mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 18:54:53 +00:00 
			
		
		
		
	 7be4e350aa
			
		
	
	
		7be4e350aa
		
			
		
	
	
	
	
		
			
			In the experimental isolated subinterpreters build mode, the GIL is now per-interpreter. Move gil from _PyRuntimeState.ceval to PyInterpreterState.ceval. new_interpreter() always get the config from the main interpreter.
		
			
				
	
	
		
			349 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Implementation of the Global Interpreter Lock (GIL).
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #include "pycore_atomic.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|    Notes about the implementation:
 | |
| 
 | |
|    - The GIL is just a boolean variable (locked) whose access is protected
 | |
|      by a mutex (gil_mutex), and whose changes are signalled by a condition
 | |
|      variable (gil_cond). gil_mutex is taken for short periods of time,
 | |
|      and therefore mostly uncontended.
 | |
| 
 | |
|    - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
 | |
|      able to release the GIL on demand by another thread. A volatile boolean
 | |
|      variable (gil_drop_request) is used for that purpose, which is checked
 | |
|      at every turn of the eval loop. That variable is set after a wait of
 | |
|      `interval` microseconds on `gil_cond` has timed out.
 | |
| 
 | |
|       [Actually, another volatile boolean variable (eval_breaker) is used
 | |
|        which ORs several conditions into one. Volatile booleans are
 | |
|        sufficient as inter-thread signalling means since Python is run
 | |
|        on cache-coherent architectures only.]
 | |
| 
 | |
|    - A thread wanting to take the GIL will first let pass a given amount of
 | |
|      time (`interval` microseconds) before setting gil_drop_request. This
 | |
|      encourages a defined switching period, but doesn't enforce it since
 | |
|      opcodes can take an arbitrary time to execute.
 | |
| 
 | |
|      The `interval` value is available for the user to read and modify
 | |
|      using the Python API `sys.{get,set}switchinterval()`.
 | |
| 
 | |
|    - When a thread releases the GIL and gil_drop_request is set, that thread
 | |
|      ensures that another GIL-awaiting thread gets scheduled.
 | |
|      It does so by waiting on a condition variable (switch_cond) until
 | |
|      the value of last_holder is changed to something else than its
 | |
|      own thread state pointer, indicating that another thread was able to
 | |
|      take the GIL.
 | |
| 
 | |
|      This is meant to prohibit the latency-adverse behaviour on multi-core
 | |
|      machines where one thread would speculatively release the GIL, but still
 | |
|      run and end up being the first to re-acquire it, making the "timeslices"
 | |
|      much longer than expected.
 | |
|      (Note: this mechanism is enabled with FORCE_SWITCHING above)
 | |
| */
 | |
| 
 | |
| #include "condvar.h"
 | |
| 
 | |
| #define MUTEX_INIT(mut) \
 | |
|     if (PyMUTEX_INIT(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
 | |
| #define MUTEX_FINI(mut) \
 | |
|     if (PyMUTEX_FINI(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
 | |
| #define MUTEX_LOCK(mut) \
 | |
|     if (PyMUTEX_LOCK(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
 | |
| #define MUTEX_UNLOCK(mut) \
 | |
|     if (PyMUTEX_UNLOCK(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
 | |
| 
 | |
| #define COND_INIT(cond) \
 | |
|     if (PyCOND_INIT(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
 | |
| #define COND_FINI(cond) \
 | |
|     if (PyCOND_FINI(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
 | |
| #define COND_SIGNAL(cond) \
 | |
|     if (PyCOND_SIGNAL(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
 | |
| #define COND_WAIT(cond, mut) \
 | |
|     if (PyCOND_WAIT(&(cond), &(mut))) { \
 | |
|         Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
 | |
| #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
 | |
|     { \
 | |
|         int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
 | |
|         if (r < 0) \
 | |
|             Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
 | |
|         if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
 | |
|             timeout_result = 1; \
 | |
|         else \
 | |
|             timeout_result = 0; \
 | |
|     } \
 | |
| 
 | |
| 
 | |
| #define DEFAULT_INTERVAL 5000
 | |
| 
 | |
| static void _gil_initialize(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     _Py_atomic_int uninitialized = {-1};
 | |
|     gil->locked = uninitialized;
 | |
|     gil->interval = DEFAULT_INTERVAL;
 | |
| }
 | |
| 
 | |
| static int gil_created(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0);
 | |
| }
 | |
| 
 | |
