mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 10:44:55 +00:00 
			
		
		
		
	 c09cec5d69
			
		
	
	
		c09cec5d69
		
			
		
	
	
	
	
		
			
			It now supports non-ASCII paths in non-UTF-8 locales and non-UTF-8 paths in UTF-8 locales.
		
			
				
	
	
		
			1430 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1430 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "Python.h"
 | |
| #include "pycore_ceval.h"         // _PyEval_SignalReceived()
 | |
| #include "pycore_gc.h"            // _Py_RunGC()
 | |
| #include "pycore_initconfig.h"    // _PyStatus_OK()
 | |
| #include "pycore_optimizer.h"     // _Py_Executors_InvalidateCold()
 | |
| #include "pycore_pyerrors.h"      // _PyErr_GetRaisedException()
 | |
| #include "pycore_pylifecycle.h"   // _PyErr_Print()
 | |
| #include "pycore_pystats.h"       // _Py_PrintSpecializationStats()
 | |
| #include "pycore_runtime.h"       // _PyRuntime
 | |
| 
 | |
| 
 | |
| /*
 | |
|    Notes about the implementation:
 | |
| 
 | |
|    - The GIL is just a boolean variable (locked) whose access is protected
 | |
|      by a mutex (gil_mutex), and whose changes are signalled by a condition
 | |
|      variable (gil_cond). gil_mutex is taken for short periods of time,
 | |
|      and therefore mostly uncontended.
 | |
| 
 | |
|    - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
 | |
|      able to release the GIL on demand by another thread. A volatile boolean
 | |
|      variable (gil_drop_request) is used for that purpose, which is checked
 | |
|      at every turn of the eval loop. That variable is set after a wait of
 | |
|      `interval` microseconds on `gil_cond` has timed out.
 | |
| 
 | |
|       [Actually, another volatile boolean variable (eval_breaker) is used
 | |
|        which ORs several conditions into one. Volatile booleans are
 | |
|        sufficient as inter-thread signalling means since Python is run
 | |
|        on cache-coherent architectures only.]
 | |
| 
 | |
|    - A thread wanting to take the GIL will first let pass a given amount of
 | |
|      time (`interval` microseconds) before setting gil_drop_request. This
 | |
|      encourages a defined switching period, but doesn't enforce it since
 | |
|      opcodes can take an arbitrary time to execute.
 | |
| 
 | |
|      The `interval` value is available for the user to read and modify
 | |
|      using the Python API `sys.{get,set}switchinterval()`.
 | |
| 
 | |
|    - When a thread releases the GIL and gil_drop_request is set, that thread
 | |
|      ensures that another GIL-awaiting thread gets scheduled.
 | |
|      It does so by waiting on a condition variable (switch_cond) until
 | |
|      the value of last_holder is changed to something else than its
 | |
|      own thread state pointer, indicating that another thread was able to
 | |
|      take the GIL.
 | |
| 
 | |
|      This is meant to prohibit the latency-adverse behaviour on multi-core
 | |
|      machines where one thread would speculatively release the GIL, but still
 | |
|      run and end up being the first to re-acquire it, making the "timeslices"
 | |
|      much longer than expected.
 | |
|      (Note: this mechanism is enabled with FORCE_SWITCHING above)
 | |
| */
 | |
| 
 | |
| // Atomically copy the bits indicated by mask between two values.
 | |
| static inline void
 | |
| copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask)
 | |
| {
 | |
|     uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask;
 | |
|     uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to);
 | |
|     uintptr_t to_bits = old_value & mask;
 | |
|     if (from_bits == to_bits) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     uintptr_t new_value;
 | |
|     do {
 | |
|         new_value = (old_value & ~mask) | from_bits;
 | |
|     } while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value));
 | |
| }
 | |
| 
 | |
| // When attaching a thread, set the global instrumentation version and
 | |
| // _PY_CALLS_TO_DO_BIT from the current state of the interpreter.
 | |
| static inline void
 | |
| update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate)
 | |
| {
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     // Free-threaded builds eagerly update the eval_breaker on *all* threads as
 | |
|     // needed, so this function doesn't apply.
 | |
|     return;
 | |
| #endif
 | |
| 
 | |
|     int32_t npending = _Py_atomic_load_int32_relaxed(
 | |
|         &interp->ceval.pending.npending);
 | |
|     if (npending) {
 | |
|         _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | |
|     }
 | |
|     else if (_Py_IsMainThread()) {
 | |
|         npending = _Py_atomic_load_int32_relaxed(
 | |
|             &_PyRuntime.ceval.pending_mainthread.npending);
 | |
|         if (npending) {
 | |
|             _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits
 | |
|     // we copy from our interpreter's state are the instrumentation version.
 | |
|     copy_eval_breaker_bits(&interp->ceval.instrumentation_version,
 | |
|                            &tstate->eval_breaker,
 | |
|                            ~_PY_EVAL_EVENTS_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implementation of the Global Interpreter Lock (GIL).
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #include "condvar.h"
 | |
| 
 | |
| #define MUTEX_INIT(mut) \
 | |
|     if (PyMUTEX_INIT(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
 | |
| #define MUTEX_FINI(mut) \
 | |
|     if (PyMUTEX_FINI(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
 | |
| #define MUTEX_LOCK(mut) \
 | |
|     if (PyMUTEX_LOCK(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
 | |
| #define MUTEX_UNLOCK(mut) \
 | |
|     if (PyMUTEX_UNLOCK(&(mut))) { \
 | |
|         Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
 | |
| 
 | |
| #define COND_INIT(cond) \
 | |
|     if (PyCOND_INIT(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
 | |
| #define COND_FINI(cond) \
 | |
|     if (PyCOND_FINI(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
 | |
| #define COND_SIGNAL(cond) \
 | |
|     if (PyCOND_SIGNAL(&(cond))) { \
 | |
|         Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
 | |
| #define COND_WAIT(cond, mut) \
 | |
|     if (PyCOND_WAIT(&(cond), &(mut))) { \
 | |
|         Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
 | |
| #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
 | |
|     { \
 | |
|         int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
 | |
|         if (r < 0) \
 | |
|             Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
 | |
|         if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
 | |
|             timeout_result = 1; \
 | |
|         else \
 | |
|             timeout_result = 0; \
 | |
|     } \
 | |
| 
 | |
| 
 | |
| #define DEFAULT_INTERVAL 5000
 | |
| 
 | |
| static void _gil_initialize(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     gil->locked = -1;
 | |
|     gil->interval = DEFAULT_INTERVAL;
 | |
| }
 | |
| 
 | |
| static int gil_created(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     if (gil == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
 | |
| }
 | |
| 
 | |
| static void create_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     MUTEX_INIT(gil->mutex);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     MUTEX_INIT(gil->switch_mutex);
 | |
| #endif
 | |
|     COND_INIT(gil->cond);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_INIT(gil->switch_cond);
 | |
| #endif
 | |
|     _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
 | |
|     _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
 | |
|     _Py_atomic_store_int_release(&gil->locked, 0);
 | |
| }
 | |
| 
 | |
| static void destroy_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     /* some pthread-like implementations tie the mutex to the cond
 | |
|      * and must have the cond destroyed first.
