLong_Check(vv)) {
 | |
| 		PyNumberMethods *nb;
 | |
| 		PyObject *io;
 | |
| 		if (PyInt_Check(vv))
 | |
| 			return (PY_LONG_LONG)PyInt_AsLong(vv);
 | |
| 		if ((nb = vv->ob_type->tp_as_number) == NULL ||
 | |
| 		    nb->nb_int == NULL) {
 | |
| 			PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		io = (*nb->nb_int) (vv);
 | |
| 		if (io == NULL)
 | |
| 			return -1;
 | |
| 		if (PyInt_Check(io)) {
 | |
| 			bytes = PyInt_AsLong(io);
 | |
| 			Py_DECREF(io);
 | |
| 			return bytes;
 | |
| 		}
 | |
| 		if (PyLong_Check(io)) {
 | |
| 			bytes = PyLong_AsLongLong(io);
 | |
| 			Py_DECREF(io);
 | |
| 			return bytes;
 | |
| 		}
 | |
| 		Py_DECREF(io);
 | |
| 		PyErr_SetString(PyExc_TypeError, "integer conversion failed");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	res = _PyLong_AsByteArray(
 | |
| 			(PyLongObject *)vv, (unsigned char *)&bytes,
 | |
| 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
 | |
| 
 | |
| 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | |
| 	if (res < 0)
 | |
| 		return (PY_LONG_LONG)-1;
 | |
| 	else
 | |
| 		return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned PY_LONG_LONG int from a long int object.
 | |
|    Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| unsigned PY_LONG_LONG
 | |
| PyLong_AsUnsignedLongLong(PyObject *vv)
 | |
| {
 | |
| 	unsigned PY_LONG_LONG bytes;
 | |
| 	int one = 1;
 | |
| 	int res;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned PY_LONG_LONG)-1;
 | |
| 	}
 | |
| 
 | |
| 	res = _PyLong_AsByteArray(
 | |
| 			(PyLongObject *)vv, (unsigned char *)&bytes,
 | |
| 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
 | |
| 
 | |
| 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | |
| 	if (res < 0)
 | |
| 		return (unsigned PY_LONG_LONG)res;
 | |
| 	else
 | |
| 		return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| unsigned PY_LONG_LONG
 | |
| PyLong_AsUnsignedLongLongMask(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = v->ob_size;
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -i;
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		x = (x << SHIFT) + v->ob_digit[i];
 | |
| 	}
 | |
| 	return x * sign;
 | |
| }
 | |
| #undef IS_LITTLE_ENDIAN
 | |
| 
 | |
| #endif /* HAVE_LONG_LONG */
 | |
| 
 | |
| 
 | |
| static int
 | |
| convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
 | |
| 	if (PyLong_Check(v)) {
 | |
| 		*a = (PyLongObject *) v;
 | |
| 		Py_INCREF(v);
 | |
| 	}
 | |
| 	else if (PyInt_Check(v)) {
 | |
| 		*a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
 | |
| 	}
 | |
| 	else {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (PyLong_Check(w)) {
 | |
| 		*b = (PyLongObject *) w;
 | |
| 		Py_INCREF(w);
 | |
| 	}
 | |
| 	else if (PyInt_Check(w)) {
 | |
| 		*b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_DECREF(*a);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #define CONVERT_BINOP(v, w, a, b) \
 | |
| 	if (!convert_binop(v, w, a, b)) { \
 | |
| 		Py_INCREF(Py_NotImplemented); \
 | |
| 		return Py_NotImplemented; \
 | |
| 	}
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by adding y to it.  Carries are propagated as far as
 | |
|  * x[m-1], and the remaining carry (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
| 	int i;
 | |
| 	digit carry = 0;
 | |
| 
 | |
| 	assert(m >= n);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		carry += x[i] + y[i];
 | |
| 		x[i] = carry & MASK;
 | |
| 		carry >>= SHIFT;
 | |
| 		assert((carry & 1) == carry);
 | |
| 	}
 | |
| 	for (; carry && i < m; ++i) {
 | |
| 		carry += x[i];
 | |
| 		x[i] = carry & MASK;
 | |
| 		carry >>= SHIFT;
 | |
| 		assert((carry & 1) == carry);
 | |
| 	}
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by subtracting y from it.  Borrows are propagated as
 | |
|  * far as x[m-1], and the remaining borrow (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
| 	int i;
 | |
| 	digit borrow = 0;
 | |
| 
 | |
| 	assert(m >= n);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		borrow = x[i] - y[i] - borrow;
 | |
| 		x[i] = borrow & MASK;
 | |
| 		borrow >>= SHIFT;
 | |
| 		borrow &= 1;	/* keep only 1 sign bit */
 | |
| 	}
 | |
| 	for (; borrow && i < m; ++i) {
 | |
| 		borrow = x[i] - borrow;
 | |
| 		x[i] = borrow & MASK;
 | |
| 		borrow >>= SHIFT;
 | |
| 		borrow &= 1;
 | |
| 	}
 | |
| 	return borrow;
 | |
| }
 | |
| 
 | |
| /* Multiply by a single digit, ignoring the sign. */
 | |
| 
 | |
| static PyLongObject *
 | |
| mul1(PyLongObject *a, wdigit n)
 | |
| {
 | |
| 	return muladd1(a, n, (digit)0);
 | |
| }
 | |
| 
 | |
| /* Multiply by a single digit and add a single digit, ignoring the sign. */
 | |
| 
 | |
| static PyLongObject *
 | |
| muladd1(PyLongObject *a, wdigit n, wdigit extra)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a));
 | |
| 	PyLongObject *z = _PyLong_New(size_a+1);
 | |
| 	twodigits carry = extra;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < size_a; ++i) {
 | |
| 		carry += (twodigits)a->ob_digit[i] * n;
 | |
| 		z->ob_digit[i] = (digit) (carry & MASK);
 | |
| 		carry >>= SHIFT;
 | |
| 	}
 | |
| 	z->ob_digit[i] = (digit) carry;
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
 | |
|    in pout, and returning the remainder.  pin and pout point at the LSD.
 | |
|    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
 | |
|    long_format, but that should be done with great care since longs are
 | |
|    immutable. */
 | |
| 
 | |
| static digit
 | |
| inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
 | |
| {
 | |
| 	twodigits rem = 0;
 | |
| 
 | |
| 	assert(n > 0 && n <= MASK);
 | |
| 	pin += size;
 | |
| 	pout += size;
 | |
| 	while (--size >= 0) {
 | |
| 		digit hi;
 | |
| 		rem = (rem << SHIFT) + *--pin;
 | |
| 		*--pout = hi = (digit)(rem / n);
 | |
| 		rem -= hi * n;
 | |
| 	}
 | |
| 	return (digit)rem;
 | |
| }
 | |
| 
 | |
| /* Divide a long integer by a digit, returning both the quotient
 | |
|    (as function result) and the remainder (through *prem).
 | |
|    The sign of a is ignored; n should not be zero. */
 | |
| 
 | |
| static PyLongObject *
 | |
| divrem1(PyLongObject *a, digit n, digit *prem)
 | |
| {
 | |
| 	const Py_ssize_t size = ABS(Py_SIZE(a));
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	assert(n > 0 && n <= MASK);
 | |
| 	z = _PyLong_New(size);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Convert a long int object to a string, using a given conversion base.
 | |
|    Return a string object.
 | |
|    If base is 8 or 16, add the proper prefix '0' or '0x'. */
 | |
| 
 | |
| static PyObject *
 | |
| long_format(PyObject *aa, int base, int addL)
 | |
| {
 | |
| 	register PyLongObject *a = (PyLongObject *)aa;
 | |
| 	PyStringObject *str;
 | |
| 	Py_ssize_t i, j, sz;
 | |
| 	Py_ssize_t size_a;
 | |
| 	char *p;
 | |
| 	int bits;
 | |
| 	char sign = '\0';
 | |
| 
 | |
| 	if (a == NULL || !PyLong_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	assert(base >= 2 && base <= 36);
 | |
| 	size_a = ABS(Py_SIZE(a));
 | |
| 
 | |
| 	/* Compute a rough upper bound for the length of the string */
 | |
| 	i = base;
 | |
| 	bits = 0;
 | |
| 	while (i > 1) {
 | |
| 		++bits;
 | |
| 		i >>= 1;
 | |
| 	}
 | |
| 	i = 5 + (addL ? 1 : 0);
 | |
| 	j = size_a*SHIFT + bits-1;
 | |
| 	sz = i + j / bits;
 | |
| 	if (j / SHIFT < size_a || sz < i) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"long is too large to format");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz);
 | |
| 	if (str == NULL)
 | |
| 		return NULL;
 | |
| 	p = PyString_AS_STRING(str) + sz;
 | |
| 	*p = '\0';
 | |
|         if (addL)
 | |
|                 *--p = 'L';
 | |
| 	if (a->ob_size < 0)
 | |
| 		sign = '-';
 | |
| 
 | |
| 	if (a->ob_size == 0) {
 | |
| 		*--p = '0';
 | |
| 	}
 | |
| 	else if ((base & (base - 1)) == 0) {
 | |
| 		/* JRH: special case for power-of-2 bases */
 | |
| 		twodigits accum = 0;
 | |
| 		int accumbits = 0;	/* # of bits in accum */
 | |
| 		int basebits = 1;	/* # of bits in base-1 */
 | |
| 		i = base;
 | |
| 		while ((i >>= 1) > 1)
 | |
| 			++basebits;
 | |
| 
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			accum |= (twodigits)a->ob_digit[i] << accumbits;
 | |
| 			accumbits += SHIFT;
 | |
| 			assert(accumbits >= basebits);
 | |
| 			do {
 | |
| 				char cdigit = (char)(accum & (base - 1));
 | |
| 				cdigit += (cdigit < 10) ? '0' : 'a'-10;
 | |
| 				assert(p > PyString_AS_STRING(str));
 | |
| 				*--p = cdigit;
 | |
| 				accumbits -= basebits;
 | |
| 				accum >>= basebits;
 | |
| 			} while (i < size_a-1 ? accumbits >= basebits :
 | |
| 					 	accum > 0);
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Not 0, and base not a power of 2.  Divide repeatedly by
 | |
| 		   base, but for speed use the highest power of base that
 | |
| 		   fits in a digit. */
 | |
| 		Py_ssize_t size = size_a;
 | |
| 		digit *pin = a->ob_digit;
 | |
| 		PyLongObject *scratch;
 | |
| 		/* powbasw <- largest power of base that fits in a digit. */
 | |
| 		digit powbase = base;  /* powbase == base ** power */
 | |
| 		int power = 1;
 | |
| 		for (;;) {
 | |
| 			unsigned long newpow = powbase * (unsigned long)base;
 | |
| 			if (newpow >> SHIFT)  /* doesn't fit in a digit */
 | |
| 				break;
 | |
| 			powbase = (digit)newpow;
 | |
| 			++power;
 | |
| 		}
 | |
| 
 | |
| 		/* Get a scratch area for repeated division. */
 | |
| 		scratch = _PyLong_New(size);
 | |
| 		if (scratch == NULL) {
 | |
| 			Py_DECREF(str);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* Repeatedly divide by powbase. */
 | |
| 		do {
 | |
| 			int ntostore = power;
 | |
| 			digit rem = inplace_divrem1(scratch->ob_digit,
 | |
| 						     pin, size, powbase);
 | |
| 			pin = scratch->ob_digit; /* no need to use a again */
 | |
| 			if (pin[size - 1] == 0)
 | |
| 				--size;
 | |
| 			SIGCHECK({
 | |
| 				Py_DECREF(scratch);
 | |
| 				Py_DECREF(str);
 | |
| 				return NULL;
 | |
| 			})
 | |
| 
 | |
| 			/* Break rem into digits. */
 | |
| 			assert(ntostore > 0);
 | |
| 			do {
 | |
| 				digit nextrem = (digit)(rem / base);
 | |
| 				char c = (char)(rem - nextrem * base);
 | |
| 				assert(p > PyString_AS_STRING(str));
 | |
| 				c += (c < 10) ? '0' : 'a'-10;
 | |
| 				*--p = c;
 | |
| 				rem = nextrem;
 | |
| 				--ntostore;
 | |
| 				/* Termination is a bit delicate:  must not
 | |
| 				   store leading zeroes, so must get out if
 | |
| 				   remaining quotient and rem are both 0. */
 | |
| 			} while (ntostore && (size || rem));
 | |
| 		} while (size != 0);
 | |
| 		Py_DECREF(scratch);
 | |
| 	}
 | |
| 
 | |
| 	if (base == 8) {
 | |
| 		if (size_a != 0)
 | |
| 			*--p = '0';
 | |
| 	}
 | |
| 	else if (base == 16) {
 | |
| 		*--p = 'x';
 | |
| 		*--p = '0';
 | |
| 	}
 | |
| 	else if (base != 10) {
 | |
| 		*--p = '#';
 | |
| 		*--p = '0' + base%10;
 | |
| 		if (base > 10)
 | |
| 			*--p = '0' + base/10;
 | |
| 	}
 | |
| 	if (sign)
 | |
| 		*--p = sign;
 | |
| 	if (p != PyString_AS_STRING(str)) {
 | |
| 		char *q = PyString_AS_STRING(str);
 | |
| 		assert(p > q);
 | |
| 		do {
 | |
| 		} while ((*q++ = *p++) != '\0');
 | |
| 		q--;
 | |
| 		_PyString_Resize((PyObject **)&str,
 | |
| 				 (Py_ssize_t) (q - PyString_AS_STRING(str)));
 | |
| 	}
 | |
| 	return (PyObject *)str;
 | |
| }
 | |
| 
 | |
| /* Table of digit values for 8-bit string -> integer conversion.
