mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			298 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
| # Complex numbers
 | |
| # ---------------
 | |
| 
 | |
| # [Now that Python has a complex data type built-in, this is not very
 | |
| # useful, but it's still a nice example class]
 | |
| 
 | |
| # This module represents complex numbers as instances of the class Complex.
 | |
| # A Complex instance z has two data attribues, z.re (the real part) and z.im
 | |
| # (the imaginary part).  In fact, z.re and z.im can have any value -- all
 | |
| # arithmetic operators work regardless of the type of z.re and z.im (as long
 | |
| # as they support numerical operations).
 | |
| #
 | |
| # The following functions exist (Complex is actually a class):
 | |
| # Complex([re [,im]) -> creates a complex number from a real and an imaginary part
 | |
| # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
 | |
| # ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
 | |
| #                 if z is a tuple(re, im) it will also be converted
 | |
| # PolarToComplex([r [,phi [,fullcircle]]]) ->
 | |
| #       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
 | |
| #       (r and phi default to 0)
 | |
| # exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
 | |
| #
 | |
| # Complex numbers have the following methods:
 | |
| # z.abs() -> absolute value of z
 | |
| # z.radius() == z.abs()
 | |
| # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
 | |
| # z.phi([fullcircle]) == z.angle(fullcircle)
 | |
| #
 | |
| # These standard functions and unary operators accept complex arguments:
 | |
| # abs(z)
 | |
| # -z
 | |
| # +z
 | |
| # not z
 | |
| # repr(z) == `z`
 | |
| # str(z)
 | |
| # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
 | |
| #            the result equals hash(z.re)
 | |
| # Note that hex(z) and oct(z) are not defined.
 | |
| #
 | |
| # These conversions accept complex arguments only if their imaginary part is zero:
 | |
| # int(z)
 | |
| # long(z)
 | |
| # float(z)
 | |
| #
 | |
| # The following operators accept two complex numbers, or one complex number
 | |
| # and one real number (int, long or float):
 | |
| # z1 + z2
 | |
| # z1 - z2
 | |
| # z1 * z2
 | |
| # z1 / z2
 | |
| # pow(z1, z2)
 | |
| # cmp(z1, z2)
 | |
| # Note that z1 % z2 and divmod(z1, z2) are not defined,
 | |
| # nor are shift and mask operations.
 | |
| #
 | |
| # The standard module math does not support complex numbers.
 | |
| # (I suppose it would be easy to implement a cmath module.)
 | |
| #
 | |
| # Idea:
 | |
| # add a class Polar(r, phi) and mixed-mode arithmetic which
 | |
| # chooses the most appropriate type for the result:
 | |
| # Complex for +,-,cmp
 | |
| # Polar   for *,/,pow
 | |
| 
 | |
| 
 | |
| import types, math
 | |
| 
 | |
| twopi = math.pi*2.0
 | |
| halfpi = math.pi/2.0
 | |
| 
 | |
| def IsComplex(obj):
 | |
|     return hasattr(obj, 're') and hasattr(obj, 'im')
 | |
| 
 | |
| def ToComplex(obj):
 | |
|     if IsComplex(obj):
 | |
|         return obj
 | |
|     elif type(obj) == types.TupleType:
 | |
|         return apply(Complex, obj)
 | |
|     else:
 | |
|         return Complex(obj)
 | |
| 
 | |
| def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
 | |
|     phi = phi * (twopi / fullcircle)
 | |
|     return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | |
| 
 | |
| def Re(obj):
 | |
|     if IsComplex(obj):
 | |
|         return obj.re
 | |
|     else:
 | |
|         return obj
 | |
| 
 | |
| def Im(obj):
 | |
|     if IsComplex(obj):
 | |
|         return obj.im
 | |
|     else:
 | |
|         return obj
 | |
| 
 | |
| class Complex:
 | |
| 
 | |
|     def __init__(self, re=0, im=0):