 | |
|      */
 | |
|     COND_FINI(gil->cond);
 | |
|     MUTEX_FINI(gil->mutex);
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_FINI(gil->switch_cond);
 | |
|     MUTEX_FINI(gil->switch_mutex);
 | |
| #endif
 | |
|     _Py_atomic_store_int_release(&gil->locked, -1);
 | |
|     _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_FORK
 | |
| static void recreate_gil(struct _gil_runtime_state *gil)
 | |
| {
 | |
|     _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | |
|     /* XXX should we destroy the old OS resources here? */
 | |
|     create_gil(gil);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void
 | |
| drop_gil_impl(PyThreadState *tstate, struct _gil_runtime_state *gil)
 | |
| {
 | |
|     MUTEX_LOCK(gil->mutex);
 | |
|     _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
 | |
|     _Py_atomic_store_int_relaxed(&gil->locked, 0);
 | |
|     if (tstate != NULL) {
 | |
|         tstate->holds_gil = 0;
 | |
|     }
 | |
|     COND_SIGNAL(gil->cond);
 | |
|     MUTEX_UNLOCK(gil->mutex);
 | |
| }
 | |
| 
 | |
| static void
 | |
| drop_gil(PyInterpreterState *interp, PyThreadState *tstate, int final_release)
 | |
| {
 | |
|     struct _ceval_state *ceval = &interp->ceval;
 | |
|     /* If final_release is true, the caller is indicating that we're releasing
 | |
|        the GIL for the last time in this thread.  This is particularly
 | |
|        relevant when the current thread state is finalizing or its
 | |
|        interpreter is finalizing (either may be in an inconsistent
 | |
|        state).  In that case the current thread will definitely
 | |
|        never try to acquire the GIL again. */
 | |
|     // XXX It may be more correct to check tstate->_status.finalizing.
 | |
|     // XXX assert(final_release || !tstate->_status.cleared);
 | |
| 
 | |
|     assert(final_release || tstate != NULL);
 | |
|     struct _gil_runtime_state *gil = ceval->gil;
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     // Check if we have the GIL before dropping it. tstate will be NULL if
 | |
|     // take_gil() detected that this thread has been destroyed, in which case
 | |
|     // we know we have the GIL.
 | |
|     if (tstate != NULL && !tstate->holds_gil) {
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     if (!_Py_atomic_load_int_relaxed(&gil->locked)) {
 | |
|         Py_FatalError("drop_gil: GIL is not locked");
 | |
|     }
 | |
| 
 | |
|     if (!final_release) {
 | |
|         /* Sub-interpreter support: threads might have been switched
 | |
|            under our feet using PyThreadState_Swap(). Fix the GIL last
 | |
|            holder variable so that our heuristics work. */
 | |
|         _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
 | |
|     }
 | |
| 
 | |
|     drop_gil_impl(tstate, gil);
 | |
| 
 | |
| #ifdef FORCE_SWITCHING
 | |
|     /* We might be releasing the GIL for the last time in this thread.  In that
 | |
|        case there's a possible race with tstate->interp getting deleted after
 | |
|        gil->mutex is unlocked and before the following code runs, leading to a
 | |
|        crash.  We can use final_release to indicate the thread is done with the
 | |
|        GIL, and that's the only time we might delete the interpreter.  See
 | |
|        https://github.com/python/cpython/issues/104341. */
 | |
|     if (!final_release &&
 | |
|         _Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) {
 | |
|         MUTEX_LOCK(gil->switch_mutex);
 | |
|         /* Not switched yet => wait */
 | |
|         if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
 | |
|         {
 | |
|             assert(_PyThreadState_CheckConsistency(tstate));
 | |
|             _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | |
|             /* NOTE: if COND_WAIT does not atomically start waiting when
 | |
|                releasing the mutex, another thread can run through, take
 | |
|                the GIL and drop it again, and reset the condition
 | |
|                before we even had a chance to wait for it. */
 | |
|             COND_WAIT(gil->switch_cond, gil->switch_mutex);
 | |
|         }
 | |
|         MUTEX_UNLOCK(gil->switch_mutex);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Take the GIL.
 | |
| 
 | |
|    The function saves errno at entry and restores its value at exit.
 | |
|    It may hang rather than return if the interpreter has been finalized.
 | |
| 
 | |
|    tstate must be non-NULL. */
 | |
| static void
 | |
| take_gil(PyThreadState *tstate)
 | |
| {
 | |
|     int err = errno;
 | |
| 
 | |
|     assert(tstate != NULL);
 | |
|     /* We shouldn't be using a thread state that isn't viable any more. */
 | |
|     // XXX It may be more correct to check tstate->_status.finalizing.
 | |
|     // XXX assert(!tstate->_status.cleared);
 | |
| 
 | |
|     if (_PyThreadState_MustExit(tstate)) {
 | |
|         /* bpo-39877: If Py_Finalize() has been called and tstate is not the
 | |
|            thread which called Py_Finalize(), this thread cannot continue.
 | |
| 
 | |
|            This code path can be reached by a daemon thread after Py_Finalize()
 | |
|            completes.
 | |
| 
 | |
|            This used to call a *thread_exit API, but that was not safe as it
 | |
|            lacks stack unwinding and local variable destruction important to
 | |
|            C++. gh-87135: The best that can be done is to hang the thread as
 | |
|            the public APIs calling this have no error reporting mechanism (!).
