mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 07:01:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2918 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2918 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/****************************************************************
 | 
						|
 *
 | 
						|
 * The author of this software is David M. Gay.
 | 
						|
 *
 | 
						|
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 | 
						|
 *
 | 
						|
 * Permission to use, copy, modify, and distribute this software for any
 | 
						|
 * purpose without fee is hereby granted, provided that this entire notice
 | 
						|
 * is included in all copies of any software which is or includes a copy
 | 
						|
 * or modification of this software and in all copies of the supporting
 | 
						|
 * documentation for such software.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | 
						|
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 | 
						|
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | 
						|
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | 
						|
 *
 | 
						|
 ***************************************************************/
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 * This is dtoa.c by David M. Gay, downloaded from
 | 
						|
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
 | 
						|
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
 | 
						|
 *
 | 
						|
 * Please remember to check http://www.netlib.org/fp regularly (and especially
 | 
						|
 * before any Python release) for bugfixes and updates.
 | 
						|
 *
 | 
						|
 * The major modifications from Gay's original code are as follows:
 | 
						|
 *
 | 
						|
 *  0. The original code has been specialized to Python's needs by removing
 | 
						|
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
 | 
						|
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
 | 
						|
 *     treatment of the decimal point, and setting of the inexact flag have
 | 
						|
 *     been removed.
 | 
						|
 *
 | 
						|
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
 | 
						|
 *
 | 
						|
 *  2. The public functions strtod, dtoa and freedtoa all now have
 | 
						|
 *     a _Py_dg_ prefix.
 | 
						|
 *
 | 
						|
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
 | 
						|
 *     PyMem_Malloc failures through the code.  The functions
 | 
						|
 *
 | 
						|
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
 | 
						|
 *
 | 
						|
 *     of return type *Bigint all return NULL to indicate a malloc failure.
 | 
						|
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
 | 
						|
 *     failure.  bigcomp now has return type int (it used to be void) and
 | 
						|
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
 | 
						|
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
 | 
						|
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
 | 
						|
 *
 | 
						|
 *  4. The static variable dtoa_result has been removed.  Callers of
 | 
						|
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
 | 
						|
 *     the memory allocated by _Py_dg_dtoa.
 | 
						|
 *
 | 
						|
 *  5. The code has been reformatted to better fit with Python's
 | 
						|
 *     C style guide (PEP 7).
 | 
						|
 *
 | 
						|
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
 | 
						|
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
 | 
						|
 *     Kmax.
 | 
						|
 *
 | 
						|
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
 | 
						|
 *     leading whitespace.
 | 
						|
 *
 | 
						|
 ***************************************************************/
 | 
						|
 | 
						|
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
 | 
						|
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
 | 
						|
 * Please report bugs for this modified version using the Python issue tracker
 | 
						|
 * (http://bugs.python.org). */
 | 
						|
 | 
						|
/* On a machine with IEEE extended-precision registers, it is
 | 
						|
 * necessary to specify double-precision (53-bit) rounding precision
 | 
						|
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
 | 
						|
 * of) Intel 80x87 arithmetic, the call
 | 
						|
 *      _control87(PC_53, MCW_PC);
 | 
						|
 * does this with many compilers.  Whether this or another call is
 | 
						|
 * appropriate depends on the compiler; for this to work, it may be
 | 
						|
 * necessary to #include "float.h" or another system-dependent header
 | 
						|
 * file.
 | 
						|
 */
 | 
						|
 | 
						|
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
 | 
						|
 *
 | 
						|
 * This strtod returns a nearest machine number to the input decimal
 | 
						|
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
 | 
						|
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
 | 
						|
 * biased rounding (add half and chop).
 | 
						|
 *
 | 
						|
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
 | 
						|
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 | 
						|
 *
 | 
						|
 * Modifications:
 | 
						|
 *
 | 
						|
 *      1. We only require IEEE, IBM, or VAX double-precision
 | 
						|
 *              arithmetic (not IEEE double-extended).