 | |
|  * '0' maps to 0, ..., '9' maps to 9.
 | |
|  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
 | |
|  * All other indices map to 37.
 | |
|  * Note that when converting a base B string, a char c is a legitimate
 | |
|  * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
 | |
|  */
 | |
| int _PyLong_DigitValue[256] = {
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
 | |
| 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
| 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
| 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
| 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| };
 | |
| 
 | |
| /* *str points to the first digit in a string of base `base` digits.  base
 | |
|  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
 | |
|  * non-digit (which may be *str!).  A normalized long is returned.
 | |
|  * The point to this routine is that it takes time linear in the number of
 | |
|  * string characters.
 | |
|  */
 | |
| static PyLongObject *
 | |
| long_from_binary_base(char **str, int base)
 | |
| {
 | |
| 	char *p = *str;
 | |
| 	char *start = p;
 | |
| 	int bits_per_char;
 | |
| 	Py_ssize_t n;
 | |
| 	PyLongObject *z;
 | |
| 	twodigits accum;
 | |
| 	int bits_in_accum;
 | |
| 	digit *pdigit;
 | |
| 
 | |
| 	assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
 | |
| 	n = base;
 | |
| 	for (bits_per_char = -1; n; ++bits_per_char)
 | |
| 		n >>= 1;
 | |
| 	/* n <- total # of bits needed, while setting p to end-of-string */
 | |
| 	n = 0;
 | |
| 	while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
 | |
| 		++p;
 | |
| 	*str = p;
 | |
| 	/* n <- # of Python digits needed, = ceiling(n/SHIFT). */
 | |
| 	n = (p - start) * bits_per_char + SHIFT - 1;
 | |
| 	if (n / bits_per_char < p - start) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"long string too large to convert");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	n = n / SHIFT;
 | |
| 	z = _PyLong_New(n);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	/* Read string from right, and fill in long from left; i.e.,
 | |
| 	 * from least to most significant in both.
 | |
| 	 */
 | |
| 	accum = 0;
 | |
| 	bits_in_accum = 0;
 | |
| 	pdigit = z->ob_digit;
 | |
| 	while (--p >= start) {
 | |
| 		int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
 | |
| 		assert(k >= 0 && k < base);
 | |
| 		accum |= (twodigits)(k << bits_in_accum);
 | |
| 		bits_in_accum += bits_per_char;
 | |
| 		if (bits_in_accum >= SHIFT) {
 | |
| 			*pdigit++ = (digit)(accum & MASK);
 | |
| 			assert(pdigit - z->ob_digit <= (int)n);
 | |
| 			accum >>= SHIFT;
 | |
| 			bits_in_accum -= SHIFT;
 | |
| 			assert(bits_in_accum < SHIFT);
 | |
| 		}
 | |
| 	}
 | |
| 	if (bits_in_accum) {
 | |
| 		assert(bits_in_accum <= SHIFT);
 | |
| 		*pdigit++ = (digit)accum;
 | |
| 		assert(pdigit - z->ob_digit <= (int)n);
 | |
| 	}
 | |
| 	while (pdigit - z->ob_digit < n)
 | |
| 		*pdigit++ = 0;
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromString(char *str, char **pend, int base)
 | |
| {
 | |
| 	int sign = 1;
 | |
| 	char *start, *orig_str = str;
 | |
| 	PyLongObject *z;
 | |
| 	PyObject *strobj, *strrepr;
 | |
| 	Py_ssize_t slen;
 | |
| 
 | |
| 	if ((base != 0 && base < 2) || base > 36) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"long() arg 2 must be >= 2 and <= 36");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	while (*str != '\0' && isspace(Py_CHARMASK(*str)))
 | |
| 		str++;
 | |
| 	if (*str == '+')
 | |
| 		++str;
 | |
| 	else if (*str == '-') {
 | |
| 		++str;
 | |
| 		sign = -1;
 | |
| 	}
 | |
| 	while (*str != '\0' && isspace(Py_CHARMASK(*str)))
 | |
| 		str++;
 | |
| 	if (base == 0) {
 | |
| 		if (str[0] != '0')
 | |
| 			base = 10;
 | |
| 		else if (str[1] == 'x' || str[1] == 'X')
 | |
| 			base = 16;
 | |
| 		else
 | |
| 			base = 8;
 | |
| 	}
 | |
| 	if (base == 16 && str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
 | |
| 		str += 2;
 | |
| 
 | |
| 	start = str;
 | |
| 	if ((base & (base - 1)) == 0)
 | |
| 		z = long_from_binary_base(&str, base);
 | |
| 	else {
 | |
| /***
 | |
| Binary bases can be converted in time linear in the number of digits, because
 | |
| Python's representation base is binary.  Other bases (including decimal!) use
 | |
| the simple quadratic-time algorithm below, complicated by some speed tricks.
 | |
| 
 | |
| First some math:  the largest integer that can be expressed in N base-B digits
 | |
| is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
 | |
| case number of Python digits needed to hold it is the smallest integer n s.t.
 | |
| 
 | |
|     BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
 | |
|     BASE**n >= B**N      [taking logs to base BASE]
 | |
|     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
 | |
| 
 | |
| The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
 | |
| this quickly.  A Python long with that much space is reserved near the start,
 | |
| and the result is computed into it.
 | |
| 
 | |
| The input string is actually treated as being in base base**i (i.e., i digits
 | |
| are processed at a time), where two more static arrays hold:
 | |
| 
 | |
|     convwidth_base[base] = the largest integer i such that base**i <= BASE
 | |
|     convmultmax_base[base] = base ** convwidth_base[base]
 | |
| 
 | |
| The first of these is the largest i such that i consecutive input digits
 | |
| must fit in a single Python digit.  The second is effectively the input
 | |
| base we're really using.
 | |
| 
 | |
| Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
 | |
| convmultmax_base[base], the result is "simply"
 | |
| 
 | |
|    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
 | |
| 
 | |
| where B = convmultmax_base[base].
 | |
| 
 | |
| Error analysis:  as above, the number of Python digits `n` needed is worst-
 | |
| case
 | |
| 
 | |
|     n >= N * log(B)/log(BASE)
 | |
| 
 | |
| where `N` is the number of input digits in base `B`.  This is computed via
 | |
| 
 | |
|     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | |
| 
 | |
| below.  Two numeric concerns are how much space this can waste, and whether
 | |
| the computed result can be too small.  To be concrete, assume BASE = 2**15,
 | |
| which is the default (and it's unlikely anyone changes that).
 | |
| 
 | |
| Waste isn't a problem:  provided the first input digit isn't 0, the difference
 | |
| between the worst-case input with N digits and the smallest input with N
 | |
| digits is about a factor of B, but B is small compared to BASE so at most
 | |
| one allocated Python digit can remain unused on that count.  If
 | |
| N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
 | |
| and adding 1 returns a result 1 larger than necessary.  However, that can't
 | |
| happen:  whenever B is a power of 2, long_from_binary_base() is called
 | |
| instead, and it's impossible for B**i to be an integer power of 2**15 when
 | |
| B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
 | |
| an exact integer when B is not a power of 2, since B**i has a prime factor
 | |
| other than 2 in that case, but (2**15)**j's only prime factor is 2).
 | |
| 
 | |
| The computed result can be too small if the true value of N*log(B)/log(BASE)
 | |
| is a little bit larger than an exact integer, but due to roundoff errors (in
 | |
| computing log(B), log(BASE), their quotient, and/or multiplying that by N)
 | |
| yields a numeric result a little less than that integer.  Unfortunately, "how
 | |
| close can a transcendental function get to an integer over some range?"
 | |
| questions are generally theoretically intractable.  Computer analysis via
 | |
| continued fractions is practical:  expand log(B)/log(BASE) via continued
 | |
| fractions, giving a sequence i/j of "the best" rational approximations.  Then
 | |
| j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
 | |
| we can get very close to being in trouble, but very rarely.  For example,
 | |
| 76573 is a denominator in one of the continued-fraction approximations to
 | |
| log(10)/log(2**15), and indeed:
 | |
| 
 | |
|     >>> log(10)/log(2**15)*76573
 | |
|     16958.000000654003
 | |
| 
 | |
| is very close to an integer.  If we were working with IEEE single-precision,
 | |
| rounding errors could kill us.  Finding worst cases in IEEE double-precision
 | |
| requires better-than-double-precision log() functions, and Tim didn't bother.