 | |
|          */
 | |
|         _PyThreadState_HangThread(tstate);
 | |
|     }
 | |
| 
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
|     PyInterpreterState *interp = tstate->interp;
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Check that _PyEval_InitThreads() was called to create the lock */
 | |
|     assert(gil_created(gil));
 | |
| 
 | |
|     MUTEX_LOCK(gil->mutex);
 | |
| 
 | |
|     int drop_requested = 0;
 | |
|     while (_Py_atomic_load_int_relaxed(&gil->locked)) {
 | |
|         unsigned long saved_switchnum = gil->switch_number;
 | |
| 
 | |
|         unsigned long interval = _Py_atomic_load_ulong_relaxed(&gil->interval);
 | |
|         if (interval < 1) {
 | |
|             interval = 1;
 | |
|         }
 | |
|         int timed_out = 0;
 | |
|         COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
 | |
| 
 | |
|         /* If we timed out and no switch occurred in the meantime, it is time
 | |
|            to ask the GIL-holding thread to drop it. */
 | |
|         if (timed_out &&
 | |
|             _Py_atomic_load_int_relaxed(&gil->locked) &&
 | |
|             gil->switch_number == saved_switchnum)
 | |
|         {
 | |
|             PyThreadState *holder_tstate =
 | |
|                 (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
 | |
|             if (_PyThreadState_MustExit(tstate)) {
 | |
|                 MUTEX_UNLOCK(gil->mutex);
 | |
|                 // gh-96387: If the loop requested a drop request in a previous
 | |
|                 // iteration, reset the request. Otherwise, drop_gil() can
 | |
|                 // block forever waiting for the thread which exited. Drop
 | |
|                 // requests made by other threads are also reset: these threads
 | |
|                 // may have to request again a drop request (iterate one more
 | |
|                 // time).
 | |
|                 if (drop_requested) {
 | |
|                     _Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
 | |
|                 }
 | |
|                 // gh-87135: hang the thread as *thread_exit() is not a safe
 | |
|                 // API. It lacks stack unwind and local variable destruction.
 | |
|                 _PyThreadState_HangThread(tstate);
 | |
|             }
 | |
|             assert(_PyThreadState_CheckConsistency(tstate));
 | |
| 
 | |
|             _Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
 | |
|             drop_requested = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
 | |
|         // Another thread disabled the GIL between our check above and
 | |
|         // now. Don't take the GIL, signal any other waiting threads, and
 | |
|         // return.
 | |
|         COND_SIGNAL(gil->cond);
 | |
|         MUTEX_UNLOCK(gil->mutex);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifdef FORCE_SWITCHING
 | |
|     /* This mutex must be taken before modifying gil->last_holder:
 | |
|        see drop_gil(). */
 | |
|     MUTEX_LOCK(gil->switch_mutex);
 | |
| #endif
 | |
|     /* We now hold the GIL */
 | |
|     _Py_atomic_store_int_relaxed(&gil->locked, 1);
 | |
|     _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
 | |
| 
 | |
|     if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
 | |
|         _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
 | |
|         ++gil->switch_number;
 | |
|     }
 | |
| 
 | |
| #ifdef FORCE_SWITCHING
 | |
|     COND_SIGNAL(gil->switch_cond);
 | |
|     MUTEX_UNLOCK(gil->switch_mutex);
 | |
| #endif
 | |
| 
 | |
|     if (_PyThreadState_MustExit(tstate)) {
 | |
|         /* bpo-36475: If Py_Finalize() has been called and tstate is not
 | |
|            the thread which called Py_Finalize(), gh-87135: hang the
 | |
|            thread.
 | |
| 
 | |
|            This code path can be reached by a daemon thread which was waiting
 | |
|            in take_gil() while the main thread called
 | |
|            wait_for_thread_shutdown() from Py_Finalize(). */
 | |
|         MUTEX_UNLOCK(gil->mutex);
 | |
|         /* tstate could be a dangling pointer, so don't pass it to
 | |
|            drop_gil(). */
 | |
|         drop_gil(interp, NULL, 1);
 | |
|         _PyThreadState_HangThread(tstate);
 | |
|     }
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
| 
 | |
|     tstate->holds_gil = 1;
 | |
|     _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | |
|     update_eval_breaker_for_thread(interp, tstate);
 | |
| 
 | |
|     MUTEX_UNLOCK(gil->mutex);
 | |
| 
 | |
|     errno = err;
 | |
|     return;
 | |
| }
 | |
| 
 | |
| void _PyEval_SetSwitchInterval(unsigned long microseconds)
 | |
| {
 | |
|     PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
|     assert(gil != NULL);
 | |
|     _Py_atomic_store_ulong_relaxed(&gil->interval, microseconds);
 | |
| }
 | |
| 
 | |
| unsigned long _PyEval_GetSwitchInterval(void)
 | |
| {
 | |
|     PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
|     assert(gil != NULL);
 | |
|     return _Py_atomic_load_ulong_relaxed(&gil->interval);
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyEval_ThreadsInitialized(void)
 | |
| {
 | |
|     /* XXX This is only needed for an assert in PyGILState_Ensure(),
 | |
|      * which currently does not work with subinterpreters.
 | |
|      * Thus we only use the main interpreter. */
 | |
|     PyInterpreterState *interp = _PyInterpreterState_Main();
 | |
|     if (interp == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
|     return gil_created(gil);
 | |
| }
 | |
| 
 | |
| // Function removed in the Python 3.13 API but kept in the stable ABI.
 | |
| PyAPI_FUNC(int)
 | |
| PyEval_ThreadsInitialized(void)
 | |
| {
 | |
|     return _PyEval_ThreadsInitialized();
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static inline int
 | |
| current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
 | |
| {
 | |
|     int holds_gil = tstate->holds_gil;
 | |
| 
 | |
|     // holds_gil is the source of truth; check that last_holder and gil->locked
 | |
|     // are consistent with it.