 | 
						|
 *      2. We get by with floating-point arithmetic in a case that
 | 
						|
 *              Clinger missed -- when we're computing d * 10^n
 | 
						|
 *              for a small integer d and the integer n is not too
 | 
						|
 *              much larger than 22 (the maximum integer k for which
 | 
						|
 *              we can represent 10^k exactly), we may be able to
 | 
						|
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
 | 
						|
 *      3. Rather than a bit-at-a-time adjustment of the binary
 | 
						|
 *              result in the hard case, we use floating-point
 | 
						|
 *              arithmetic to determine the adjustment to within
 | 
						|
 *              one bit; only in really hard cases do we need to
 | 
						|
 *              compute a second residual.
 | 
						|
 *      4. Because of 3., we don't need a large table of powers of 10
 | 
						|
 *              for ten-to-e (just some small tables, e.g. of 10^k
 | 
						|
 *              for 0 <= k <= 22).
 | 
						|
 */
 | 
						|
 | 
						|
/* Linking of Python's #defines to Gay's #defines starts here. */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
 | 
						|
   the following code */
 | 
						|
#ifndef PY_NO_SHORT_FLOAT_REPR
 | 
						|
 | 
						|
#include "float.h"
 | 
						|
 | 
						|
#define MALLOC PyMem_Malloc
 | 
						|
#define FREE PyMem_Free
 | 
						|
 | 
						|
/* This code should also work for ARM mixed-endian format on little-endian
 | 
						|
   machines, where doubles have byte order 45670123 (in increasing address
 | 
						|
   order, 0 being the least significant byte). */
 | 
						|
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
 | 
						|
#  define IEEE_8087
 | 
						|
#endif
 | 
						|
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
 | 
						|
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
 | 
						|
#  define IEEE_MC68k
 | 
						|
#endif
 | 
						|
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
 | 
						|
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
 | 
						|
#endif
 | 
						|
 | 
						|
/* The code below assumes that the endianness of integers matches the
 | 
						|
   endianness of the two 32-bit words of a double.  Check this. */
 | 
						|
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
 | 
						|
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
 | 
						|
#error "doubles and ints have incompatible endianness"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
 | 
						|
#error "doubles and ints have incompatible endianness"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
 | 
						|
typedef PY_UINT32_T ULong;
 | 
						|
typedef PY_INT32_T Long;
 | 
						|
#else
 | 
						|
#error "Failed to find an exact-width 32-bit integer type"
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HAVE_UINT64_T)
 | 
						|
#define ULLong PY_UINT64_T
 | 
						|
#else
 | 
						|
#undef ULLong
 | 
						|
#endif
 | 
						|
 | 
						|
#undef DEBUG
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#define DEBUG
 | 
						|
#endif
 | 
						|
 | 
						|
/* End Python #define linking */
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef PRIVATE_MEM
 | 
						|
#define PRIVATE_MEM 2304
 | 
						|
#endif
 | 
						|
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
 | 
						|
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
typedef union { double d; ULong L[2]; } U;
 | 
						|
 | 
						|
#ifdef IEEE_8087
 | 
						|
#define word0(x) (x)->L[1]
 | 
						|
#define word1(x) (x)->L[0]
 | 
						|
#else
 | 
						|
#define word0(x) (x)->L[0]
 | 
						|
#define word1(x) (x)->L[1]
 | 
						|
#endif
 | 
						|
#define dval(x) (x)->d
 | 
						|
 | 
						|
#ifndef STRTOD_DIGLIM
 | 
						|
#define STRTOD_DIGLIM 40
 | 
						|
#endif
 | 
						|
 | 
						|
/* maximum permitted exponent value for strtod; exponents larger than
 | 
						|
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
 | 
						|
   should fit into an int. */
 | 
						|
#ifndef MAX_ABS_EXP
 | 
						|
#define MAX_ABS_EXP 19999U
 | 
						|
#endif
 | 
						|
 | 
						|
/* The following definition of Storeinc is appropriate for MIPS processors.