| static void create_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     MUTEX_INIT(gil->mutex);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     MUTEX_INIT(gil->switch_mutex);
 | |
| #endif
 | |
|     COND_INIT(gil->cond);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_INIT(gil->switch_cond);
 | |
| #endif
 | |
|     _Py_atomic_store_relaxed(&gil->last_holder, 0);
 | |
|     _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
 | |
|     _Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release);
 | |
| }
 | |
| 
 | |
| static void destroy_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     /* some pthread-like implementations tie the mutex to the cond
 | |
|      * and must have the cond destroyed first.
 | |
|      */
 | |
|     COND_FINI(gil->cond);
 | |
|     MUTEX_FINI(gil->mutex);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_FINI(gil->switch_cond);
 | |
|     MUTEX_FINI(gil->switch_mutex);
 | |
| #endif
 | |
|     _Py_atomic_store_explicit(&gil->locked, -1,
 | |
|                               _Py_memory_order_release);
 | |
|     _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | |
| }
 | |
| 
 | |
| static void recreate_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | |
|     /* XXX should we destroy the old OS resources here? */
 | |
|     create_gil(gil);
 | |
| }
 | |
| 
 | |
| static void
 | |
| drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2,
 | |
|          PyThreadState *tstate)
 | |
| {
 | |
| #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
 | |
|     struct _gil_runtime_state *gil = &ceval2->gil;
 | |
| #else
 | |
|     struct _gil_runtime_state *gil = &ceval->gil;
 | |
| #endif
 | |
|     if (!_Py_atomic_load_relaxed(&gil->locked)) {
 | |
|         Py_FatalError("drop_gil: GIL is not locked");
 | |
|     }
 | |
| 
 | |
|     /* tstate is allowed to be NULL (early interpreter init) */
 | |
|     if (tstate != NULL) {
 | |
|         /* Sub-interpreter support: threads might have been switched
 | |
|            under our feet using PyThreadState_Swap(). Fix the GIL last
 | |
|            holder variable so that our heuristics work. */
 | |
|         _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
 | |
|     }
 | |
| 
 | |
|     MUTEX_LOCK(gil->mutex);
 | |
|     _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
 | |
|     _Py_atomic_store_relaxed(&gil->locked, 0);
 | |
|     COND_SIGNAL(gil->cond);
 | |
|     MUTEX_UNLOCK(gil->mutex);
 | |
| 
 | |
| #ifdef FORCE_SWITCHING
 | |
|     if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) {
 | |
|         MUTEX_LOCK(gil->switch_mutex);
 | |
|         /* Not switched yet => wait */
 | |
|         if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate)
 | |
|         {
 | |
|             assert(is_tstate_valid(tstate));
 | |
|             RESET_GIL_DROP_REQUEST(tstate->interp);
 | |
|             /* NOTE: if COND_WAIT does not atomically start waiting when
 | |
|                releasing the mutex, another thread can run through, take
 | |
|                the GIL and drop it again, and reset the condition
 | |
|                before we even had a chance to wait for it. */
 | |
|             COND_WAIT(gil->switch_cond, gil->switch_mutex);
 | |
|         }
 | |
|         MUTEX_UNLOCK(gil->switch_mutex);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Check if a Python thread must exit immediately, rather than taking the GIL
 | |
|    if Py_Finalize() has been called.
 | |
| 
 | |
|    When this function is called by a daemon thread after Py_Finalize() has been
 | |
|    called, the GIL does no longer exist.
 | |
| 
 | |
|    tstate must be non-NULL. */
 | |
| static inline int
 | |
| tstate_must_exit(PyThreadState *tstate)
 | |
| {
 | |
|     /* bpo-39877: Access _PyRuntime directly rather than using
 | |
|        tstate->interp->runtime to support calls from Python daemon threads.
 | |
|        After Py_Finalize() has been called, tstate can be a dangling pointer:
 | |
|        point to PyThreadState freed memory. */
 | |
|     PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
 | |
|     return (finalizing != NULL && finalizing != tstate);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Take the GIL.
 | |
| 
 | |
|    The function saves errno at entry and restores its value at exit.
 | |
| 
 | |
|    tstate must be non-NULL. */
 | |
| static void
 | |
| take_gil(PyThreadState *tstate)
 | |
| {
 | |
|     int err = errno;
 | |
| 
 | |
|     assert(tstate != NULL);
 | |
| 
 | |
|     if (tstate_must_exit(tstate)) {
 | |
|         /* bpo-39877: If Py_Finalize() has been called and tstate is not the
 | |
|            thread which called Py_Finalize(), exit immediately the thread.
 | |
| 
 | |
|            This code path can be reached by a daemon thread after Py_Finalize()
 | |