 | |
|     int locked = _Py_atomic_load_int_relaxed(&gil->locked);
 | |
|     int is_last_holder =
 | |
|         ((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate;
 | |
|     assert(!holds_gil || locked);
 | |
|     assert(!holds_gil || is_last_holder);
 | |
| 
 | |
|     return holds_gil;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
 | |
| {
 | |
|     assert(gil_created(gil));
 | |
|     interp->ceval.gil = gil;
 | |
|     interp->ceval.own_gil = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
 | |
| {
 | |
|     assert(!gil_created(gil));
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     const PyConfig *config = _PyInterpreterState_GetConfig(interp);
 | |
|     gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0;
 | |
| #endif
 | |
|     create_gil(gil);
 | |
|     assert(gil_created(gil));
 | |
|     interp->ceval.gil = gil;
 | |
|     interp->ceval.own_gil = 1;
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_InitGIL(PyThreadState *tstate, int own_gil)
 | |
| {
 | |
|     assert(tstate->interp->ceval.gil == NULL);
 | |
|     if (!own_gil) {
 | |
|         /* The interpreter will share the main interpreter's instead. */
 | |
|         PyInterpreterState *main_interp = _PyInterpreterState_Main();
 | |
|         assert(tstate->interp != main_interp);
 | |
|         struct _gil_runtime_state *gil = main_interp->ceval.gil;
 | |
|         init_shared_gil(tstate->interp, gil);
 | |
|         assert(!current_thread_holds_gil(gil, tstate));
 | |
|     }
 | |
|     else {
 | |
|         PyThread_init_thread();
 | |
|         init_own_gil(tstate->interp, &tstate->interp->_gil);
 | |
|     }
 | |
| 
 | |
|     // Lock the GIL and mark the current thread as attached.
 | |
|     _PyThreadState_Attach(tstate);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_FiniGIL(PyInterpreterState *interp)
 | |
| {
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
|     if (gil == NULL) {
 | |
|         /* It was already finalized (or hasn't been initialized yet). */
 | |
|         assert(!interp->ceval.own_gil);
 | |
|         return;
 | |
|     }
 | |
|     else if (!interp->ceval.own_gil) {
 | |
| #ifdef Py_DEBUG
 | |
|         PyInterpreterState *main_interp = _PyInterpreterState_Main();
 | |
|         assert(main_interp != NULL && interp != main_interp);
 | |
|         assert(interp->ceval.gil == main_interp->ceval.gil);
 | |
| #endif
 | |
|         interp->ceval.gil = NULL;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!gil_created(gil)) {
 | |
|         /* First Py_InitializeFromConfig() call: the GIL doesn't exist
 | |
|            yet: do nothing. */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     destroy_gil(gil);
 | |
|     assert(!gil_created(gil));
 | |
|     interp->ceval.gil = NULL;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyEval_InitThreads(void)
 | |
| {
 | |
|     /* Do nothing: kept for backward compatibility */
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_Fini(void)
 | |
| {
 | |
| #ifdef Py_STATS
 | |
|     _Py_PrintSpecializationStats(1);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Function removed in the Python 3.13 API but kept in the stable ABI.
 | |
| PyAPI_FUNC(void)
 | |
| PyEval_AcquireLock(void)
 | |
| {
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     _Py_EnsureTstateNotNULL(tstate);
 | |
| 
 | |
|     take_gil(tstate);
 | |
| }
 | |
| 
 | |
| // Function removed in the Python 3.13 API but kept in the stable ABI.
 | |
| PyAPI_FUNC(void)
 | |
| PyEval_ReleaseLock(void)
 | |
| {
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     /* This function must succeed when the current thread state is NULL.
 | |
|        We therefore avoid PyThreadState_Get() which dumps a fatal error
 | |
|        in debug mode. */
 | |
|     drop_gil(tstate->interp, tstate, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_AcquireLock(PyThreadState *tstate)
 | |
| {
 | |
|     _Py_EnsureTstateNotNULL(tstate);
 | |
|     take_gil(tstate);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_ReleaseLock(PyInterpreterState *interp,
 | |
|                     PyThreadState *tstate,
 | |
|                     int final_release)
 | |
| {
 | |
|     assert(tstate != NULL);
 | |
|     assert(tstate->interp == interp);
 | |
|     drop_gil(interp, tstate, final_release);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyEval_AcquireThread(PyThreadState *tstate)
 | |
| {
 | |
|     _Py_EnsureTstateNotNULL(tstate);
 | |
|     _PyThreadState_Attach(tstate);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyEval_ReleaseThread(PyThreadState *tstate)
 | |
| {
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
|     _PyThreadState_Detach(tstate);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_FORK
 | |
| /* This function is called from PyOS_AfterFork_Child to re-initialize the
 | |
|    GIL and pending calls lock. */
 | |
| PyStatus
 | |
| _PyEval_ReInitThreads(PyThreadState *tstate)
 | |
| {
 | |
|     assert(tstate->interp == _PyInterpreterState_Main());
 | |
| 
 | |
|     struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | |
|     if (!gil_created(gil)) {
 | |
|         return _PyStatus_OK();
 | |
|     }
 | |
|     recreate_gil(gil);
 | |
| 
 | |
|     take_gil(tstate);
 | |
| 
 | |
|     struct _pending_calls *pending = &tstate->interp->ceval.pending;
 | |
|     _PyMutex_at_fork_reinit(&pending->mutex);
 | |
| 
 | |
|     return _PyStatus_OK();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| PyThreadState *
 | |
| PyEval_SaveThread(void)
 | |
| {
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     _PyThreadState_Detach(tstate);
 | |
|     return tstate;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyEval_RestoreThread(PyThreadState *tstate)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     int err = GetLastError();
 | |
| #endif
 | |
| 
 | |
|     _Py_EnsureTstateNotNULL(tstate);
 | |
|     _PyThreadState_Attach(tstate);
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
|     SetLastError(err);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _PyEval_SignalReceived(void)
 | |
| {
 | |
|     _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef Py_GIL_DISABLED
 | |
| static void
 | |
| signal_active_thread(PyInterpreterState *interp, uintptr_t bit)
 | |
| {
 | |
|     struct _gil_runtime_state *gil = interp->ceval.gil;
 | |
| 
 | |
|     // If a thread from the targeted interpreter is holding the GIL, signal
 | |
|     // that thread. Otherwise, the next thread to run from the targeted
 | |
|     // interpreter will have its bit set as part of taking the GIL.
 | |
|     MUTEX_LOCK(gil->mutex);
 | |
|     if (_Py_atomic_load_int_relaxed(&gil->locked)) {
 | |
|         PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
 | |
|         if (holder->interp == interp) {
 | |
|             _Py_set_eval_breaker_bit(holder, bit);
 | |
|         }
 | |
|     }
 | |
|     MUTEX_UNLOCK(gil->mutex);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
 | |
|    signal handlers or Mac I/O completion routines) can schedule calls
 | |
|    to a function to be called synchronously.
 | |
|    The synchronous function is called with one void* argument.
 | |
|    It should return 0 for success or -1 for failure -- failure should
 | |
|    be accompanied by an exception.
 | |
| 
 | |
|    If registry succeeds, the registry function returns 0; if it fails
 | |
|    (e.g. due to too many pending calls) it returns -1 (without setting
 | |
|    an exception condition).