 | 
						|
 * An alternative that might be better on some machines is
 | 
						|
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
 | 
						|
 */
 | 
						|
#if defined(IEEE_8087)
 | 
						|
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
 | 
						|
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
 | 
						|
#else
 | 
						|
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
 | 
						|
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
 | 
						|
#endif
 | 
						|
 | 
						|
/* #define P DBL_MANT_DIG */
 | 
						|
/* Ten_pmax = floor(P*log(2)/log(5)) */
 | 
						|
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
 | 
						|
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
 | 
						|
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
 | 
						|
 | 
						|
#define Exp_shift  20
 | 
						|
#define Exp_shift1 20
 | 
						|
#define Exp_msk1    0x100000
 | 
						|
#define Exp_msk11   0x100000
 | 
						|
#define Exp_mask  0x7ff00000
 | 
						|
#define P 53
 | 
						|
#define Nbits 53
 | 
						|
#define Bias 1023
 | 
						|
#define Emax 1023
 | 
						|
#define Emin (-1022)
 | 
						|
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
 | 
						|
#define Exp_1  0x3ff00000
 | 
						|
#define Exp_11 0x3ff00000
 | 
						|
#define Ebits 11
 | 
						|
#define Frac_mask  0xfffff
 | 
						|
#define Frac_mask1 0xfffff
 | 
						|
#define Ten_pmax 22
 | 
						|
#define Bletch 0x10
 | 
						|
#define Bndry_mask  0xfffff
 | 
						|
#define Bndry_mask1 0xfffff
 | 
						|
#define Sign_bit 0x80000000
 | 
						|
#define Log2P 1
 | 
						|
#define Tiny0 0
 | 
						|
#define Tiny1 1
 | 
						|
#define Quick_max 14
 | 
						|
#define Int_max 14
 | 
						|
 | 
						|
#ifndef Flt_Rounds
 | 
						|
#ifdef FLT_ROUNDS
 | 
						|
#define Flt_Rounds FLT_ROUNDS
 | 
						|
#else
 | 
						|
#define Flt_Rounds 1
 | 
						|
#endif
 | 
						|
#endif /*Flt_Rounds*/
 | 
						|
 | 
						|
#define Rounding Flt_Rounds
 | 
						|
 | 
						|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
 | 
						|
#define Big1 0xffffffff
 | 
						|
 | 
						|
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
 | 
						|
 | 
						|
typedef struct BCinfo BCinfo;
 | 
						|
struct
 | 
						|
BCinfo {
 | 
						|
    int e0, nd, nd0, scale;
 | 
						|
};
 | 
						|
 | 
						|
#define FFFFFFFF 0xffffffffUL
 | 
						|
 | 
						|
#define Kmax 7
 | 
						|
 | 
						|
/* struct Bigint is used to represent arbitrary-precision integers.  These
 | 
						|
   integers are stored in sign-magnitude format, with the magnitude stored as
 | 
						|
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
 | 
						|
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
 | 
						|
 | 
						|
   The Bigint fields are as follows:
 | 
						|
 | 
						|
     - next is a header used by Balloc and Bfree to keep track of lists
 | 
						|
         of freed Bigints;  it's also used for the linked list of
 | 
						|
         powers of 5 of the form 5**2**i used by pow5mult.
 | 
						|
     - k indicates which pool this Bigint was allocated from
 | 
						|
     - maxwds is the maximum number of words space was allocated for
 | 
						|
       (usually maxwds == 2**k)
 | 
						|
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
 | 
						|
       (ignored on inputs, set to 0 on outputs) in almost all operations
 | 
						|
       involving Bigints: a notable exception is the diff function, which
 | 
						|
       ignores signs on inputs but sets the sign of the output correctly.
 | 
						|
     - wds is the actual number of significant words
 | 
						|
     - x contains the vector of words (digits) for this Bigint, from least
 | 
						|
       significant (x[0]) to most significant (x[wds-1]).
 | 
						|
*/
 | 
						|
 | 
						|
struct
 | 
						|
Bigint {
 | 
						|
    struct Bigint *next;
 | 
						|
    int k, maxwds, sign, wds;
 | 
						|
    ULong x[1];
 | 
						|
};
 | 
						|
 | 
						|
typedef struct Bigint Bigint;
 | 
						|
 | 
						|
#ifndef Py_USING_MEMORY_DEBUGGER
 | 
						|
 | 
						|
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
 | 
						|
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
 | 
						|
   1 << k.  These pools are maintained as linked lists, with freelist[k]
 | 
						|
   pointing to the head of the list for pool k.