|            completes. In this case, tstate is a dangling pointer: points to
 | |
|            PyThreadState freed memory. */
 | |
|         PyThread_exit_thread();
 | |
|     }
 | |
| 
 | |
|     assert(is_tstate_valid(tstate));
 | |
|     PyInterpreterState *interp = tstate->interp;
 | |
|     struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
 | |
|     struct _ceval_state *ceval2 = &interp->ceval;
 | |
| #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
 | |
|     struct _gil_runtime_state *gil = &ceval2->gil;
 | |
| #else
 | |
|     struct _gil_runtime_state *gil = &ceval->gil;
 | |
| #endif
 | |
| 
 | |
|     /* Check that _PyEval_InitThreads() was called to create the lock */
 | |
|     assert(gil_created(gil));
 | |
| 
 | |
|     MUTEX_LOCK(gil->mutex);
 | |
| 
 | |
|     if (!_Py_atomic_load_relaxed(&gil->locked)) {
 | |
|         goto _ready;
 | |
|     }
 | |
| 
 | |
|     while (_Py_atomic_load_relaxed(&gil->locked)) {
 | |
|         unsigned long saved_switchnum = gil->switch_number;
 | |
| 
 | |
|         unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
 | |
|         int timed_out = 0;
 | |
|         COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
 | |
| 
 | |
|         /* If we timed out and no switch occurred in the meantime, it is time
 | |
|            to ask the GIL-holding thread to drop it. */
 | |
|         if (timed_out &&
 | |
|             _Py_atomic_load_relaxed(&gil->locked) &&
 | |
|             gil->switch_number == saved_switchnum)
 | |
|         {
 | |
|             if (tstate_must_exit(tstate)) {
 | |
|                 MUTEX_UNLOCK(gil->mutex);
 | |
|                 PyThread_exit_thread();
 | |
|             }
 | |
|             assert(is_tstate_valid(tstate));
 | |
| 
 | |
|             SET_GIL_DROP_REQUEST(interp);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| _ready:
 | |
| #ifdef FORCE_SWITCHING
 | |
|     /* This mutex must be taken before modifying gil->last_holder:
 | |
|        see drop_gil(). */
 | |
|     MUTEX_LOCK(gil->switch_mutex);
 | |
| #endif
 | |
|     /* We now hold the GIL */
 | |
|     _Py_atomic_store_relaxed(&gil->locked, 1);
 | |
|     _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
 | |
| 
 | |
|     if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) {
 | |
|         _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
 | |
|         ++gil->switch_number;
 | |
|     }
 | |
| 
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_SIGNAL(gil->switch_cond);
 | |
|     MUTEX_UNLOCK(gil->switch_mutex);
 | |
| #endif
 | |
| 
 | |
|     if (tstate_must_exit(tstate)) {
 | |
|         /* bpo-36475: If Py_Finalize() has been called and tstate is not
 | |
|            the thread which called Py_Finalize(), exit immediately the
 | |
|            thread.
 | |
| 
 | |
|            This code path can be reached by a daemon thread which was waiting
 | |
|            in take_gil() while the main thread called
 | |
|            wait_for_thread_shutdown() from Py_Finalize(). */
 | |
|         MUTEX_UNLOCK(gil->mutex);
 | |
|         drop_gil(ceval, ceval2, tstate);
 | |
|         PyThread_exit_thread();
 | |
|     }
 | |
|     assert(is_tstate_valid(tstate));
 | |
| 
 | |
|     if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) {
 | |
|         RESET_GIL_DROP_REQUEST(interp);
 | |
|     }
 | |
|     else {
 | |
|         /* bpo-40010: eval_breaker should be recomputed to be set to 1 if there
 | |
|            is a pending signal: signal received by another thread which cannot
 | |
|            handle signals.
 | |
| 
 | |
|            Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */
 | |
|         COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
 | |
|     }
 | |
| 
 | |
|     /* Don't access tstate if the thread must exit */
 | |
|     if (tstate->async_exc != NULL) {
 | |
|         _PyEval_SignalAsyncExc(tstate);
 | |
|     }
 | |
| 
 | |
|     MUTEX_UNLOCK(gil->mutex);
 | |
| 
 | |
|     errno = err;
 | |
| }
 | |
| 
 | |
| void _PyEval_SetSwitchInterval(unsigned long microseconds)
 | |
| {
 | |
| #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
 | |
|     PyInterpreterState *interp = PyInterpreterState_Get();
 | |
|     struct _gil_runtime_state *gil = &interp->ceval.gil;
 | |
| #else
 | |
|     struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
 | |
| #endif
 | |
|     gil->interval = microseconds;
 | |
| }
 | |
| 
 | |
| unsigned long _PyEval_GetSwitchInterval()
 | |
| {
 | |
| #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
 | |
|     PyInterpreterState *interp = PyInterpreterState_Get();
 | |
|     struct _gil_runtime_state *gil = &interp->ceval.gil;
 | |
| #else
 | |
|     struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
 | |
| #endif
 | |
|     return gil->interval;
 | |
| }
 |