 | |
| 
 | |
|    Note that because registry may occur from within signal handlers,
 | |
|    or other asynchronous events, calling malloc() is unsafe!
 | |
| 
 | |
|    Any thread can schedule pending calls, but only the main thread
 | |
|    will execute them.
 | |
|    There is no facility to schedule calls to a particular thread, but
 | |
|    that should be easy to change, should that ever be required.  In
 | |
|    that case, the static variables here should go into the python
 | |
|    threadstate.
 | |
| */
 | |
| 
 | |
| /* Push one item onto the queue while holding the lock. */
 | |
| static int
 | |
| _push_pending_call(struct _pending_calls *pending,
 | |
|                    _Py_pending_call_func func, void *arg, int flags)
 | |
| {
 | |
|     if (pending->npending == pending->max) {
 | |
|         return _Py_ADD_PENDING_FULL;
 | |
|     }
 | |
|     assert(pending->npending < pending->max);
 | |
| 
 | |
|     int i = pending->next;
 | |
|     assert(pending->calls[i].func == NULL);
 | |
| 
 | |
|     pending->calls[i].func = func;
 | |
|     pending->calls[i].arg = arg;
 | |
|     pending->calls[i].flags = flags;
 | |
| 
 | |
|     assert(pending->npending < PENDINGCALLSARRAYSIZE);
 | |
|     _Py_atomic_add_int32(&pending->npending, 1);
 | |
| 
 | |
|     pending->next = (i + 1) % PENDINGCALLSARRAYSIZE;
 | |
|     assert(pending->next != pending->first
 | |
|             || pending->npending == pending->max);
 | |
| 
 | |
|     return _Py_ADD_PENDING_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _next_pending_call(struct _pending_calls *pending,
 | |
|                    int (**func)(void *), void **arg, int *flags)
 | |
| {
 | |
|     int i = pending->first;
 | |
|     if (pending->npending == 0) {
 | |
|         /* Queue empty */
 | |
|         assert(i == pending->next);
 | |
|         assert(pending->calls[i].func == NULL);
 | |
|         return -1;
 | |
|     }
 | |
|     *func = pending->calls[i].func;
 | |
|     *arg = pending->calls[i].arg;
 | |
|     *flags = pending->calls[i].flags;
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /* Pop one item off the queue while holding the lock. */
 | |
| static void
 | |
| _pop_pending_call(struct _pending_calls *pending,
 | |
|                   int (**func)(void *), void **arg, int *flags)
 | |
| {
 | |
|     int i = _next_pending_call(pending, func, arg, flags);
 | |
|     if (i >= 0) {
 | |
|         pending->calls[i] = (struct _pending_call){0};
 | |
|         pending->first = (i + 1) % PENDINGCALLSARRAYSIZE;
 | |
|         assert(pending->npending > 0);
 | |
|         _Py_atomic_add_int32(&pending->npending, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* This implementation is thread-safe.  It allows
 | |
|    scheduling to be made from any thread, and even from an executing
 | |
|    callback.
 | |
|  */
 | |
| 
 | |
| _Py_add_pending_call_result
 | |
| _PyEval_AddPendingCall(PyInterpreterState *interp,
 | |
|                        _Py_pending_call_func func, void *arg, int flags)
 | |
| {
 | |
|     struct _pending_calls *pending = &interp->ceval.pending;
 | |
|     int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0;
 | |
|     if (main_only) {
 | |
|         /* The main thread only exists in the main interpreter. */
 | |
|         assert(_Py_IsMainInterpreter(interp));
 | |
|         pending = &_PyRuntime.ceval.pending_mainthread;
 | |
|     }
 | |
| 
 | |
|     PyMutex_Lock(&pending->mutex);
 | |
|     _Py_add_pending_call_result result =
 | |
|         _push_pending_call(pending, func, arg, flags);
 | |
|     PyMutex_Unlock(&pending->mutex);
 | |
| 
 | |
|     if (main_only) {
 | |
|         _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT);
 | |
|     }
 | |
|     else {
 | |
| #ifdef Py_GIL_DISABLED
 | |
|         _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | |
| #else
 | |
|         signal_active_thread(interp, _PY_CALLS_TO_DO_BIT);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int
 | |
| Py_AddPendingCall(_Py_pending_call_func func, void *arg)
 | |
| {
 | |
|     /* Legacy users of this API will continue to target the main thread
 | |
|        (of the main interpreter). */
 | |
|     PyInterpreterState *interp = _PyInterpreterState_Main();
 | |
|     _Py_add_pending_call_result r =
 | |
|         _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
 | |
|     if (r == _Py_ADD_PENDING_FULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     else {
 | |
|         assert(r == _Py_ADD_PENDING_SUCCESS);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| handle_signals(PyThreadState *tstate)
 | |
| {
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
|     _Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
 | |
|     if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (_PyErr_CheckSignalsTstate(tstate) < 0) {
 | |
|         /* On failure, re-schedule a call to handle_signals(). */
 | |
|         _Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _make_pending_calls(struct _pending_calls *pending, int32_t *p_npending)
 | |
| {
 | |
|     int res = 0;
 | |
|     int32_t npending = -1;
 | |
| 
 | |
|     assert(sizeof(pending->max) <= sizeof(size_t)
 | |
|             && ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls));
 | |
|     int32_t maxloop = pending->maxloop;
 | |
|     if (maxloop == 0) {
 | |
|         maxloop = pending->max;
 | |
|     }
 | |
|     assert(maxloop > 0 && maxloop <= pending->max);
 | |
| 
 | |
|     /* perform a bounded number of calls, in case of recursion */
 | |
|     for (int i=0; i<maxloop; i++) {
 | |
|         _Py_pending_call_func func = NULL;
 | |
|         void *arg = NULL;
 | |
|         int flags = 0;
 | |
| 
 | |
|         /* pop one item off the queue while holding the lock */
 | |
|         PyMutex_Lock(&pending->mutex);
 | |
|         _pop_pending_call(pending, &func, &arg, &flags);
 | |
|         npending = pending->npending;
 | |
|         PyMutex_Unlock(&pending->mutex);
 | |
| 
 | |
|         /* Check if there are any more pending calls. */
 | |
|         if (func == NULL) {
 | |
|             assert(npending == 0);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* having released the lock, perform the callback */
 | |
|         res = func(arg);
 | |
|         if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
 | |
|             PyMem_RawFree(arg);
 | |
|         }
 | |
|         if (res != 0) {
 | |
|             res = -1;
 | |
|             goto finally;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| finally:
 | |
|     *p_npending = npending;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static void
 | |
| signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
 | |
| {
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | |
| #else
 | |
|     _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
 | |
| {
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     _Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | |
| #else
 | |
|     _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| clear_pending_handling_thread(struct _pending_calls *pending)
 | |
| {
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     PyMutex_Lock(&pending->mutex);
 | |
|     pending->handling_thread = NULL;
 | |
|     PyMutex_Unlock(&pending->mutex);
 | |
| #else
 | |
|     pending->handling_thread = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| make_pending_calls(PyThreadState *tstate)
 | |
| {
 | |
|     PyInterpreterState *interp = tstate->interp;
 | |
|     struct _pending_calls *pending = &interp->ceval.pending;
 | |
|     struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
 | |
| 
 | |
|     /* Only one thread (per interpreter) may run the pending calls
 | |
|        at once.  In the same way, we don't do recursive pending calls. */
 | |
|     PyMutex_Lock(&pending->mutex);
 | |
|     if (pending->handling_thread != NULL) {
 | |
|         /* A pending call was added after another thread was already
 | |
|            handling the pending calls (and had already "unsignaled").