 | 
						|
 | 
						|
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
 | 
						|
   called to get more memory.  This memory is not returned to the system until
 | 
						|
   Python quits.  There's also a private memory pool that's allocated from
 | 
						|
   in preference to using MALLOC.
 | 
						|
 | 
						|
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
 | 
						|
   decimal digits), memory is directly allocated using MALLOC, and freed using
 | 
						|
   FREE.
 | 
						|
 | 
						|
   XXX: it would be easy to bypass this memory-management system and
 | 
						|
   translate each call to Balloc into a call to PyMem_Malloc, and each
 | 
						|
   Bfree to PyMem_Free.  Investigate whether this has any significant
 | 
						|
   performance on impact. */
 | 
						|
 | 
						|
static Bigint *freelist[Kmax+1];
 | 
						|
 | 
						|
/* Allocate space for a Bigint with up to 1<<k digits */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
Balloc(int k)
 | 
						|
{
 | 
						|
    int x;
 | 
						|
    Bigint *rv;
 | 
						|
    unsigned int len;
 | 
						|
 | 
						|
    if (k <= Kmax && (rv = freelist[k]))
 | 
						|
        freelist[k] = rv->next;
 | 
						|
    else {
 | 
						|
        x = 1 << k;
 | 
						|
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
 | 
						|
            /sizeof(double);
 | 
						|
        if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
 | 
						|
            rv = (Bigint*)pmem_next;
 | 
						|
            pmem_next += len;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            rv = (Bigint*)MALLOC(len*sizeof(double));
 | 
						|
            if (rv == NULL)
 | 
						|
                return NULL;
 | 
						|
        }
 | 
						|
        rv->k = k;
 | 
						|
        rv->maxwds = x;
 | 
						|
    }
 | 
						|
    rv->sign = rv->wds = 0;
 | 
						|
    return rv;
 | 
						|
}
 | 
						|
 | 
						|
/* Free a Bigint allocated with Balloc */
 | 
						|
 | 
						|
static void
 | 
						|
Bfree(Bigint *v)
 | 
						|
{
 | 
						|
    if (v) {
 | 
						|
        if (v->k > Kmax)
 | 
						|
            FREE((void*)v);
 | 
						|
        else {
 | 
						|
            v->next = freelist[v->k];
 | 
						|
            freelist[v->k] = v;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
 | 
						|
   PyMem_Free directly in place of the custom memory allocation scheme above.
 | 
						|
   These are provided for the benefit of memory debugging tools like
 | 
						|
   Valgrind. */
 | 
						|
 | 
						|
/* Allocate space for a Bigint with up to 1<<k digits */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
Balloc(int k)
 | 
						|
{
 | 
						|
    int x;
 | 
						|
    Bigint *rv;
 | 
						|
    unsigned int len;
 | 
						|
 | 
						|
    x = 1 << k;
 | 
						|
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
 | 
						|
        /sizeof(double);
 | 
						|
 | 
						|
    rv = (Bigint*)MALLOC(len*sizeof(double));
 | 
						|
    if (rv == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    rv->k = k;
 | 
						|
    rv->maxwds = x;
 | 
						|
    rv->sign = rv->wds = 0;
 | 
						|
    return rv;
 | 
						|
}
 | 
						|
 | 
						|
/* Free a Bigint allocated with Balloc */
 | 
						|
 | 
						|
static void
 | 
						|
Bfree(Bigint *v)
 | 
						|
{
 | 
						|
    if (v) {
 | 
						|
        FREE((void*)v);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif /* Py_USING_MEMORY_DEBUGGER */
 | 
						|
 | 
						|
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
 | 
						|
                          y->wds*sizeof(Long) + 2*sizeof(int))
 | 
						|
 | 
						|
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
 | 
						|
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
 | 
						|
   On failure, return NULL.  In this case, b will have been already freed. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
 | 
						|
{
 | 
						|
    int i, wds;
 | 
						|
