mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			98 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \section{\module{mpz} ---
 | |
|          GNU arbitrary magnitude integers}
 | |
| 
 | |
| \declaremodule{builtin}{mpz}
 | |
| \modulesynopsis{Interface to the GNU MP library for arbitrary
 | |
| precision arithmetic.}
 | |
| 
 | |
| 
 | |
| This is an optional module.  It is only available when Python is
 | |
| configured to include it, which requires that the GNU MP software is
 | |
| installed.
 | |
| \index{MP, GNU library}
 | |
| \index{arbitrary precision integers}
 | |
| \index{integer!arbitrary precision}
 | |
| 
 | |
| This module implements the interface to part of the GNU MP library,
 | |
| which defines arbitrary precision integer and rational number
 | |
| arithmetic routines.  Only the interfaces to the \emph{integer}
 | |
| (\function{mpz_*()}) routines are provided. If not stated
 | |
| otherwise, the description in the GNU MP documentation can be applied.
 | |
| 
 | |
| Support for rational numbers\index{rational numbers} can be
 | |
| implemented in Python.  For an example, see the \module{Rat}%
 | |
| \withsubitem{(demo module)}{\ttindex{Rat}} module, provided as
 | |
| \file{Demos/classes/Rat.py} in the Python source distribution.
 | |
| 
 | |
| In general, \dfn{mpz}-numbers can be used just like other standard
 | |
| Python numbers, e.g., you can use the built-in operators like \code{+},
 | |
| \code{*}, etc., as well as the standard built-in functions like
 | |
| \function{abs()}, \function{int()}, \ldots, \function{divmod()},
 | |
| \function{pow()}.  \strong{Please note:} the \emph{bitwise-xor}
 | |
| operation has been implemented as a bunch of \emph{and}s,
 | |
| \emph{invert}s and \emph{or}s, because the library lacks an
 | |
| \cfunction{mpz_xor()} function, and I didn't need one.
 | |
| 
 | |
| You create an mpz-number by calling the function \function{mpz()} (see
 | |
| below for an exact description). An mpz-number is printed like this:
 | |
| \code{mpz(\var{value})}.
 | |
| 
 | |
| 
 | |
| \begin{funcdesc}{mpz}{value}
 | |
|   Create a new mpz-number. \var{value} can be an integer, a long,
 | |
|   another mpz-number, or even a string. If it is a string, it is
 | |
|   interpreted as an array of radix-256 digits, least significant digit
 | |
|   first, resulting in a positive number. See also the \method{binary()}
 | |
|   method, described below.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{datadesc}{MPZType}
 | |
|   The type of the objects returned by \function{mpz()} and most other
 | |
|   functions in this module.
 | |
| \end{datadesc}
 | |
| 
 | |
| 
 | |
| A number of \emph{extra} functions are defined in this module. Non
 | |
| mpz-arguments are converted to mpz-values first, and the functions
 | |
| return mpz-numbers.
 | |
| 
 | |
| \begin{funcdesc}{powm}{base, exponent, modulus}
 | |
|   Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If
 | |
|   \code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the
 | |
|   \C{} library function, this version can handle negative exponents.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{gcd}{op1, op2}
 | |
|   Return the greatest common divisor of \var{op1} and \var{op2}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{gcdext}{a, b}
 | |
|   Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that
 | |
|   \code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sqrt}{op}
 | |
|   Return the square root of \var{op}. The result is rounded towards zero.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sqrtrem}{op}
 | |
|   Return a tuple \code{(\var{root}, \var{remainder})}, such that
 | |
|   \code{\var{root}*\var{root} + \var{remainder} == \var{op}}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{divm}{numerator, denominator, modulus}
 | |
|   Returns a number \var{q} such that
 | |
|   \code{\var{q} * \var{denominator} \%{} \var{modulus} ==
 | |
|   \var{numerator}}.  One could also implement this function in Python,
 | |
|   using \function{gcdext()}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| An mpz-number has one method:
 | |
| 
 | |
| \begin{methoddesc}[mpz]{binary}{}
 | |
|   Convert this mpz-number to a binary string, where the number has been
 | |
|   stored as an array of radix-256 digits, least significant digit first.
 | |
| 
 | |
|   The mpz-number must have a value greater than or equal to zero,
 | |
|   otherwise \exception{ValueError} will be raised.
 | |
| \end{methoddesc}
 | 