 | |
|            Once that thread is done, it may have taken care of all the
 | |
|            pending calls, or there might be some still waiting.
 | |
|            To avoid all threads constantly stopping on the eval breaker,
 | |
|            we clear the bit for this thread and make sure it is set
 | |
|            for the thread currently handling the pending call. */
 | |
|         _Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT);
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | |
|         PyMutex_Unlock(&pending->mutex);
 | |
|         return 0;
 | |
|     }
 | |
|     pending->handling_thread = tstate;
 | |
|     PyMutex_Unlock(&pending->mutex);
 | |
| 
 | |
|     /* unsignal before starting to call callbacks, so that any callback
 | |
|        added in-between re-signals */
 | |
|     unsignal_pending_calls(tstate, interp);
 | |
| 
 | |
|     int32_t npending;
 | |
|     if (_make_pending_calls(pending, &npending) != 0) {
 | |
|         clear_pending_handling_thread(pending);
 | |
|         /* There might not be more calls to make, but we play it safe. */
 | |
|         signal_pending_calls(tstate, interp);
 | |
|         return -1;
 | |
|     }
 | |
|     if (npending > 0) {
 | |
|         /* We hit pending->maxloop. */
 | |
|         signal_pending_calls(tstate, interp);
 | |
|     }
 | |
| 
 | |
|     if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
 | |
|         if (_make_pending_calls(pending_main, &npending) != 0) {
 | |
|             clear_pending_handling_thread(pending);
 | |
|             /* There might not be more calls to make, but we play it safe. */
 | |
|             signal_pending_calls(tstate, interp);
 | |
|             return -1;
 | |
|         }
 | |
|         if (npending > 0) {
 | |
|             /* We hit pending_main->maxloop. */
 | |
|             signal_pending_calls(tstate, interp);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     clear_pending_handling_thread(pending);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
 | |
| {
 | |
|     _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
 | |
|         _Py_set_eval_breaker_bit(tstate, bit);
 | |
|     }
 | |
|     _Py_FOR_EACH_TSTATE_END(interp);
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
 | |
| {
 | |
|     _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, bit);
 | |
|     }
 | |
|     _Py_FOR_EACH_TSTATE_END(interp);
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_FinishPendingCalls(PyThreadState *tstate)
 | |
| {
 | |
|     _Py_AssertHoldsTstate();
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
| 
 | |
|     struct _pending_calls *pending = &tstate->interp->ceval.pending;
 | |
|     struct _pending_calls *pending_main =
 | |
|             _Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)
 | |
|             ? &_PyRuntime.ceval.pending_mainthread
 | |
|             : NULL;
 | |
|     /* make_pending_calls() may return early without making all pending
 | |
|        calls, so we keep trying until we're actually done. */
 | |
|     int32_t npending;
 | |
| #ifndef NDEBUG
 | |
|     int32_t npending_prev = INT32_MAX;
 | |
| #endif
 | |
|     do {
 | |
|         if (make_pending_calls(tstate) < 0) {
 | |
|             PyObject *exc = _PyErr_GetRaisedException(tstate);
 | |
|             PyErr_BadInternalCall();
 | |
|             _PyErr_ChainExceptions1(exc);
 | |
|             _PyErr_Print(tstate);
 | |
|         }
 | |
| 
 | |
|         npending = _Py_atomic_load_int32_relaxed(&pending->npending);
 | |
|         if (pending_main != NULL) {
 | |
|             npending += _Py_atomic_load_int32_relaxed(&pending_main->npending);
 | |
|         }
 | |
| #ifndef NDEBUG
 | |
|         assert(npending_prev > npending);
 | |
|         npending_prev = npending;
 | |
| #endif
 | |
|     } while (npending > 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyEval_MakePendingCalls(PyThreadState *tstate)
 | |
| {
 | |
|     int res;
 | |
| 
 | |
|     if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
 | |
|         /* Python signal handler doesn't really queue a callback:
 | |
|            it only signals that a signal was received,
 | |
|            see _PyEval_SignalReceived(). */
 | |
|         res = handle_signals(tstate);
 | |
|         if (res != 0) {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     res = make_pending_calls(tstate);
 | |
|     if (res != 0) {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Py_MakePendingCalls() is a simple wrapper for the sake
 | |
|    of backward-compatibility. */
 | |
| int
 | |
| Py_MakePendingCalls(void)
 | |
| {
 | |
|     _Py_AssertHoldsTstate();
 | |
| 
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     assert(_PyThreadState_CheckConsistency(tstate));
 | |
| 
 | |
|     /* Only execute pending calls on the main thread. */
 | |
|     if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) {
 | |
|         return 0;
 | |
|     }
 | |
|     return _PyEval_MakePendingCalls(tstate);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyEval_InitState(PyInterpreterState *interp)
 | |
| {
 | |
|     _gil_initialize(&interp->_gil);
 | |
| }
 | |
| 
 | |
| #ifdef Py_GIL_DISABLED
 | |
| int
 | |
| _PyEval_EnableGILTransient(PyThreadState *tstate)
 | |
| {
 | |
|     const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | |
|     if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | |
|         return 0;
 | |
|     }
 | |
|     struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | |
| 
 | |
|     int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | |
|     if (enabled == INT_MAX) {
 | |
|         // The GIL is already enabled permanently.