#ifdef ULLong
 | 
						|
    ULong *x;
 | 
						|
    ULLong carry, y;
 | 
						|
#else
 | 
						|
    ULong carry, *x, y;
 | 
						|
    ULong xi, z;
 | 
						|
#endif
 | 
						|
    Bigint *b1;
 | 
						|
 | 
						|
    wds = b->wds;
 | 
						|
    x = b->x;
 | 
						|
    i = 0;
 | 
						|
    carry = a;
 | 
						|
    do {
 | 
						|
#ifdef ULLong
 | 
						|
        y = *x * (ULLong)m + carry;
 | 
						|
        carry = y >> 32;
 | 
						|
        *x++ = (ULong)(y & FFFFFFFF);
 | 
						|
#else
 | 
						|
        xi = *x;
 | 
						|
        y = (xi & 0xffff) * m + carry;
 | 
						|
        z = (xi >> 16) * m + (y >> 16);
 | 
						|
        carry = z >> 16;
 | 
						|
        *x++ = (z << 16) + (y & 0xffff);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    while(++i < wds);
 | 
						|
    if (carry) {
 | 
						|
        if (wds >= b->maxwds) {
 | 
						|
            b1 = Balloc(b->k+1);
 | 
						|
            if (b1 == NULL){
 | 
						|
                Bfree(b);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            Bcopy(b1, b);
 | 
						|
            Bfree(b);
 | 
						|
            b = b1;
 | 
						|
        }
 | 
						|
        b->x[wds++] = (ULong)carry;
 | 
						|
        b->wds = wds;
 | 
						|
    }
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
/* convert a string s containing nd decimal digits (possibly containing a
 | 
						|
   decimal separator at position nd0, which is ignored) to a Bigint.  This
 | 
						|
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
 | 
						|
   entry, y9 contains the result of converting the first 9 digits.  Returns
 | 
						|
   NULL on failure. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
s2b(const char *s, int nd0, int nd, ULong y9)
 | 
						|
{
 | 
						|
    Bigint *b;
 | 
						|
    int i, k;
 | 
						|
    Long x, y;
 | 
						|
 | 
						|
    x = (nd + 8) / 9;
 | 
						|
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
 | 
						|
    b = Balloc(k);
 | 
						|
    if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    b->x[0] = y9;
 | 
						|
    b->wds = 1;
 | 
						|
 | 
						|
    if (nd <= 9)
 | 
						|
      return b;
 | 
						|
 | 
						|
    s += 9;
 | 
						|
    for (i = 9; i < nd0; i++) {
 | 
						|
        b = multadd(b, 10, *s++ - '0');
 | 
						|
        if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    s++;
 | 
						|
    for(; i < nd; i++) {
 | 
						|
        b = multadd(b, 10, *s++ - '0');
 | 
						|
        if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
/* count leading 0 bits in the 32-bit integer x. */
 | 
						|
 | 
						|
static int
 | 
						|
hi0bits(ULong x)
 | 
						|
{
 | 
						|
    int k = 0;
 | 
						|
 | 
						|
    if (!(x & 0xffff0000)) {
 | 
						|
        k = 16;
 | 
						|
        x <<= 16;
 | 
						|
    }
 | 
						|
    if (!(x & 0xff000000)) {
 | 
						|
        k += 8;
 | 
						|
        x <<= 8;
 | 
						|
    }
 | 
						|
    if (!(x & 0xf0000000)) {
 | 
						|
        k += 4;
 | 
						|
        x <<= 4;
 | 
						|
    }
 | 
						|
    if (!(x & 0xc0000000)) {
 | 
						|
        k += 2;
 | 
						|
        x <<= 2;
 | 
						|
    }
 | 
						|
    if (!(x & 0x80000000)) {
 | 
						|
        k++;
 | 
						|
        if (!(x & 0x40000000))
 | 
						|
            return 32;
 | 
						|
    }
 | 
						|
    return k;
 | 
						|
}
 | 
						|
 | 
						|
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
 | 
						|
   number of bits. */
 | 
						|
 | 
						|
static int
 | 
						|
lo0bits(ULong *y)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
    ULong x = *y;
 | 
						|
 | 
						|
    if (x & 7) {
 | 
						|
        if (x & 1)
 | 
						|
            return 0;
 | 
						|
        if (x & 2) {
 | 
						|
            *y = x >> 1;
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        *y = x >> 2;
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