 | |
| Instead the code checks to see whether the allocated space is enough as each
 | |
| new Python digit is added, and copies the whole thing to a larger long if not.
 | |
| This should happen extremely rarely, and in fact I don't have a test case
 | |
| that triggers it(!).  Instead the code was tested by artificially allocating
 | |
| just 1 digit at the start, so that the copying code was exercised for every
 | |
| digit beyond the first.
 | |
| ***/
 | |
| 		register twodigits c;	/* current input character */
 | |
| 		Py_ssize_t size_z;
 | |
| 		int i;
 | |
| 		int convwidth;
 | |
| 		twodigits convmultmax, convmult;
 | |
| 		digit *pz, *pzstop;
 | |
| 		char* scan;
 | |
| 
 | |
| 		static double log_base_BASE[37] = {0.0e0,};
 | |
| 		static int convwidth_base[37] = {0,};
 | |
| 		static twodigits convmultmax_base[37] = {0,};
 | |
| 
 | |
| 		if (log_base_BASE[base] == 0.0) {
 | |
| 			twodigits convmax = base;
 | |
| 			int i = 1;
 | |
| 
 | |
| 			log_base_BASE[base] = log((double)base) /
 | |
| 						log((double)BASE);
 | |
| 			for (;;) {
 | |
| 				twodigits next = convmax * base;
 | |
| 				if (next > BASE)
 | |
| 					break;
 | |
| 				convmax = next;
 | |
| 				++i;
 | |
| 			}
 | |
| 			convmultmax_base[base] = convmax;
 | |
| 			assert(i > 0);
 | |
| 			convwidth_base[base] = i;
 | |
| 		}
 | |
| 
 | |
| 		/* Find length of the string of numeric characters. */
 | |
| 		scan = str;
 | |
| 		while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
 | |
| 			++scan;
 | |
| 
 | |
| 		/* Create a long object that can contain the largest possible
 | |
| 		 * integer with this base and length.  Note that there's no
 | |
| 		 * need to initialize z->ob_digit -- no slot is read up before
 | |
| 		 * being stored into.
 | |
| 		 */
 | |
| 		size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | |
| 		/* Uncomment next line to test exceedingly rare copy code */
 | |
| 		/* size_z = 1; */
 | |
| 		assert(size_z > 0);
 | |
| 		z = _PyLong_New(size_z);
 | |
| 		if (z == NULL)
 | |
| 			return NULL;
 | |
| 		Py_SIZE(z) = 0;
 | |
| 
 | |
| 		/* `convwidth` consecutive input digits are treated as a single
 | |
| 		 * digit in base `convmultmax`.
 | |
| 		 */
 | |
| 		convwidth = convwidth_base[base];
 | |
| 		convmultmax = convmultmax_base[base];
 | |
| 
 | |
| 		/* Work ;-) */
 | |
| 		while (str < scan) {
 | |
| 			/* grab up to convwidth digits from the input string */
 | |
| 			c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
 | |
| 			for (i = 1; i < convwidth && str != scan; ++i, ++str) {
 | |
| 				c = (twodigits)(c *  base +
 | |
| 					_PyLong_DigitValue[Py_CHARMASK(*str)]);
 | |
| 				assert(c < BASE);
 | |
| 			}
 | |
| 
 | |
| 			convmult = convmultmax;
 | |
| 			/* Calculate the shift only if we couldn't get
 | |
| 			 * convwidth digits.
 | |
| 			 */
 | |
| 			if (i != convwidth) {
 | |
| 				convmult = base;
 | |
| 				for ( ; i > 1; --i)
 | |
| 					convmult *= base;
 | |
| 			}
 | |
| 
 | |
| 			/* Multiply z by convmult, and add c. */
 | |
| 			pz = z->ob_digit;
 | |
| 			pzstop = pz + Py_SIZE(z);
 | |
| 			for (; pz < pzstop; ++pz) {
 | |
| 				c += (twodigits)*pz * convmult;
 | |
| 				*pz = (digit)(c & MASK);
 | |
| 				c >>= SHIFT;
 | |
| 			}
 | |
| 			/* carry off the current end? */
 | |
| 			if (c) {
 | |
| 				assert(c < BASE);
 | |
| 				if (Py_SIZE(z) < size_z) {
 | |
| 					*pz = (digit)c;
 | |
| 					++Py_SIZE(z);
 | |
| 				}
 | |
| 				else {
 | |
| 					PyLongObject *tmp;
 | |
| 					/* Extremely rare.  Get more space. */
 | |
| 					assert(Py_SIZE(z) == size_z);
 | |
| 					tmp = _PyLong_New(size_z + 1);
 | |
| 					if (tmp == NULL) {
 | |
| 						Py_DECREF(z);
 | |
| 						return NULL;
 | |
| 					}
 | |
| 					memcpy(tmp->ob_digit,
 | |
| 					       z->ob_digit,
 | |
| 					       sizeof(digit) * size_z);
 | |
| 					Py_DECREF(z);
 | |
| 					z = tmp;
 | |
| 					z->ob_digit[size_z] = (digit)c;
 | |
| 					++size_z;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	if (str == start)
 | |
| 		goto onError;
 | |
| 	if (sign < 0)
 | |
| 		Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 	if (*str == 'L' || *str == 'l')
 | |
| 		str++;
 | |
| 	while (*str && isspace(Py_CHARMASK(*str)))
 | |
| 		str++;
 | |
| 	if (*str != '\0')
 | |
| 		goto onError;
 | |
| 	if (pend)
 | |
| 		*pend = str;
 | |
| 	return (PyObject *) z;
 | |
| 
 | |
|  onError:
 | |
| 	Py_XDECREF(z);
 | |
| 	slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
 | |
| 	strobj = PyString_FromStringAndSize(orig_str, slen);
 | |
| 	if (strobj == NULL)
 | |
| 		return NULL;
 | |
| 	strrepr = PyObject_Repr(strobj);
 | |
| 	Py_DECREF(strobj);
 | |
| 	if (strrepr == NULL)
 | |
| 		return NULL;
 | |
| 	PyErr_Format(PyExc_ValueError,
 | |
| 		     "invalid literal for long() with base %d: %s",
 | |
| 		     base, PyString_AS_STRING(strrepr));
 | |
| 	Py_DECREF(strrepr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef Py_USING_UNICODE
 | |
| PyObject *
 | |
| PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 	char *buffer = (char *)PyMem_MALLOC(length+1);
 | |
| 
 | |
| 	if (buffer == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
 | |
| 		PyMem_FREE(buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	result = PyLong_FromString(buffer, NULL, base);
 | |
| 	PyMem_FREE(buffer);
 | |
| 	return result;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* forward */
 | |
| static PyLongObject *x_divrem
 | |
| 	(PyLongObject *, PyLongObject *, PyLongObject **);
 | |
| static PyObject *long_pos(PyLongObject *);
 | |
| static int long_divrem(PyLongObject *, PyLongObject *,
 | |
| 	PyLongObject **, PyLongObject **);
 | |
| 
 | |
| /* Long division with remainder, top-level routine */
 | |
| 
 | |
| static int
 | |
| long_divrem(PyLongObject *a, PyLongObject *b,
 | |
| 	    PyLongObject **pdiv, PyLongObject **prem)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	if (size_b == 0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 				"long division or modulo by zero");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (size_a < size_b ||
 | |
| 	    (size_a == size_b &&
 | |
| 	     a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
 | |
| 		/* |a| < |b|. */
 | |
| 		*pdiv = _PyLong_New(0);
 | |
| 		if (*pdiv == NULL)
 | |
| 			return -1;
 | |
| 		Py_INCREF(a);
 | |
| 		*prem = (PyLongObject *) a;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (size_b == 1) {
 | |
| 		digit rem = 0;
 | |
| 		z = divrem1(a, b->ob_digit[0], &rem);
 | |
| 		if (z == NULL)
 | |
| 			return -1;
 | |
| 		*prem = (PyLongObject *) PyLong_FromLong((long)rem);
 | |
| 		if (*prem == NULL) {
 | |
| 			Py_DECREF(z);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		z = x_divrem(a, b, prem);
 | |
| 		if (z == NULL)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	/* Set the signs.