 | |
|         return 0;
 | |
|     }
 | |
|     if (enabled == INT_MAX - 1) {
 | |
|         Py_FatalError("Too many transient requests to enable the GIL");
 | |
|     }
 | |
|     if (enabled > 0) {
 | |
|         // If enabled is nonzero, we know we hold the GIL. This means that no
 | |
|         // other threads are attached, and nobody else can be concurrently
 | |
|         // mutating it.
 | |
|         _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Enabling the GIL changes what it means to be an "attached" thread. To
 | |
|     // safely make this transition, we:
 | |
|     // 1. Detach the current thread.
 | |
|     // 2. Stop the world to detach (and suspend) all other threads.
 | |
|     // 3. Enable the GIL, if nobody else did between our check above and when
 | |
|     //    our stop-the-world begins.
 | |
|     // 4. Start the world.
 | |
|     // 5. Attach the current thread. Other threads may attach and hold the GIL
 | |
|     //    before this thread, which is harmless.
 | |
|     _PyThreadState_Detach(tstate);
 | |
| 
 | |
|     // This could be an interpreter-local stop-the-world in situations where we
 | |
|     // know that this interpreter's GIL is not shared, and that it won't become
 | |
|     // shared before the stop-the-world begins. For now, we always stop all
 | |
|     // interpreters for simplicity.
 | |
|     _PyEval_StopTheWorldAll(&_PyRuntime);
 | |
| 
 | |
|     enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | |
|     int this_thread_enabled = enabled == 0;
 | |
|     _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
 | |
| 
 | |
|     _PyEval_StartTheWorldAll(&_PyRuntime);
 | |
|     _PyThreadState_Attach(tstate);
 | |
| 
 | |
|     return this_thread_enabled;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyEval_EnableGILPermanent(PyThreadState *tstate)
 | |
| {
 | |
|     const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | |
|     if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | |
|     assert(current_thread_holds_gil(gil, tstate));
 | |
| 
 | |
|     int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | |
|     if (enabled == INT_MAX) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     _Py_atomic_store_int_relaxed(&gil->enabled, INT_MAX);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyEval_DisableGIL(PyThreadState *tstate)
 | |
| {
 | |
|     const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | |
|     if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | |
|     assert(current_thread_holds_gil(gil, tstate));
 | |
| 
 | |
|     int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | |
|     if (enabled == INT_MAX) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     assert(enabled >= 1);
 | |
|     enabled--;
 | |
| 
 | |
|     // Disabling the GIL is much simpler than enabling it, since we know we are
 | |
|     // the only attached thread. Other threads may start free-threading as soon
 | |
|     // as this store is complete, if it sets gil->enabled to 0.
 | |
|     _Py_atomic_store_int_relaxed(&gil->enabled, enabled);
 | |
| 
 | |
|     if (enabled == 0) {
 | |
|         // We're attached, so we know the GIL will remain disabled until at
 | |
|         // least the next time we detach, which must be after this function
 | |
|         // returns.
 | |
|         //
 | |
|         // Drop the GIL, which will wake up any threads waiting in take_gil()
 | |
|         // and let them resume execution without the GIL.
 | |
|         drop_gil_impl(tstate, gil);
 | |
| 
 | |
|         // If another thread asked us to drop the GIL, they should be
 | |
|         // free-threading by now. Remove any such request so we have a clean
 | |
|         // slate if/when the GIL is enabled again.
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
 | |
| // Note that this function is inline to avoid creating a PLT entry
 | |
| // that would be an easy target for a ROP gadget.
 | |
| static inline int run_remote_debugger_source(PyObject *source)
 | |
| {
 | |
|     const char *str = PyBytes_AsString(source);
 | |
|     if (!str) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     PyObject *ns = PyDict_New();
 | |
|     if (!ns) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     PyObject *res = PyRun_String(str, Py_file_input, ns, ns);
 | |
|     Py_DECREF(ns);
 | |
|     if (!res) {
 | |
|         return -1;
 | |
|     }
 | |
|     Py_DECREF(res);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Note that this function is inline to avoid creating a PLT entry
 | |
| // that would be an easy target for a ROP gadget.
 | |
| static inline void run_remote_debugger_script(PyObject *path)
 | |
| {
 | |
|     if (0 != PySys_Audit("remote_debugger_script", "O", path)) {
 | |
|         PyErr_FormatUnraisable(
 | |
|             "Audit hook failed for remote debugger script %U", path);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Open the debugger script with the open code hook, and reopen the
 | |
|     // resulting file object to get a C FILE* object.
 | |
|     PyObject* fileobj = PyFile_OpenCodeObject(path);
 | |
|     if (!fileobj) {
 | |
|         PyErr_FormatUnraisable("Can't open debugger script %U", path);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     PyObject* source = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(read));
 | |
|     if (!source) {
 | |
|         PyErr_FormatUnraisable("Error reading debugger script %U", path);
 | |
|     }
 | |
| 
 | |
|     PyObject* res = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(close));
 | |
|     if (!res) {
 | |
|         PyErr_FormatUnraisable("Error closing debugger script %U", path);
 | |
|     } else {
 | |
|         Py_DECREF(res);
 | |
|     }
 | |
|     Py_DECREF(fileobj);
 | |
| 
 | |
|     if (source) {
 | |
|         if (0 != run_remote_debugger_source(source)) {
 | |
|             PyErr_FormatUnraisable("Error executing debugger script %U", path);
 | |
|         }
 | |
|         Py_DECREF(source);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int _PyRunRemoteDebugger(PyThreadState *tstate)
 | |
| {
 | |
|     const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | |
|     if (config->remote_debug == 1
 | |
|          && tstate->remote_debugger_support.debugger_pending_call == 1)
 | |
|     {
 | |
|         tstate->remote_debugger_support.debugger_pending_call = 0;
 | |
| 
 | |
|         // Immediately make a copy in case of a race with another debugger
 | |
|         // process that's trying to write to the buffer. At least this way
 | |
|         // we'll be internally consistent: what we audit is what we run.
 | |
|         const size_t pathsz
 | |
|             = sizeof(tstate->remote_debugger_support.debugger_script_path);
 | |
| 
 | |
|         char *path = PyMem_Malloc(pathsz);
 | |
|         if (path) {
 | |
|             // And don't assume the debugger correctly null terminated it.