    k = 0;
 | 
						|
    if (!(x & 0xffff)) {
 | 
						|
        k = 16;
 | 
						|
        x >>= 16;
 | 
						|
    }
 | 
						|
    if (!(x & 0xff)) {
 | 
						|
        k += 8;
 | 
						|
        x >>= 8;
 | 
						|
    }
 | 
						|
    if (!(x & 0xf)) {
 | 
						|
        k += 4;
 | 
						|
        x >>= 4;
 | 
						|
    }
 | 
						|
    if (!(x & 0x3)) {
 | 
						|
        k += 2;
 | 
						|
        x >>= 2;
 | 
						|
    }
 | 
						|
    if (!(x & 1)) {
 | 
						|
        k++;
 | 
						|
        x >>= 1;
 | 
						|
        if (!x)
 | 
						|
            return 32;
 | 
						|
    }
 | 
						|
    *y = x;
 | 
						|
    return k;
 | 
						|
}
 | 
						|
 | 
						|
/* convert a small nonnegative integer to a Bigint */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
i2b(int i)
 | 
						|
{
 | 
						|
    Bigint *b;
 | 
						|
 | 
						|
    b = Balloc(1);
 | 
						|
    if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    b->x[0] = i;
 | 
						|
    b->wds = 1;
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
 | 
						|
   the signs of a and b. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
mult(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
    Bigint *c;
 | 
						|
    int k, wa, wb, wc;
 | 
						|
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
 | 
						|
    ULong y;
 | 
						|
#ifdef ULLong
 | 
						|
    ULLong carry, z;
 | 
						|
#else
 | 
						|
    ULong carry, z;
 | 
						|
    ULong z2;
 | 
						|
#endif
 | 
						|
 | 
						|
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
 | 
						|
        c = Balloc(0);
 | 
						|
        if (c == NULL)
 | 
						|
            return NULL;
 | 
						|
        c->wds = 1;
 | 
						|
        c->x[0] = 0;
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a->wds < b->wds) {
 | 
						|
        c = a;
 | 
						|
        a = b;
 | 
						|
        b = c;
 | 
						|
    }
 | 
						|
    k = a->k;
 | 
						|
    wa = a->wds;
 | 
						|
    wb = b->wds;
 | 
						|
    wc = wa + wb;
 | 
						|
    if (wc > a->maxwds)
 | 
						|
        k++;
 | 
						|
    c = Balloc(k);
 | 
						|
    if (c == NULL)
 | 
						|
        return NULL;
 | 
						|
    for(x = c->x, xa = x + wc; x < xa; x++)
 | 
						|
        *x = 0;
 | 
						|
    xa = a->x;
 | 
						|
    xae = xa + wa;
 | 
						|
    xb = b->x;
 | 
						|
    xbe = xb + wb;
 | 
						|
    xc0 = c->x;
 | 
						|
#ifdef ULLong
 | 
						|
    for(; xb < xbe; xc0++) {
 | 
						|
        if ((y = *xb++)) {
 | 
						|
            x = xa;
 | 
						|
            xc = xc0;
 | 
						|
            carry = 0;
 | 
						|
            do {
 | 
						|
                z = *x++ * (ULLong)y + *xc + carry;
 | 
						|
                carry = z >> 32;
 | 
						|
                *xc++ = (ULong)(z & FFFFFFFF);
 | 
						|
            }
 | 
						|
            while(x < xae);
 | 
						|
            *xc = (ULong)carry;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    for(; xb < xbe; xb++, xc0++) {
 | 
						|
        if (y = *xb & 0xffff) {
 | 
						|
            x = xa;
 | 
						|
            xc = xc0;
 | 
						|
            carry = 0;
 | 
						|
            do {
 | 
						|
                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
 | 
						|
                carry = z >> 16;
 | 
						|
                z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
 | 
						|
                carry = z2 >> 16;
 | 
						|
                Storeinc(xc, z2, z);
 | 
						|
            }
 | 
						|
            while(x < xae);
 | 
						|
            *xc = carry;
 | 
						|
        }
 | 
						|
        if (y = *xb >> 16) {
 | 
						|
            x = xa;
 | 
						|
            xc = xc0;
 | 
						|
            carry = 0;
 | 
						|
            z2 = *xc;
 | 
						|
            do {
 | 
						|
                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
 | 
						|
                carry = z >> 16;