 | |
| 	   The quotient z has the sign of a*b;
 | |
| 	   the remainder r has the sign of a,
 | |
| 	   so a = b*z + r. */
 | |
| 	if ((a->ob_size < 0) != (b->ob_size < 0))
 | |
| 		z->ob_size = -(z->ob_size);
 | |
| 	if (a->ob_size < 0 && (*prem)->ob_size != 0)
 | |
| 		(*prem)->ob_size = -((*prem)->ob_size);
 | |
| 	*pdiv = z;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unsigned long division with remainder -- the algorithm */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
 | |
| {
 | |
| 	Py_ssize_t size_v = ABS(Py_SIZE(v1)), size_w = ABS(Py_SIZE(w1));
 | |
| 	digit d = (digit) ((twodigits)BASE / (w1->ob_digit[size_w-1] + 1));
 | |
| 	PyLongObject *v = mul1(v1, d);
 | |
| 	PyLongObject *w = mul1(w1, d);
 | |
| 	PyLongObject *a;
 | |
| 	Py_ssize_t j, k;
 | |
| 
 | |
| 	if (v == NULL || w == NULL) {
 | |
| 		Py_XDECREF(v);
 | |
| 		Py_XDECREF(w);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	assert(size_v >= size_w && size_w > 1); /* Assert checks by div() */
 | |
| 	assert(Py_REFCNT(v) == 1); /* Since v will be used as accumulator! */
 | |
| 	assert(size_w == ABS(Py_SIZE(w))); /* That's how d was calculated */
 | |
| 
 | |
| 	size_v = ABS(Py_SIZE(v));
 | |
| 	k = size_v - size_w;
 | |
| 	a = _PyLong_New(k + 1);
 | |
| 
 | |
| 	for (j = size_v; a != NULL && k >= 0; --j, --k) {
 | |
| 		digit vj = (j >= size_v) ? 0 : v->ob_digit[j];
 | |
| 		twodigits q;
 | |
| 		stwodigits carry = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		SIGCHECK({
 | |
| 			Py_DECREF(a);
 | |
| 			a = NULL;
 | |
| 			break;
 | |
| 		})
 | |
| 		if (vj == w->ob_digit[size_w-1])
 | |
| 			q = MASK;
 | |
| 		else
 | |
| 			q = (((twodigits)vj << SHIFT) + v->ob_digit[j-1]) /
 | |
| 				w->ob_digit[size_w-1];
 | |
| 
 | |
| 		while (w->ob_digit[size_w-2]*q >
 | |
| 				((
 | |
| 					((twodigits)vj << SHIFT)
 | |
| 					+ v->ob_digit[j-1]
 | |
| 					- q*w->ob_digit[size_w-1]
 | |
| 								) << SHIFT)
 | |
| 				+ v->ob_digit[j-2])
 | |
| 			--q;
 | |
| 
 | |
| 		for (i = 0; i < size_w && i+k < size_v; ++i) {
 | |
| 			twodigits z = w->ob_digit[i] * q;
 | |
| 			digit zz = (digit) (z >> SHIFT);
 | |
| 			carry += v->ob_digit[i+k] - z
 | |
| 				+ ((twodigits)zz << SHIFT);
 | |
| 			v->ob_digit[i+k] = (digit)(carry & MASK);
 | |
| 			carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE,
 | |
| 							  carry, SHIFT);
 | |
| 			carry -= zz;
 | |
| 		}
 | |
| 
 | |
| 		if (i+k < size_v) {
 | |
| 			carry += v->ob_digit[i+k];
 | |
| 			v->ob_digit[i+k] = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (carry == 0)
 | |
| 			a->ob_digit[k] = (digit) q;
 | |
| 		else {
 | |
| 			assert(carry == -1);
 | |
| 			a->ob_digit[k] = (digit) q-1;
 | |
| 			carry = 0;
 | |
| 			for (i = 0; i < size_w && i+k < size_v; ++i) {
 | |
| 				carry += v->ob_digit[i+k] + w->ob_digit[i];
 | |
| 				v->ob_digit[i+k] = (digit)(carry & MASK);
 | |
| 				carry = Py_ARITHMETIC_RIGHT_SHIFT(
 | |
| 						BASE_TWODIGITS_TYPE,
 | |
| 						carry, SHIFT);
 | |
| 			}
 | |
| 		}
 | |
| 	} /* for j, k */
 | |
| 
 | |
| 	if (a == NULL)
 | |
| 		*prem = NULL;
 | |
| 	else {
 | |
| 		a = long_normalize(a);
 | |
| 		*prem = divrem1(v, d, &d);
 | |
| 		/* d receives the (unused) remainder */
 | |
| 		if (*prem == NULL) {
 | |
| 			Py_DECREF(a);
 | |
| 			a = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	Py_DECREF(v);
 | |
| 	Py_DECREF(w);
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| long_dealloc(PyObject *v)
 | |
| {
 | |
| 	Py_TYPE(v)->tp_free(v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_repr(PyObject *v)
 | |
| {
 | |
| 	return long_format(v, 10, 1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_str(PyObject *v)
 | |
| {
 | |
| 	return long_format(v, 10, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_compare(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t sign;
 | |
| 
 | |
| 	if (Py_SIZE(a) != Py_SIZE(b)) {
 | |
| 		if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
 | |
| 			sign = 0;
 | |
| 		else
 | |
| 			sign = Py_SIZE(a) - Py_SIZE(b);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_ssize_t i = ABS(Py_SIZE(a));
 | |
| 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | |
| 			;
 | |
| 		if (i < 0)
 | |
| 			sign = 0;
 | |
| 		else {
 | |
| 			sign = (int)a->ob_digit[i] - (int)b->ob_digit[i];
 | |
| 			if (Py_SIZE(a) < 0)
 | |
| 				sign = -sign;
 | |
| 		}
 | |
| 	}
 | |
| 	return sign < 0 ? -1 : sign > 0 ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static long
 | |
| long_hash(PyLongObject *v)
 | |
| {
 | |
| 	long x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	/* This is designed so that Python ints and longs with the
 | |
| 	   same value hash to the same value, otherwise comparisons
 | |
| 	   of mapping keys will turn out weird */
 | |
| 	i = v->ob_size;
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| #define LONG_BIT_SHIFT	(8*sizeof(long) - SHIFT)
 | |
| 	/* The following loop produces a C long x such that (unsigned long)x
 | |
| 	   is congruent to the absolute value of v modulo ULONG_MAX.  The
 | |
| 	   resulting x is nonzero if and only if v is. */
 | |
| 	while (--i >= 0) {
 | |
| 		/* Force a native long #-bits (32 or 64) circular shift */
 | |
| 		x = ((x << SHIFT) & ~MASK) | ((x >> LONG_BIT_SHIFT) & MASK);
 | |
| 		x += v->ob_digit[i];
 | |
| 		/* If the addition above overflowed (thinking of x as
 | |
| 		   unsigned), we compensate by incrementing.  This preserves
 | |
| 		   the value modulo ULONG_MAX. */
 | |
| 		if ((unsigned long)x < v->ob_digit[i])
 | |
| 			x++;
 | |
| 	}
 | |
| #undef LONG_BIT_SHIFT
 | |
| 	x = x * sign;
 | |
| 	if (x == -1)
 | |
| 		x = -2;
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Add the absolute values of two long integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 	int i;
 | |
| 	digit carry = 0;
 | |
| 
 | |
| 	/* Ensure a is the larger of the two: */
 | |
| 	if (size_a < size_b) {
 | |
| 		{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		{ Py_ssize_t size_temp = size_a;
 | |
| 		  size_a = size_b;
 | |
| 		  size_b = size_temp; }
 | |
| 	}
 | |
| 	z = _PyLong_New(size_a+1);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < size_b; ++i) {
 | |
| 		carry += a->ob_digit[i] + b->ob_digit[i];
 | |
| 		z->ob_digit[i] = carry & MASK;
 | |
| 		carry >>= SHIFT;
 | |
| 	}
 | |
| 	for (; i < size_a; ++i) {
 | |
| 		carry += a->ob_digit[i];
 | |
| 		z->ob_digit[i] = carry & MASK;
 | |
| 		carry >>= SHIFT;
 | |
| 	}
 | |
| 	z->ob_digit[i] = carry;
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Subtract the absolute values of two integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_sub(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign = 1;
 | |
| 	digit borrow = 0;
 | |
| 
 | |
| 	/* Ensure a is the larger of the two: */
 | |
| 	if (size_a < size_b) {
 | |
| 		sign = -1;
 | |
| 		{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		{ Py_ssize_t size_temp = size_a;
 | |
| 		  size_a = size_b;
 | |
| 		  size_b = size_temp; }
 | |
| 	}
 | |
| 	else if (size_a == size_b) {
 | |
| 		/* Find highest digit where a and b differ: */
 | |
| 		i = size_a;
 | |
| 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | |
| 			;
 | |
| 		if (i < 0)
 | |
| 			return _PyLong_New(0);
 | |
| 		if (a->ob_digit[i] < b->ob_digit[i]) {
 | |
| 			sign = -1;
 | |
| 			{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		}
 | |
| 		size_a = size_b = i+1;
 | |
| 	}
 | |
| 	z = _PyLong_New(size_a);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < size_b; ++i) {
 | |
| 		/* The following assumes unsigned arithmetic
 | |
| 		   works module 2**N for some N>SHIFT. */
 | |
| 		borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
 | |
| 		z->ob_digit[i] = borrow & MASK;
 | |
| 		borrow >>= SHIFT;
 | |
| 		borrow &= 1; /* Keep only one sign bit */
 | |
| 	}
 | |
| 	for (; i < size_a; ++i) {
 | |
| 		borrow = a->ob_digit[i] - borrow;
 | |
| 		z->ob_digit[i] = borrow & MASK;
 | |
| 		borrow >>= SHIFT;
 | |
| 		borrow &= 1; /* Keep only one sign bit */
 | |
| 	}
 | |
| 	assert(borrow == 0);
 | |
| 	if (sign < 0)
 | |
| 		z->ob_size = -(z->ob_size);
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_add(PyLongObject *v, PyLongObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *z;
 | |
| 
 | |
| 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | |
| 
 | |
| 	if (a->ob_size < 0) {
 | |
| 		if (b->ob_size < 0) {
 | |
| 			z = x_add(a, b);
 | |
| 			if (z != NULL && z->ob_size != 0)
 | |
| 				z->ob_size = -(z->ob_size);
 | |
| 		}
 | |
| 		else
 | |
| 			z = x_sub(b, a);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (b->ob_size < 0)
 | |
| 			z = x_sub(a, b);
 | |
| 		else
 | |
| 			z = x_add(a, b);
 | |
| 	}
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_sub(PyLongObject *v, PyLongObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *z;
 | |
| 
 | |
| 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | |
| 
 | |
| 	if (a->ob_size < 0) {
 | |
| 		if (b->ob_size < 0)
 | |
| 			z = x_sub(a, b);
 | |
| 		else
 | |
| 			z = x_add(a, b);
 | |
| 		if (z != NULL && z->ob_size != 0)
 | |
| 			z->ob_size = -(z->ob_size);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (b->ob_size < 0)
 | |
| 			z = x_add(a, b);
 | |
| 		else
 | |
| 			z = x_sub(a, b);
 | |
| 	}
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| /* Grade school multiplication, ignoring the signs.
 | |
|  * Returns the absolute value of the product, or NULL if error.
 | |
|  */
 | |
| static PyLongObject *
 | |
| x_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t size_b = ABS(Py_SIZE(b));
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
|      	z = _PyLong_New(size_a + size_b);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
 | |
| 	if (a == b) {
 | |
| 		/* Efficient squaring per HAC, Algorithm 14.16:
 | |
| 		 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | |
| 		 * Gives slightly less than a 2x speedup when a == b,
 | |
| 		 * via exploiting that each entry in the multiplication
 | |
| 		 * pyramid appears twice (except for the size_a squares).
 | |
| 		 */
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			twodigits carry;
 | |
| 			twodigits f = a->ob_digit[i];
 | |
| 			digit *pz = z->ob_digit + (i << 1);
 | |
| 			digit *pa = a->ob_digit + i + 1;
 | |
| 			digit *paend = a->ob_digit + size_a;
 | |
| 
 | |
| 			SIGCHECK({
 | |
| 				Py_DECREF(z);
 | |
| 				return NULL;
 | |
| 			})
 | |
| 
 | |
| 			carry = *pz + f * f;
 | |
| 			*pz++ = (digit)(carry & MASK);
 | |
| 			carry >>= SHIFT;
 | |
| 			assert(carry <= MASK);
 | |
| 
 | |
| 			/* Now f is added in twice in each column of the
 | |
| 			 * pyramid it appears.  Same as adding f<<1 once.