 | |
|             memcpy(
 | |
|                 path,
 | |
|                 tstate->remote_debugger_support.debugger_script_path,
 | |
|                 pathsz);
 | |
|             path[pathsz - 1] = '\0';
 | |
|             if (*path) {
 | |
|                 PyObject *path_obj = PyUnicode_DecodeFSDefault(path);
 | |
|                 if (path_obj == NULL) {
 | |
|                     PyErr_FormatUnraisable("Can't decode debugger script");
 | |
|                 }
 | |
|                 else {
 | |
|                     run_remote_debugger_script(path_obj);
 | |
|                     Py_DECREF(path_obj);
 | |
|                 }
 | |
|             }
 | |
|             PyMem_Free(path);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Do periodic things, like check for signals and async I/0.
 | |
| * We need to do reasonably frequently, but not too frequently.
 | |
| * All loops should include a check of the eval breaker.
 | |
| * We also check on return from any builtin function.
 | |
| *
 | |
| * ## More Details ###
 | |
| *
 | |
| * The eval loop (this function) normally executes the instructions
 | |
| * of a code object sequentially.  However, the runtime supports a
 | |
| * number of out-of-band execution scenarios that may pause that
 | |
| * sequential execution long enough to do that out-of-band work
 | |
| * in the current thread using the current PyThreadState.
 | |
| *
 | |
| * The scenarios include:
 | |
| *
 | |
| *  - cyclic garbage collection
 | |
| *  - GIL drop requests
 | |
| *  - "async" exceptions
 | |
| *  - "pending calls"  (some only in the main thread)
 | |
| *  - signal handling (only in the main thread)
 | |
| *
 | |
| * When the need for one of the above is detected, the eval loop
 | |
| * pauses long enough to handle the detected case.  Then, if doing
 | |
| * so didn't trigger an exception, the eval loop resumes executing
 | |
| * the sequential instructions.
 | |
| *
 | |
| * To make this work, the eval loop periodically checks if any
 | |
| * of the above needs to happen.  The individual checks can be
 | |
| * expensive if computed each time, so a while back we switched
 | |
| * to using pre-computed, per-interpreter variables for the checks,
 | |
| * and later consolidated that to a single "eval breaker" variable
 | |
| * (now a PyInterpreterState field).
 | |
| *
 | |
| * For the longest time, the eval breaker check would happen
 | |
| * frequently, every 5 or so times through the loop, regardless
 | |
| * of what instruction ran last or what would run next.  Then, in
 | |
| * early 2021 (gh-18334, commit 4958f5d), we switched to checking
 | |
| * the eval breaker less frequently, by hard-coding the check to
 | |
| * specific places in the eval loop (e.g. certain instructions).
 | |
| * The intent then was to check after returning from calls
 | |
| * and on the back edges of loops.
 | |
| *
 | |
| * In addition to being more efficient, that approach keeps
 | |
| * the eval loop from running arbitrary code between instructions
 | |
| * that don't handle that well.  (See gh-74174.)
 | |
| *
 | |
| * Currently, the eval breaker check happens on back edges in
 | |
| * the control flow graph, which pretty much applies to all loops,
 | |
| * and most calls.
 | |
| * (See bytecodes.c for exact information.)
 | |
| *
 | |
| * One consequence of this approach is that it might not be obvious
 | |
| * how to force any specific thread to pick up the eval breaker,
 | |
| * or for any specific thread to not pick it up.  Mostly this
 | |
| * involves judicious uses of locks and careful ordering of code,
 | |
| * while avoiding code that might trigger the eval breaker
 | |
| * until so desired.
 | |
| */
 | |
| int
 | |
| _Py_HandlePending(PyThreadState *tstate)
 | |
| {
 | |
|     uintptr_t breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker);
 | |
| 
 | |
|     /* Stop-the-world */
 | |
|     if ((breaker & _PY_EVAL_PLEASE_STOP_BIT) != 0) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_PLEASE_STOP_BIT);
 | |
|         _PyThreadState_Suspend(tstate);
 | |
| 
 | |
|         /* The attach blocks until the stop-the-world event is complete. */
 | |
|         _PyThreadState_Attach(tstate);
 | |
|     }
 | |
| 
 | |
|     /* Pending signals */
 | |
|     if ((breaker & _PY_SIGNALS_PENDING_BIT) != 0) {
 | |
|         if (handle_signals(tstate) != 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Pending calls */
 | |
|     if ((breaker & _PY_CALLS_TO_DO_BIT) != 0) {
 | |
|         if (make_pending_calls(tstate) != 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef Py_GIL_DISABLED
 | |
|     /* Objects with refcounts to merge */
 | |
|     if ((breaker & _PY_EVAL_EXPLICIT_MERGE_BIT) != 0) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_EXPLICIT_MERGE_BIT);
 | |
|         _Py_brc_merge_refcounts(tstate);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* GC scheduled to run */
 | |
|     if ((breaker & _PY_GC_SCHEDULED_BIT) != 0) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
 | |
|         _Py_RunGC(tstate);
 | |
|     }
 | |
| 
 | |
|     if ((breaker & _PY_EVAL_JIT_INVALIDATE_COLD_BIT) != 0) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_JIT_INVALIDATE_COLD_BIT);
 | |
|         _Py_Executors_InvalidateCold(tstate->interp);
 | |
|         tstate->interp->trace_run_counter = JIT_CLEANUP_THRESHOLD;
 | |
|     }
 | |
| 
 | |
|     /* GIL drop request */
 | |
|     if ((breaker & _PY_GIL_DROP_REQUEST_BIT) != 0) {
 | |
|         /* Give another thread a chance */
 | |
|         _PyThreadState_Detach(tstate);
 | |
| 
 | |
|         /* Other threads may run now */
 | |
| 
 | |
|         _PyThreadState_Attach(tstate);
 | |
|     }
 | |
| 
 | |
|     /* Check for asynchronous exception. */
 | |
|     if ((breaker & _PY_ASYNC_EXCEPTION_BIT) != 0) {
 | |
|         _Py_unset_eval_breaker_bit(tstate, _PY_ASYNC_EXCEPTION_BIT);
 | |
|         PyObject *exc = _Py_atomic_exchange_ptr(&tstate->async_exc, NULL);
 | |
|         if (exc != NULL) {
 | |
|             _PyErr_SetNone(tstate, exc);
 | |
|             Py_DECREF(exc);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
 | |
|     _PyRunRemoteDebugger(tstate);
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 |