 | |
|         if IsComplex(re):
 | |
|             im = i + Complex(0, re.im)
 | |
|             re = re.re
 | |
|         if IsComplex(im):
 | |
|             re = re - im.im
 | |
|             im = im.re
 | |
|         self.__dict__['re'] = re
 | |
|         self.__dict__['im'] = im
 | |
| 
 | |
|     def __setattr__(self, name, value):
 | |
|         raise TypeError, 'Complex numbers are immutable'
 | |
| 
 | |
|     def __hash__(self):
 | |
|         if not self.im: return hash(self.re)
 | |
|         mod = sys.maxint + 1L
 | |
|         return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         if not self.im:
 | |
|             return 'Complex(%s)' % `self.re`
 | |
|         else:
 | |
|             return 'Complex(%s, %s)' % (`self.re`, `self.im`)
 | |
| 
 | |
|     def __str__(self):
 | |
|         if not self.im:
 | |
|             return `self.re`
 | |
|         else:
 | |
|             return 'Complex(%s, %s)' % (`self.re`, `self.im`)
 | |
| 
 | |
|     def __neg__(self):
 | |
|         return Complex(-self.re, -self.im)
 | |
| 
 | |
|     def __pos__(self):
 | |
|         return self
 | |
| 
 | |
|     def __abs__(self):
 | |
|         # XXX could be done differently to avoid overflow!
 | |
|         return math.sqrt(self.re*self.re + self.im*self.im)
 | |
| 
 | |
|     def __int__(self):
 | |
|         if self.im:
 | |
|             raise ValueError, "can't convert Complex with nonzero im to int"
 | |
|         return int(self.re)
 | |
| 
 | |
|     def __long__(self):
 | |
|         if self.im:
 | |
|             raise ValueError, "can't convert Complex with nonzero im to long"
 | |
|         return long(self.re)
 | |
| 
 | |
|     def __float__(self):
 | |
|         if self.im:
 | |
|             raise ValueError, "can't convert Complex with nonzero im to float"
 | |
|         return float(self.re)
 | |
| 
 | |
|     def __cmp__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return cmp((self.re, self.im), (other.re, other.im))
 | |
| 
 | |
|     def __rcmp__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return cmp(other, self)
 | |
| 
 | |
|     def __nonzero__(self):
 | |
|         return not (self.re == self.im == 0)
 | |
| 
 | |
|     abs = radius = __abs__
 | |
| 
 | |
|     def angle(self, fullcircle = twopi):
 | |
|         return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
 | |
| 
 | |
|     phi = angle
 | |
| 
 | |
|     def __add__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return Complex(self.re + other.re, self.im + other.im)
 | |
| 
 | |
|     __radd__ = __add__
 | |
| 
 | |
|     def __sub__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return Complex(self.re - other.re, self.im - other.im)
 | |
| 
 | |
|     def __rsub__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return other - self
 | |
| 
 | |
|     def __mul__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return Complex(self.re*other.re - self.im*other.im,
 | |
|                        self.re*other.im + self.im*other.re)
 | |
| 
 | |
|     __rmul__ = __mul__
 | |
| 
 | |
|     def __div__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         d = float(other.re*other.re + other.im*other.im)
 | |
|         if not d: raise ZeroDivisionError, 'Complex division'
 | |
|         return Complex((self.re*other.re + self.im*other.im) / d,
 | |
|                        (self.im*other.re - self.re*other.im) / d)
 | |
| 
 | |
|     def __rdiv__(self, other):
 | |
|         other = ToComplex(other)
 | |
|         return other / self
 | |
| 
 | |
|     def __pow__(self, n, z=None):
 | |
|         if z is not None:
 | |
|             raise TypeError, 'Complex does not support ternary pow()'