 | |
| 			 */
 | |
| 			f <<= 1;
 | |
| 			while (pa < paend) {
 | |
| 				carry += *pz + *pa++ * f;
 | |
| 				*pz++ = (digit)(carry & MASK);
 | |
| 				carry >>= SHIFT;
 | |
| 				assert(carry <= (MASK << 1));
 | |
| 			}
 | |
| 			if (carry) {
 | |
| 				carry += *pz;
 | |
| 				*pz++ = (digit)(carry & MASK);
 | |
| 				carry >>= SHIFT;
 | |
| 			}
 | |
| 			if (carry)
 | |
| 				*pz += (digit)(carry & MASK);
 | |
| 			assert((carry >> SHIFT) == 0);
 | |
| 		}
 | |
| 	}
 | |
| 	else {	/* a is not the same as b -- gradeschool long mult */
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			twodigits carry = 0;
 | |
| 			twodigits f = a->ob_digit[i];
 | |
| 			digit *pz = z->ob_digit + i;
 | |
| 			digit *pb = b->ob_digit;
 | |
| 			digit *pbend = b->ob_digit + size_b;
 | |
| 
 | |
| 			SIGCHECK({
 | |
| 				Py_DECREF(z);
 | |
| 				return NULL;
 | |
| 			})
 | |
| 
 | |
| 			while (pb < pbend) {
 | |
| 				carry += *pz + *pb++ * f;
 | |
| 				*pz++ = (digit)(carry & MASK);
 | |
| 				carry >>= SHIFT;
 | |
| 				assert(carry <= MASK);
 | |
| 			}
 | |
| 			if (carry)
 | |
| 				*pz += (digit)(carry & MASK);
 | |
| 			assert((carry >> SHIFT) == 0);
 | |
| 		}
 | |
| 	}
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* A helper for Karatsuba multiplication (k_mul).
 | |
|    Takes a long "n" and an integer "size" representing the place to
 | |
|    split, and sets low and high such that abs(n) == (high << size) + low,
 | |
|    viewing the shift as being by digits.  The sign bit is ignored, and
 | |
|    the return values are >= 0.
 | |
|    Returns 0 on success, -1 on failure.
 | |
| */
 | |
| static int
 | |
| kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
 | |
| {
 | |
| 	PyLongObject *hi, *lo;
 | |
| 	Py_ssize_t size_lo, size_hi;
 | |
| 	const Py_ssize_t size_n = ABS(Py_SIZE(n));
 | |
| 
 | |
| 	size_lo = MIN(size_n, size);
 | |
| 	size_hi = size_n - size_lo;
 | |
| 
 | |
| 	if ((hi = _PyLong_New(size_hi)) == NULL)
 | |
| 		return -1;
 | |
| 	if ((lo = _PyLong_New(size_lo)) == NULL) {
 | |
| 		Py_DECREF(hi);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
 | |
| 	memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
 | |
| 
 | |
| 	*high = long_normalize(hi);
 | |
| 	*low = long_normalize(lo);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
 | |
| 
 | |
| /* Karatsuba multiplication.  Ignores the input signs, and returns the
 | |
|  * absolute value of the product (or NULL if error).
 | |
|  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t asize = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *ah = NULL;
 | |
| 	PyLongObject *al = NULL;
 | |
| 	PyLongObject *bh = NULL;
 | |
| 	PyLongObject *bl = NULL;
 | |
| 	PyLongObject *ret = NULL;
 | |
| 	PyLongObject *t1, *t2, *t3;
 | |
| 	Py_ssize_t shift;	/* the number of digits we split off */
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
 | |
| 	 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
 | |
| 	 * Then the original product is
 | |
| 	 *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
 | |
| 	 * By picking X to be a power of 2, "*X" is just shifting, and it's
 | |
| 	 * been reduced to 3 multiplies on numbers half the size.
 | |
| 	 */
 | |
| 
 | |
| 	/* We want to split based on the larger number; fiddle so that b
 | |
| 	 * is largest.
 | |
| 	 */
 | |
| 	if (asize > bsize) {
 | |
| 		t1 = a;
 | |
| 		a = b;
 | |
| 		b = t1;
 | |
| 
 | |
| 		i = asize;
 | |
| 		asize = bsize;
 | |
| 		bsize = i;
 | |
| 	}
 | |
| 
 | |
| 	/* Use gradeschool math when either number is too small. */
 | |
| 	i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
 | |
| 	if (asize <= i) {
 | |
| 		if (asize == 0)
 | |
| 			return _PyLong_New(0);
 | |
| 		else
 | |
| 			return x_mul(a, b);
 | |
| 	}
 | |
| 
 | |
| 	/* If a is small compared to b, splitting on b gives a degenerate
 | |
| 	 * case with ah==0, and Karatsuba may be (even much) less efficient
 | |
| 	 * than "grade school" then.  However, we can still win, by viewing
 | |
| 	 * b as a string of "big digits", each of width a->ob_size.  That
 | |
| 	 * leads to a sequence of balanced calls to k_mul.
 | |
| 	 */
 | |
| 	if (2 * asize <= bsize)
 | |
| 		return k_lopsided_mul(a, b);
 | |
| 
 | |
| 	/* Split a & b into hi & lo pieces. */
 | |
| 	shift = bsize >> 1;
 | |
| 	if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
 | |
| 	assert(Py_SIZE(ah) > 0);	/* the split isn't degenerate */
 | |
| 
 | |
| 	if (a == b) {
 | |
| 		bh = ah;
 | |
| 		bl = al;
 | |
| 		Py_INCREF(bh);
 | |
| 		Py_INCREF(bl);
 | |
| 	}
 | |
| 	else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
 | |
| 
 | |
| 	/* The plan:
 | |
| 	 * 1. Allocate result space (asize + bsize digits:  that's always
 | |
| 	 *    enough).
 | |
| 	 * 2. Compute ah*bh, and copy into result at 2*shift.
 | |
| 	 * 3. Compute al*bl, and copy into result at 0.  Note that this
 | |
| 	 *    can't overlap with #2.
 | |
| 	 * 4. Subtract al*bl from the result, starting at shift.  This may
 | |
| 	 *    underflow (borrow out of the high digit), but we don't care:
 | |
| 	 *    we're effectively doing unsigned arithmetic mod
 | |
| 	 *    BASE**(sizea + sizeb), and so long as the *final* result fits,
 | |
| 	 *    borrows and carries out of the high digit can be ignored.
 | |
| 	 * 5. Subtract ah*bh from the result, starting at shift.
 | |
| 	 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
 | |
| 	 *    at shift.
 | |
| 	 */
 | |
| 
 | |
| 	/* 1. Allocate result space. */
 | |
| 	ret = _PyLong_New(asize + bsize);
 | |
| 	if (ret == NULL) goto fail;
 | |
| #ifdef Py_DEBUG
 | |
| 	/* Fill with trash, to catch reference to uninitialized digits. */
 | |
| 	memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
 | |
| #endif
 | |
| 
 | |
| 	/* 2. t1 <- ah*bh, and copy into high digits of result. */
 | |
| 	if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
 | |
| 	assert(Py_SIZE(t1) >= 0);
 | |
| 	assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
 | |
| 	memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
 | |
| 	       Py_SIZE(t1) * sizeof(digit));
 | |
| 
 | |
| 	/* Zero-out the digits higher than the ah*bh copy. */
 | |
| 	i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
 | |
| 	if (i)
 | |
| 		memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
 | |
| 		       i * sizeof(digit));
 | |
| 
 | |
| 	/* 3. t2 <- al*bl, and copy into the low digits. */
 | |
| 	if ((t2 = k_mul(al, bl)) == NULL) {
 | |
| 		Py_DECREF(t1);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	assert(Py_SIZE(t2) >= 0);
 | |
| 	assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
 | |
| 	memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
 | |
| 
 | |
| 	/* Zero out remaining digits. */
 | |
| 	i = 2*shift - Py_SIZE(t2);	/* number of uninitialized digits */
 | |
| 	if (i)
 | |
| 		memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
 | |
| 
 | |
| 	/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
 | |
| 	 * because it's fresher in cache.
 | |
| 	 */
 | |
| 	i = Py_SIZE(ret) - shift;  /* # digits after shift */
 | |
| 	(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
 | |
| 	Py_DECREF(t2);
 | |
| 
 | |
| 	(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
 | |
| 	Py_DECREF(t1);
 | |
| 
 | |
| 	/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
 | |
| 	if ((t1 = x_add(ah, al)) == NULL) goto fail;
 | |
| 	Py_DECREF(ah);
 | |
| 	Py_DECREF(al);
 | |
| 	ah = al = NULL;
 | |
| 
 | |
| 	if (a == b) {
 | |
| 		t2 = t1;
 | |
| 		Py_INCREF(t2);
 | |
| 	}
 | |
| 	else if ((t2 = x_add(bh, bl)) == NULL) {
 | |
| 		Py_DECREF(t1);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	Py_DECREF(bh);
 | |
| 	Py_DECREF(bl);
 | |
| 	bh = bl = NULL;
 | |
| 
 | |
| 	t3 = k_mul(t1, t2);
 | |
| 	Py_DECREF(t1);
 | |
| 	Py_DECREF(t2);
 | |
| 	if (t3 == NULL) goto fail;
 | |
| 	assert(Py_SIZE(t3) >= 0);
 | |
| 
 | |
| 	/* Add t3.  It's not obvious why we can't run out of room here.
 | |
| 	 * See the (*) comment after this function.
 | |
| 	 */
 | |
| 	(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
 | |
| 	Py_DECREF(t3);
 | |
| 
 | |
| 	return long_normalize(ret);
 | |
| 
 | |
|  fail:
 | |
|  	Py_XDECREF(ret);
 | |
| 	Py_XDECREF(ah);
 | |
| 	Py_XDECREF(al);
 | |
| 	Py_XDECREF(bh);
 | |
| 	Py_XDECREF(bl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* (*) Why adding t3 can't "run out of room" above.
 | |
| 
 | |
| Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
 | |
| to start with:
 | |
| 
 | |
| 1. For any integer i, i = c(i/2) + f(i/2).  In particular,
 | |
|    bsize = c(bsize/2) + f(bsize/2).
 | |
| 2. shift = f(bsize/2)
 | |
| 3. asize <= bsize
 | |
| 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
 | |
|    routine, so asize > bsize/2 >= f(bsize/2) in this routine.
 | |
| 
 | |
| We allocated asize + bsize result digits, and add t3 into them at an offset
 | |
| of shift.  This leaves asize+bsize-shift allocated digit positions for t3
 | |
| to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
 | |
| asize + c(bsize/2) available digit positions.
 | |
| 
 | |
| bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
 | |
| at most c(bsize/2) digits + 1 bit.
 | |
| 
 | |
| If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
 | |
| digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
 | |
| most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
 | |
| 
 | |
| The product (ah+al)*(bh+bl) therefore has at most
 | |
| 
 | |
|     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
 | |
| 
 | |
| and we have asize + c(bsize/2) available digit positions.  We need to show
 | |
| this is always enough.  An instance of c(bsize/2) cancels out in both, so
 | |
| the question reduces to whether asize digits is enough to hold
 | |
| (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
 | |
| then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
 | |
| asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
 | |
| digit is enough to hold 2 bits.  This is so since SHIFT=15 >= 2.  If
 | |
| asize == bsize, then we're asking whether bsize digits is enough to hold
 | |
| c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
 | |
| is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
 | |
| bsize >= KARATSUBA_CUTOFF >= 2.
