mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			118 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Bisection algorithms."""
 | 
						|
 | 
						|
 | 
						|
def insort_right(a, x, lo=0, hi=None, *, key=None):
 | 
						|
    """Insert item x in list a, and keep it sorted assuming a is sorted.
 | 
						|
 | 
						|
    If x is already in a, insert it to the right of the rightmost x.
 | 
						|
 | 
						|
    Optional args lo (default 0) and hi (default len(a)) bound the
 | 
						|
    slice of a to be searched.
 | 
						|
 | 
						|
    A custom key function can be supplied to customize the sort order.
 | 
						|
    """
 | 
						|
    if key is None:
 | 
						|
        lo = bisect_right(a, x, lo, hi)
 | 
						|
    else:
 | 
						|
        lo = bisect_right(a, key(x), lo, hi, key=key)
 | 
						|
    a.insert(lo, x)
 | 
						|
 | 
						|
 | 
						|
def bisect_right(a, x, lo=0, hi=None, *, key=None):
 | 
						|
    """Return the index where to insert item x in list a, assuming a is sorted.
 | 
						|
 | 
						|
    The return value i is such that all e in a[:i] have e <= x, and all e in
 | 
						|
    a[i:] have e > x.  So if x already appears in the list, a.insert(i, x) will
 | 
						|
    insert just after the rightmost x already there.
 | 
						|
 | 
						|
    Optional args lo (default 0) and hi (default len(a)) bound the
 | 
						|
    slice of a to be searched.
 | 
						|
 | 
						|
    A custom key function can be supplied to customize the sort order.
 | 
						|
    """
 | 
						|
 | 
						|
    if lo < 0:
 | 
						|
        raise ValueError('lo must be non-negative')
 | 
						|
    if hi is None:
 | 
						|
        hi = len(a)
 | 
						|
    # Note, the comparison uses "<" to match the
 | 
						|
    # __lt__() logic in list.sort() and in heapq.
 | 
						|
    if key is None:
 | 
						|
        while lo < hi:
 | 
						|
            mid = (lo + hi) // 2
 | 
						|
            if x < a[mid]:
 | 
						|
                hi = mid
 | 
						|
            else:
 | 
						|
                lo = mid + 1
 | 
						|
    else:
 | 
						|
        while lo < hi:
 | 
						|
            mid = (lo + hi) // 2
 | 
						|
            if x < key(a[mid]):
 | 
						|
                hi = mid
 | 
						|
            else:
 | 
						|
                lo = mid + 1
 | 
						|
    return lo
 | 
						|
 | 
						|
 | 
						|
def insort_left(a, x, lo=0, hi=None, *, key=None):
 | 
						|
    """Insert item x in list a, and keep it sorted assuming a is sorted.
 | 
						|
 | 
						|
    If x is already in a, insert it to the left of the leftmost x.
 | 
						|
 | 
						|
    Optional args lo (default 0) and hi (default len(a)) bound the
 | 
						|
    slice of a to be searched.
 | 
						|
 | 
						|
    A custom key function can be supplied to customize the sort order.
 | 
						|
    """
 | 
						|
 | 
						|
    if key is None:
 | 
						|
        lo = bisect_left(a, x, lo, hi)
 | 
						|
    else:
 | 
						|
        lo = bisect_left(a, key(x), lo, hi, key=key)
 | 
						|
    a.insert(lo, x)
 | 
						|
 | 
						|
def bisect_left(a, x, lo=0, hi=None, *, key=None):
 | 
						|
    """Return the index where to insert item x in list a, assuming a is sorted.
 | 
						|
 | 
						|
    The return value i is such that all e in a[:i] have e < x, and all e in
 | 
						|
    a[i:] have e >= x.  So if x already appears in the list, a.insert(i, x) will
 | 
						|
    insert just before the leftmost x already there.
 | 
						|
 | 
						|
    Optional args lo (default 0) and hi (default len(a)) bound the
 | 
						|
    slice of a to be searched.
 | 
						|
 | 
						|
    A custom key function can be supplied to customize the sort order.
 | 
						|
    """
 | 
						|
 | 
						|
    if lo < 0:
 | 
						|
        raise ValueError('lo must be non-negative')
 | 
						|
    if hi is None:
 | 
						|
        hi = len(a)
 | 
						|
    # Note, the comparison uses "<" to match the
 | 
						|
    # __lt__() logic in list.sort() and in heapq.
 | 
						|
    if key is None:
 | 
						|
        while lo < hi:
 | 
						|
            mid = (lo + hi) // 2
 | 
						|
            if a[mid] < x:
 | 
						|
                lo = mid + 1
 | 
						|
            else:
 | 
						|
                hi = mid
 | 
						|
    else:
 | 
						|
        while lo < hi:
 | 
						|
            mid = (lo + hi) // 2
 | 
						|
            if key(a[mid]) < x:
 | 
						|
                lo = mid + 1
 | 
						|
            else:
 | 
						|
                hi = mid
 | 
						|
    return lo
 | 
						|
 | 
						|
 | 
						|
# Overwrite above definitions with a fast C implementation
 | 
						|
try:
 | 
						|
    from _bisect import *
 | 
						|
except ImportError:
 | 
						|
    pass
 | 
						|
 | 
						|
# Create aliases
 | 
						|
bisect = bisect_right
 | 
						|
insort = insort_right
 |