 | |
|         if IsComplex(n):
 | |
|             if n.im:
 | |
|                 if self.im: raise TypeError, 'Complex to the Complex power'
 | |
|                 else: return exp(math.log(self.re)*n)
 | |
|             n = n.re
 | |
|         r = pow(self.abs(), n)
 | |
|         phi = n*self.angle()
 | |
|         return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | |
| 
 | |
|     def __rpow__(self, base):
 | |
|         base = ToComplex(base)
 | |
|         return pow(base, self)
 | |
| 
 | |
| def exp(z):
 | |
|     r = math.exp(z.re)
 | |
|     return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
 | |
| 
 | |
| 
 | |
| def checkop(expr, a, b, value, fuzz = 1e-6):
 | |
|     import sys
 | |
|     print '       ', a, 'and', b,
 | |
|     try:
 | |
|         result = eval(expr)
 | |
|     except:
 | |
|         result = sys.exc_type
 | |
|     print '->', result
 | |
|     if (type(result) == type('') or type(value) == type('')):
 | |
|         ok = result == value
 | |
|     else:
 | |
|         ok = abs(result - value) <= fuzz
 | |
|     if not ok:
 | |
|         print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
 | |
| 
 | |
| 
 | |
| def test():
 | |
|     testsuite = {
 | |
|             'a+b': [
 | |
|                     (1, 10, 11),
 | |
|                     (1, Complex(0,10), Complex(1,10)),
 | |
|                     (Complex(0,10), 1, Complex(1,10)),
 | |
|                     (Complex(0,10), Complex(1), Complex(1,10)),
 | |
|                     (Complex(1), Complex(0,10), Complex(1,10)),
 | |
|             ],
 | |
|             'a-b': [
 | |
|                     (1, 10, -9),
 | |
|                     (1, Complex(0,10), Complex(1,-10)),
 | |
|                     (Complex(0,10), 1, Complex(-1,10)),
 | |
|                     (Complex(0,10), Complex(1), Complex(-1,10)),
 | |
|                     (Complex(1), Complex(0,10), Complex(1,-10)),
 | |
|             ],
 | |
|             'a*b': [
 | |
|                     (1, 10, 10),
 | |
|                     (1, Complex(0,10), Complex(0, 10)),
 | |
|                     (Complex(0,10), 1, Complex(0,10)),
 | |
|                     (Complex(0,10), Complex(1), Complex(0,10)),
 | |
|                     (Complex(1), Complex(0,10), Complex(0,10)),
 | |
|             ],
 | |
|             'a/b': [
 | |
|                     (1., 10, 0.1),
 | |
|                     (1, Complex(0,10), Complex(0, -0.1)),
 | |
|                     (Complex(0, 10), 1, Complex(0, 10)),
 | |
|                     (Complex(0, 10), Complex(1), Complex(0, 10)),
 | |
|                     (Complex(1), Complex(0,10), Complex(0, -0.1)),
 | |
|             ],
 | |
|             'pow(a,b)': [
 | |
|                     (1, 10, 1),
 | |
|                     (1, Complex(0,10), 1),
 | |
|                     (Complex(0,10), 1, Complex(0,10)),
 | |
|                     (Complex(0,10), Complex(1), Complex(0,10)),
 | |
|                     (Complex(1), Complex(0,10), 1),
 | |
|                     (2, Complex(4,0), 16),
 | |
|             ],
 | |
|             'cmp(a,b)': [
 | |
|                     (1, 10, -1),
 | |
|                     (1, Complex(0,10), 1),
 | |
|                     (Complex(0,10), 1, -1),
 | |
|                     (Complex(0,10), Complex(1), -1),
 | |
|                     (Complex(1), Complex(0,10), 1),
 | |
|             ],
 | |
|     }
 | |
|     exprs = testsuite.keys()
 | |
|     exprs.sort()
 | |
|     for expr in exprs:
 | |
|         print expr + ':'
 | |
|         t = (expr,)
 | |
|         for item in testsuite[expr]:
 | |
|             apply(checkop, t+item)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test()
 | 