 | |
| 
 | |
| Note that since there's always enough room for (ah+al)*(bh+bl), and that's
 | |
| clearly >= each of ah*bh and al*bl, there's always enough room to subtract
 | |
| ah*bh and al*bl too.
 | |
| */
 | |
| 
 | |
| /* b has at least twice the digits of a, and a is big enough that Karatsuba
 | |
|  * would pay off *if* the inputs had balanced sizes.  View b as a sequence
 | |
|  * of slices, each with a->ob_size digits, and multiply the slices by a,
 | |
|  * one at a time.  This gives k_mul balanced inputs to work with, and is
 | |
|  * also cache-friendly (we compute one double-width slice of the result
 | |
|  * at a time, then move on, never bactracking except for the helpful
 | |
|  * single-width slice overlap between successive partial sums).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_lopsided_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	const Py_ssize_t asize = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | |
| 	Py_ssize_t nbdone;	/* # of b digits already multiplied */
 | |
| 	PyLongObject *ret;
 | |
| 	PyLongObject *bslice = NULL;
 | |
| 
 | |
| 	assert(asize > KARATSUBA_CUTOFF);
 | |
| 	assert(2 * asize <= bsize);
 | |
| 
 | |
| 	/* Allocate result space, and zero it out. */
 | |
| 	ret = _PyLong_New(asize + bsize);
 | |
| 	if (ret == NULL)
 | |
| 		return NULL;
 | |
| 	memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
 | |
| 
 | |
| 	/* Successive slices of b are copied into bslice. */
 | |
| 	bslice = _PyLong_New(asize);
 | |
| 	if (bslice == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	nbdone = 0;
 | |
| 	while (bsize > 0) {
 | |
| 		PyLongObject *product;
 | |
| 		const Py_ssize_t nbtouse = MIN(bsize, asize);
 | |
| 
 | |
| 		/* Multiply the next slice of b by a. */
 | |
| 		memcpy(bslice->ob_digit, b->ob_digit + nbdone,
 | |
| 		       nbtouse * sizeof(digit));
 | |
| 		Py_SIZE(bslice) = nbtouse;
 | |
| 		product = k_mul(a, bslice);
 | |
| 		if (product == NULL)
 | |
| 			goto fail;
 | |
| 
 | |
| 		/* Add into result. */
 | |
| 		(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
 | |
| 			     product->ob_digit, Py_SIZE(product));
 | |
| 		Py_DECREF(product);
 | |
| 
 | |
| 		bsize -= nbtouse;
 | |
| 		nbdone += nbtouse;
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(bslice);
 | |
| 	return long_normalize(ret);
 | |
| 
 | |
|  fail:
 | |
| 	Py_DECREF(ret);
 | |
| 	Py_XDECREF(bslice);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mul(PyLongObject *v, PyLongObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *z;
 | |
| 
 | |
| 	if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	z = k_mul(a, b);
 | |
| 	/* Negate if exactly one of the inputs is negative. */
 | |
| 	if (((a->ob_size ^ b->ob_size) < 0) && z)
 | |
| 		z->ob_size = -(z->ob_size);
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| /* The / and % operators are now defined in terms of divmod().
 | |
|    The expression a mod b has the value a - b*floor(a/b).
 | |
|    The long_divrem function gives the remainder after division of
 | |
|    |a| by |b|, with the sign of a.  This is also expressed
 | |
|    as a - b*trunc(a/b), if trunc truncates towards zero.
 | |
|    Some examples:
 | |
|    	 a	 b	a rem b		a mod b
 | |
|    	 13	 10	 3		 3
 | |
|    	-13	 10	-3		 7
 | |
|    	 13	-10	 3		-7
 | |
|    	-13	-10	-3		-3
 | |
|    So, to get from rem to mod, we have to add b if a and b
 | |
|    have different signs.  We then subtract one from the 'div'
 | |
|    part of the outcome to keep the invariant intact. */
 | |
| 
 | |
| /* Compute
 | |
|  *     *pdiv, *pmod = divmod(v, w)
 | |
|  * NULL can be passed for pdiv or pmod, in which case that part of
 | |
|  * the result is simply thrown away.  The caller owns a reference to
 | |
|  * each of these it requests (does not pass NULL for).
 | |
|  */
 | |
| static int
 | |
| l_divmod(PyLongObject *v, PyLongObject *w,
 | |
| 	 PyLongObject **pdiv, PyLongObject **pmod)
 | |
| {
 | |
| 	PyLongObject *div, *mod;
 | |
| 
 | |
| 	if (long_divrem(v, w, &div, &mod) < 0)
 | |
| 		return -1;
 | |
| 	if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
 | |
| 	    (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
 | |
| 		PyLongObject *temp;
 | |
| 		PyLongObject *one;
 | |
| 		temp = (PyLongObject *) long_add(mod, w);
 | |
| 		Py_DECREF(mod);
 | |
| 		mod = temp;
 | |
| 		if (mod == NULL) {
 | |
| 			Py_DECREF(div);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		one = (PyLongObject *) PyLong_FromLong(1L);
 | |
| 		if (one == NULL ||
 | |
| 		    (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
 | |
| 			Py_DECREF(mod);
 | |
| 			Py_DECREF(div);
 | |
| 			Py_XDECREF(one);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		Py_DECREF(one);
 | |
| 		Py_DECREF(div);
 | |
| 		div = temp;
 | |
| 	}
 | |
| 	if (pdiv != NULL)
 | |
| 		*pdiv = div;
 | |
| 	else
 | |
| 		Py_DECREF(div);
 | |
| 
 | |
| 	if (pmod != NULL)
 | |
| 		*pmod = mod;
 | |
| 	else
 | |
| 		Py_DECREF(mod);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *div;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	if (l_divmod(a, b, &div, NULL) < 0)
 | |
| 		div = NULL;
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)div;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_classic_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *div;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	if (Py_DivisionWarningFlag &&
 | |
| 	    PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
 | |
| 		div = NULL;
 | |
| 	else if (l_divmod(a, b, &div, NULL) < 0)
 | |
| 		div = NULL;
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)div;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_true_divide(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b;
 | |
| 	double ad, bd;
 | |
| 	int failed, aexp = -1, bexp = -1;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
 | |
| 	bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
 | |
| 	failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	if (failed)
 | |
| 		return NULL;
 | |
| 	/* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
 | |
| 	   but should really be set correctly after sucessful calls to
 | |
| 	   _PyLong_AsScaledDouble() */
 | |
| 	assert(aexp >= 0 && bexp >= 0);
 | |
| 
 | |
| 	if (bd == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 			"long division or modulo by zero");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* True value is very close to ad/bd * 2**(SHIFT*(aexp-bexp)) */
 | |
| 	ad /= bd;	/* overflow/underflow impossible here */
 | |
| 	aexp -= bexp;
 | |
| 	if (aexp > INT_MAX / SHIFT)
 | |
| 		goto overflow;
 | |
| 	else if (aexp < -(INT_MAX / SHIFT))
 | |
| 		return PyFloat_FromDouble(0.0);	/* underflow to 0 */
 | |
| 	errno = 0;
 | |
| 	ad = ldexp(ad, aexp * SHIFT);
 | |
| 	if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
 | |
| 		goto overflow;
 | |
| 	return PyFloat_FromDouble(ad);
 | |
| 
 | |
| overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 		"long/long too large for a float");
 | |
| 	return NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mod(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *mod;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 
 | |
| 	if (l_divmod(a, b, NULL, &mod) < 0)
 | |
| 		mod = NULL;
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *)mod;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b, *div, *mod;
 | |
| 	PyObject *z;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 
 | |
| 	if (l_divmod(a, b, &div, &mod) < 0) {
 | |
| 		Py_DECREF(a);
 | |
| 		Py_DECREF(b);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	z = PyTuple_New(2);
 | |
| 	if (z != NULL) {
 | |
| 		PyTuple_SetItem(z, 0, (PyObject *) div);
 | |
| 		PyTuple_SetItem(z, 1, (PyObject *) mod);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_DECREF(div);
 | |
| 		Py_DECREF(mod);
 | |
| 	}
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return z;
 | |
| }
 | |
| 
 | |
| /* pow(v, w, x) */
 | |
| static PyObject *
 | |
| long_pow(PyObject *v, PyObject *w, PyObject *x)
 | |
| {
 | |
| 	PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
 | |
| 	int negativeOutput = 0;  /* if x<0 return negative output */
 | |
| 
 | |
| 	PyLongObject *z = NULL;  /* accumulated result */
 | |
| 	Py_ssize_t i, j, k;             /* counters */
 | |
| 	PyLongObject *temp = NULL;
 | |
| 
 | |
| 	/* 5-ary values.  If the exponent is large enough, table is
 | |
| 	 * precomputed so that table[i] == a**i % c for i in range(32).
 | |
| 	 */
 | |
| 	PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 | |
| 				   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 | |
| 
 | |
| 	/* a, b, c = v, w, x */
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	if (PyLong_Check(x)) {
 | |
| 		c = (PyLongObject *)x;
 | |
| 		Py_INCREF(x);
 | |
| 	}
 | |
| 	else if (PyInt_Check(x)) {
 | |
| 		c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
 | |
| 		if (c == NULL)
 | |
| 			goto Error;
 | |
| 	}
 | |
| 	else if (x == Py_None)
 | |
| 		c = NULL;
 | |
| 	else {
 | |
| 		Py_DECREF(a);
 | |
| 		Py_DECREF(b);
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	if (Py_SIZE(b) < 0) {  /* if exponent is negative */
 | |
| 		if (c) {
 | |
| 			PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
 | |
| 			    "cannot be negative when 3rd argument specified");
 | |
| 			goto Error;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* else return a float.  This works because we know
 | |
| 			   that this calls float_pow() which converts its
 | |
| 			   arguments to double. */
 | |
| 			Py_DECREF(a);
 | |
| 			Py_DECREF(b);
 | |
| 			return PyFloat_Type.tp_as_number->nb_power(v, w, x);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (c) {
 | |
| 		/* if modulus == 0:
 | |
| 		       raise ValueError() */
 | |
| 		if (Py_SIZE(c) == 0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"pow() 3rd argument cannot be 0");
 | |
| 			goto Error;
 | |
| 		}
 | |
| 
 | |
| 		/* if modulus < 0:
 | |
| 		       negativeOutput = True
 | |
| 		       modulus = -modulus */
 | |
| 		if (Py_SIZE(c) < 0) {
 | |
| 			negativeOutput = 1;
 | |
| 			temp = (PyLongObject *)_PyLong_Copy(c);
 | |
| 			if (temp == NULL)
 | |
| 				goto Error;
 | |
| 			Py_DECREF(c);
 | |
| 			c = temp;
 | |
| 			temp = NULL;
 | |
| 			c->ob_size = - c->ob_size;
 | |
| 		}
 | |
| 
 | |
| 		/* if modulus == 1:
 | |
| 		       return 0 */
 | |
| 		if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
 | |
| 			z = (PyLongObject *)PyLong_FromLong(0L);
 | |
| 			goto Done;
 | |
| 		}
 | |
| 
 | |
| 		/* if base < 0:
 | |
| 		       base = base % modulus
 | |
| 		   Having the base positive just makes things easier. */
 | |
| 		if (Py_SIZE(a) < 0) {
 | |
| 			if (l_divmod(a, c, NULL, &temp) < 0)
 | |
| 				goto Error;
 | |
| 			Py_DECREF(a);
 | |
| 			a = temp;
 | |
| 			temp = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* At this point a, b, and c are guaranteed non-negative UNLESS
 | |
| 	   c is NULL, in which case a may be negative. */
 | |
| 
 | |
| 	z = (PyLongObject *)PyLong_FromLong(1L);
 | |
| 	if (z == NULL)
 | |
| 		goto Error;
 | |
| 
 | |
| 	/* Perform a modular reduction, X = X % c, but leave X alone if c
 | |
| 	 * is NULL.
 | |
| 	 */
 | |
| #define REDUCE(X)					\
 | |
| 	if (c != NULL) {				\
 | |
| 		if (l_divmod(X, c, NULL, &temp) < 0)	\
 | |
| 			goto Error;			\
 | |
| 		Py_XDECREF(X);				\
 | |
| 		X = temp;				\
 | |
| 		temp = NULL;				\
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply two values, then reduce the result:
 | |
| 	   result = X*Y % c.  If c is NULL, skip the mod. */
 | |
| #define MULT(X, Y, result)				\
 | |
| {							\
 | |
| 	temp = (PyLongObject *)long_mul(X, Y);		\
 | |
| 	if (temp == NULL)				\
 | |
| 		goto Error;				\
 | |
| 	Py_XDECREF(result);				\
 | |
| 	result = temp;					\
 | |
| 	temp = NULL;					\
 | |
| 	REDUCE(result)					\
 | |
| }
 | |
| 
 | |
| 	if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
 | |
| 		/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
 | |
| 		/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
 | |
| 		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | |
| 			digit bi = b->ob_digit[i];
 | |
| 
 | |
| 			for (j = 1 << (SHIFT-1); j != 0; j >>= 1) {
 | |
| 				MULT(z, z, z)
 | |
| 				if (bi & j)
 | |
| 					MULT(z, a, z)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
 | |
| 		Py_INCREF(z);	/* still holds 1L */
 | |
| 		table[0] = z;
 | |
| 		for (i = 1; i < 32; ++i)
 | |
| 			MULT(table[i-1], a, table[i])
 | |
| 
 | |
| 		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | |
| 			const digit bi = b->ob_digit[i];
 | |
| 
 | |
| 			for (j = SHIFT - 5; j >= 0; j -= 5) {
 | |
| 				const int index = (bi >> j) & 0x1f;
 | |
| 				for (k = 0; k < 5; ++k)
 | |
| 					MULT(z, z, z)
 | |
| 				if (index)
 | |
| 					MULT(z, table[index], z)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (negativeOutput && (Py_SIZE(z) != 0)) {
 | |
| 		temp = (PyLongObject *)long_sub(z, c);
 | |
| 		if (temp == NULL)
 | |
| 			goto Error;
 | |
| 		Py_DECREF(z);
 | |
| 		z = temp;
 | |
| 		temp = NULL;
 | |
| 	}
 | |
| 	goto Done;
 | |
| 
 | |
|  Error:
 | |
|  	if (z != NULL) {
 | |
|  		Py_DECREF(z);
 | |
|  		z = NULL;
 | |
|  	}
 | |
| 	/* fall through */
 | |
|  Done:
 | |
| 	if (Py_SIZE(b) > FIVEARY_CUTOFF) {
 | |
| 		for (i = 0; i < 32; ++i)
 | |
| 			Py_XDECREF(table[i]);
 | |
| 	}
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	Py_XDECREF(c);
 | |
| 	Py_XDECREF(temp);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_invert(PyLongObject *v)
 | |
| {
 | |
| 	/* Implement ~x as -(x+1) */
 | |
| 	PyLongObject *x;
 | |
| 	PyLongObject *w;
 | |
| 	w = (PyLongObject *)PyLong_FromLong(1L);
 | |
| 	if (w == NULL)
 | |
| 		return NULL;
 | |
| 	x = (PyLongObject *) long_add(v, w);
 | |
| 	Py_DECREF(w);
 | |
| 	if (x == NULL)
 | |
| 		return NULL;
 | |
| 	Py_SIZE(x) = -(Py_SIZE(x));
 | |
| 	return (PyObject *)x;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_pos(PyLongObject *v)
 | |
| {
 | |
| 	if (PyLong_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *)v;
 | |
| 	}
 | |
| 	else
 | |
| 		return _PyLong_Copy(v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_neg(PyLongObject *v)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 	if (v->ob_size == 0 && PyLong_CheckExact(v)) {
 | |
| 		/* -0 == 0 */
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *) v;
 | |
| 	}
 | |
| 	z = (PyLongObject *)_PyLong_Copy(v);
 | |
| 	if (z != NULL)
 | |
| 		z->ob_size = -(v->ob_size);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_abs(PyLongObject *v)
 | |
| {
 | |
| 	if (v->ob_size < 0)
 | |
| 		return long_neg(v);
 | |
| 	else
 | |
| 		return long_pos(v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_nonzero(PyLongObject *v)
 | |
| {
 | |
| 	return ABS(Py_SIZE(v)) != 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_rshift(PyLongObject *v, PyLongObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b;
 | |
| 	PyLongObject *z = NULL;
 | |
| 	long shiftby;
 | |
| 	Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
 | |
| 	digit lomask, himask;
 | |
| 
 | |
| 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | |
| 
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		/* Right shifting negative numbers is harder */
 | |
| 		PyLongObject *a1, *a2;
 | |
| 		a1 = (PyLongObject *) long_invert(a);
 | |
| 		if (a1 == NULL)
 | |
| 			goto rshift_error;
 | |
| 		a2 = (PyLongObject *) long_rshift(a1, b);
 | |
| 		Py_DECREF(a1);
 | |
| 		if (a2 == NULL)
 | |
| 			goto rshift_error;
 | |
| 		z = (PyLongObject *) long_invert(a2);
 | |
| 		Py_DECREF(a2);
 | |
| 	}
 | |
| 	else {
 | |
| 
 | |
| 		shiftby = PyLong_AsLong((PyObject *)b);
 | |
| 		if (shiftby == -1L && PyErr_Occurred())
 | |
| 			goto rshift_error;
 | |
| 		if (shiftby < 0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"negative shift count");
 | |
| 			goto rshift_error;
 | |
| 		}
 | |
| 		wordshift = shiftby / SHIFT;
 | |
| 		newsize = ABS(Py_SIZE(a)) - wordshift;
 | |
| 		if (newsize <= 0) {
 | |
| 			z = _PyLong_New(0);
 | |
| 			Py_DECREF(a);
 | |
| 			Py_DECREF(b);
 | |
| 			return (PyObject *)z;
 | |
| 		}
 | |
| 		loshift = shiftby % SHIFT;
 | |
| 		hishift = SHIFT - loshift;
 | |
| 		lomask = ((digit)1 << hishift) - 1;
 | |
| 		himask = MASK ^ lomask;
 | |
| 		z = _PyLong_New(newsize);
 | |
| 		if (z == NULL)
 | |
| 			goto rshift_error;
 | |
| 		if (Py_SIZE(a) < 0)
 | |
| 			Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 		for (i = 0, j = wordshift; i < newsize; i++, j++) {
 | |
| 			z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
 | |
| 			if (i+1 < newsize)
 | |
| 				z->ob_digit[i] |=
 | |
| 				  (a->ob_digit[j+1] << hishift) & himask;
 | |
| 		}
 | |
| 		z = long_normalize(z);
 | |
| 	}
 | |
| rshift_error:
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *) z;
 | |
| 
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_lshift(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	/* This version due to Tim Peters */
 | |
| 	PyLongObject *a, *b;
 | |
| 	PyLongObject *z = NULL;
 | |
| 	long shiftby;
 | |
| 	Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
 | |
| 	twodigits accum;
 | |
| 
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 
 | |
| 	shiftby = PyLong_AsLong((PyObject *)b);
 | |
| 	if (shiftby == -1L && PyErr_Occurred())
 | |
| 		goto lshift_error;
 | |
| 	if (shiftby < 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
| 		goto lshift_error;
 | |
| 	}
 | |
| 	if ((long)(int)shiftby != shiftby) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"outrageous left shift count");
 | |
| 		goto lshift_error;
 | |
| 	}
 | |
| 	/* wordshift, remshift = divmod(shiftby, SHIFT) */
 | |
| 	wordshift = (int)shiftby / SHIFT;
 | |
| 	remshift  = (int)shiftby - wordshift * SHIFT;
 | |
| 
 | |
| 	oldsize = ABS(a->ob_size);
 | |
| 	newsize = oldsize + wordshift;
 | |
| 	if (remshift)
 | |
| 		++newsize;
 | |
| 	z = _PyLong_New(newsize);
 | |
| 	if (z == NULL)
 | |
| 		goto lshift_error;
 | |
| 	if (a->ob_size < 0)
 | |
| 		z->ob_size = -(z->ob_size);
 | |
| 	for (i = 0; i < wordshift; i++)
 | |
| 		z->ob_digit[i] = 0;
 | |
| 	accum = 0;
 | |
| 	for (i = wordshift, j = 0; j < oldsize; i++, j++) {
 | |
| 		accum |= (twodigits)a->ob_digit[j] << remshift;
 | |
| 		z->ob_digit[i] = (digit)(accum & MASK);
 | |
| 		accum >>= SHIFT;
 | |
| 	}
 | |
| 	if (remshift)
 | |
| 		z->ob_digit[newsize-1] = (digit)accum;
 | |
| 	else
 | |
| 		assert(!accum);
 | |
| 	z = long_normalize(z);
 | |
| lshift_error:
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return (PyObject *) z;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Bitwise and/xor/or operations */
 | |
| 
 | |
| static PyObject *
 | |
| long_bitwise(PyLongObject *a,
 | |
| 	     int op,  /* '&', '|', '^' */
 | |
| 	     PyLongObject *b)
 | |
| {
 | |
| 	digit maska, maskb; /* 0 or MASK */
 | |
| 	int negz;
 | |
| 	Py_ssize_t size_a, size_b, size_z;
 | |
| 	PyLongObject *z;
 | |
| 	int i;
 | |
| 	digit diga, digb;
 | |
| 	PyObject *v;
 | |
| 
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		a = (PyLongObject *) long_invert(a);
 | |
| 		if (a == NULL)
 | |
| 			return NULL;
 | |
| 		maska = MASK;
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(a);
 | |
| 		maska = 0;
 | |
| 	}
 | |
| 	if (Py_SIZE(b) < 0) {
 | |
| 		b = (PyLongObject *) long_invert(b);
 | |
| 		if (b == NULL) {
 | |
| 			Py_DECREF(a);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		maskb = MASK;
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(b);
 | |
| 		maskb = 0;
 | |
| 	}
 | |
| 
 | |
| 	negz = 0;
 | |
| 	switch (op) {
 | |
| 	case '^':
 | |
| 		if (maska != maskb) {
 | |
| 			maska ^= MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case '&':
 | |
| 		if (maska && maskb) {
 | |
| 			op = '|';
 | |
| 			maska ^= MASK;
 | |
| 			maskb ^= MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case '|':
 | |
| 		if (maska || maskb) {
 | |
| 			op = '&';
 | |
| 			maska ^= MASK;
 | |
| 			maskb ^= MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* JRH: The original logic here was to allocate the result value (z)
 | |
| 	   as the longer of the two operands.  However, there are some cases
 | |
| 	   where the result is guaranteed to be shorter than that: AND of two
 | |
| 	   positives, OR of two negatives: use the shorter number.  AND with
 | |
| 	   mixed signs: use the positive number.  OR with mixed signs: use the
 | |
| 	   negative number.  After the transformations above, op will be '&'
 | |
| 	   iff one of these cases applies, and mask will be non-0 for operands
 | |
| 	   whose length should be ignored.
 | |
| 	*/
 | |
| 
 | |
| 	size_a = Py_SIZE(a);
 | |
| 	size_b = Py_SIZE(b);
 | |
| 	size_z = op == '&'
 | |
| 		? (maska
 | |
| 		   ? size_b
 | |
| 		   : (maskb ? size_a : MIN(size_a, size_b)))
 | |
| 		: MAX(size_a, size_b);
 | |
| 	z = _PyLong_New(size_z);
 | |
| 	if (z == NULL) {
 | |
| 		Py_DECREF(a);
 | |
| 		Py_DECREF(b);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size_z; ++i) {
 | |
| 		diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska;
 | |
| 		digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb;
 | |
| 		switch (op) {
 | |
| 		case '&': z->ob_digit[i] = diga & digb; break;
 | |
| 		case '|': z->ob_digit[i] = diga | digb; break;
 | |
| 		case '^': z->ob_digit[i] = diga ^ digb; break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	z = long_normalize(z);
 | |
| 	if (negz == 0)
 | |
| 		return (PyObject *) z;
 | |
| 	v = long_invert(z);
 | |
| 	Py_DECREF(z);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_and(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b;
 | |
| 	PyObject *c;
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	c = long_bitwise(a, '&', b);
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_xor(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b;
 | |
| 	PyObject *c;
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	c = long_bitwise(a, '^', b);
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_or(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyLongObject *a, *b;
 | |
| 	PyObject *c;
 | |
| 	CONVERT_BINOP(v, w, &a, &b);
 | |
| 	c = long_bitwise(a, '|', b);
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_coerce(PyObject **pv, PyObject **pw)
 | |
| {
 | |
| 	if (PyInt_Check(*pw)) {
 | |
| 		*pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
 | |
| 		if (*pw == NULL)
 | |
| 			return -1;
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyLong_Check(*pw)) {
 | |
| 		Py_INCREF(*pv);
 | |
| 		Py_INCREF(*pw);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1; /* Can't do it */
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_long(PyObject *v)
 | |
| {
 | |
| 	if (PyLong_CheckExact(v))
 | |
| 		Py_INCREF(v);
 | |
| 	else
 | |
| 		v = _PyLong_Copy((PyLongObject *)v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_int(PyObject *v)
 | |
| {
 | |
| 	long x;
 | |
| 	x = PyLong_AsLong(v);
 | |
| 	if (PyErr_Occurred()) {
 | |
| 		if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | |
| 				PyErr_Clear();
 | |
| 				if (PyLong_CheckExact(v)) {
 | |
| 					Py_INCREF(v);
 | |
| 					return v;
 | |
| 				}
 | |
| 				else
 | |
| 					return _PyLong_Copy((PyLongObject *)v);
 | |
| 		}
 | |
| 		else
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	return PyInt_FromLong(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_float(PyObject *v)
 | |
| {
 | |
| 	double result;
 | |
| 	result = PyLong_AsDouble(v);
 | |
| 	if (result == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_oct(PyObject *v)
 | |
| {
 | |
| 	return long_format(v, 8, 1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_hex(PyObject *v)
 | |
| {
 | |
| 	return long_format(v, 16, 1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x = NULL;
 | |
| 	int base = -909;		     /* unlikely! */
 | |
| 	static char *kwlist[] = {"x", "base", 0};
 | |
| 
 | |
| 	if (type != &PyLong_Type)
 | |
| 		return long_subtype_new(type, args, kwds); /* Wimp out */
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
 | |
| 					 &x, &base))
 | |
| 		return NULL;
 | |
| 	if (x == NULL)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 	if (base == -909)
 | |
| 		return PyNumber_Long(x);
 | |
| 	else if (PyString_Check(x)) {
 | |
| 		/* Since PyLong_FromString doesn't have a length parameter,
 | |
| 		 * check here for possible NULs in the string. */
 | |
| 		char *string = PyString_AS_STRING(x);
 | |
| 		if (strlen(string) != PyString_Size(x)) {
 | |
| 			/* create a repr() of the input string,
 | |
| 			 * just like PyLong_FromString does. */
 | |
| 			PyObject *srepr;
 | |
| 			srepr = PyObject_Repr(x);
 | |
| 			if (srepr == NULL)
 | |
| 				return NULL;
 | |
| 			PyErr_Format(PyExc_ValueError,
 | |
| 			     "invalid literal for long() with base %d: %s",
 | |
| 			     base, PyString_AS_STRING(srepr));
 | |
| 			Py_DECREF(srepr);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
 | |
| 	}
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	else if (PyUnicode_Check(x))
 | |
| 		return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
 | |
| 					  PyUnicode_GET_SIZE(x),
 | |
| 					  base);
 | |
| #endif
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"long() can't convert non-string with explicit base");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of long:
 | |
|    first create a regular long from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize it from
 | |
|    the regular long.  The regular long is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyLongObject *tmp, *newobj;
 | |
| 	Py_ssize_t i, n;
 | |
| 
 | |
| 	assert(PyType_IsSubtype(type, &PyLong_Type));
 | |
| 	tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyLong_CheckExact(tmp));
 | |
| 	n = Py_SIZE(tmp);
 | |
| 	if (n < 0)
 | |
| 		n = -n;
 | |
| 	newobj = (PyLongObject *)type->tp_alloc(type, n);
 | |
| 	if (newobj == NULL) {
 | |
| 		Py_DECREF(tmp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	assert(PyLong_Check(newobj));
 | |
| 	Py_SIZE(newobj) = Py_SIZE(tmp);
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		newobj->ob_digit[i] = tmp->ob_digit[i];
 | |
| 	Py_DECREF(tmp);
 | |
| 	return (PyObject *)newobj;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_getnewargs(PyLongObject *v)
 | |
| {
 | |
| 	return Py_BuildValue("(N)", _PyLong_Copy(v));
 | |
| }
 | |
| 
 | |
| static PyMethodDef long_methods[] = {
 | |
| 	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(long_doc,
 | |
| "long(x[, base]) -> integer\n\
 | |
| \n\
 | |
| Convert a string or number to a long integer, if possible.  A floating\n\
 | |
| point argument will be truncated towards zero (this does not include a\n\
 | |
| string representation of a floating point number!)  When converting a\n\
 | |
| string, use the optional base.  It is an error to supply a base when\n\
 | |
| converting a non-string.");
 | |
| 
 | |
| static PyNumberMethods long_as_number = {
 | |
| 	(binaryfunc)	long_add,	/*nb_add*/
 | |
| 	(binaryfunc)	long_sub,	/*nb_subtract*/
 | |
| 	(binaryfunc)	long_mul,	/*nb_multiply*/
 | |
| 			long_classic_div, /*nb_divide*/
 | |
| 			long_mod,	/*nb_remainder*/
 | |
| 			long_divmod,	/*nb_divmod*/
 | |
| 			long_pow,	/*nb_power*/
 | |
| 	(unaryfunc) 	long_neg,	/*nb_negative*/
 | |
| 	(unaryfunc) 	long_pos,	/*tp_positive*/
 | |
| 	(unaryfunc) 	long_abs,	/*tp_absolute*/
 | |
| 	(inquiry)	long_nonzero,	/*tp_nonzero*/
 | |
| 	(unaryfunc)	long_invert,	/*nb_invert*/
 | |
| 			long_lshift,	/*nb_lshift*/
 | |
| 	(binaryfunc)	long_rshift,	/*nb_rshift*/
 | |
| 			long_and,	/*nb_and*/
 | |
| 			long_xor,	/*nb_xor*/
 | |
| 			long_or,	/*nb_or*/
 | |
| 			long_coerce,	/*nb_coerce*/
 | |
| 			long_int,	/*nb_int*/
 | |
| 			long_long,	/*nb_long*/
 | |
| 			long_float,	/*nb_float*/
 | |
| 			long_oct,	/*nb_oct*/
 | |
| 			long_hex,	/*nb_hex*/
 | |
| 	0,				/* nb_inplace_add */
 | |
| 	0,				/* nb_inplace_subtract */
 | |
| 	0,				/* nb_inplace_multiply */
 | |
| 	0,				/* nb_inplace_divide */
 | |
| 	0,				/* nb_inplace_remainder */
 | |
| 	0,				/* nb_inplace_power */
 | |
| 	0,				/* nb_inplace_lshift */
 | |
| 	0,				/* nb_inplace_rshift */
 | |
| 	0,				/* nb_inplace_and */
 | |
| 	0,				/* nb_inplace_xor */
 | |
| 	0,				/* nb_inplace_or */
 | |
| 	long_div,			/* nb_floor_divide */
 | |
| 	long_true_divide,		/* nb_true_divide */
 | |
| 	0,				/* nb_inplace_floor_divide */
 | |
| 	0,				/* nb_inplace_true_divide */
 | |
| 	long_long,			/* nb_index */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyLong_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,					/* ob_size */
 | |
| 	"long",					/* tp_name */
 | |
| 	sizeof(PyLongObject) - sizeof(digit),	/* tp_basicsize */
 | |
| 	sizeof(digit),				/* tp_itemsize */
 | |
| 	long_dealloc,				/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	(cmpfunc)long_compare,			/* tp_compare */
 | |
| 	long_repr,				/* tp_repr */
 | |
| 	&long_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)long_hash,			/* tp_hash */
 | |
|         0,              			/* tp_call */
 | |
|         long_str,				/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | |
| 		Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS,	/* tp_flags */
 | |
| 	long_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	long_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	long_new,				/* tp_new */
 | |
| 	PyObject_Del,                           /* tp_free */
 | |
| };
 | 