 | 
						|
                Storeinc(xc, z, z2);
 | 
						|
                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
 | 
						|
                carry = z2 >> 16;
 | 
						|
            }
 | 
						|
            while(x < xae);
 | 
						|
            *xc = z2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
 | 
						|
    c->wds = wc;
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef Py_USING_MEMORY_DEBUGGER
 | 
						|
 | 
						|
/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
 | 
						|
 | 
						|
static Bigint *p5s;
 | 
						|
 | 
						|
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
 | 
						|
   failure; if the returned pointer is distinct from b then the original
 | 
						|
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
pow5mult(Bigint *b, int k)
 | 
						|
{
 | 
						|
    Bigint *b1, *p5, *p51;
 | 
						|
    int i;
 | 
						|
    static int p05[3] = { 5, 25, 125 };
 | 
						|
 | 
						|
    if ((i = k & 3)) {
 | 
						|
        b = multadd(b, p05[i-1], 0);
 | 
						|
        if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(k >>= 2))
 | 
						|
        return b;
 | 
						|
    p5 = p5s;
 | 
						|
    if (!p5) {
 | 
						|
        /* first time */
 | 
						|
        p5 = i2b(625);
 | 
						|
        if (p5 == NULL) {
 | 
						|
            Bfree(b);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        p5s = p5;
 | 
						|
        p5->next = 0;
 | 
						|
    }
 | 
						|
    for(;;) {
 | 
						|
        if (k & 1) {
 | 
						|
            b1 = mult(b, p5);
 | 
						|
            Bfree(b);
 | 
						|
            b = b1;
 | 
						|
            if (b == NULL)
 | 
						|
                return NULL;
 | 
						|
        }
 | 
						|
        if (!(k >>= 1))
 | 
						|
            break;
 | 
						|
        p51 = p5->next;
 | 
						|
        if (!p51) {
 | 
						|
            p51 = mult(p5,p5);
 | 
						|
            if (p51 == NULL) {
 | 
						|
                Bfree(b);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            p51->next = 0;
 | 
						|
            p5->next = p51;
 | 
						|
        }
 | 
						|
        p5 = p51;
 | 
						|
    }
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Version of pow5mult that doesn't cache powers of 5. Provided for
 | 
						|
   the benefit of memory debugging tools like Valgrind. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
pow5mult(Bigint *b, int k)
 | 
						|
{
 | 
						|
    Bigint *b1, *p5, *p51;
 | 
						|
    int i;
 | 
						|
    static int p05[3] = { 5, 25, 125 };
 | 
						|
 | 
						|
    if ((i = k & 3)) {
 | 
						|
        b = multadd(b, p05[i-1], 0);
 | 
						|
        if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(k >>= 2))
 | 
						|
        return b;
 | 
						|
    p5 = i2b(625);
 | 
						|
    if (p5 == NULL) {
 | 
						|
        Bfree(b);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    for(;;) {
 | 
						|
        if (k & 1) {
 | 
						|
            b1 = mult(b, p5);
 | 
						|
            Bfree(b);
 | 
						|
            b = b1;
 | 
						|
            if (b == NULL) {
 | 
						|
                Bfree(p5);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (!(k >>= 1))
 | 
						|
            break;
 | 
						|
        p51 = mult(p5, p5);
 | 
						|
        Bfree(p5);
 | 
						|
        p5 = p51;
 | 
						|
        if (p5 == NULL) {
 | 
						|
            Bfree(b);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    Bfree(p5);
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* Py_USING_MEMORY_DEBUGGER */
 | 
						|
 | 
						|
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
 | 
						|
   or NULL on failure.  If the returned pointer is distinct from b then the
 | 
						|
   original b will have been Bfree'd.   Ignores the sign of b. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
lshift(Bigint *b, int k)
 | 
						|
{
 | 
						|
    int i, k1, n, n1;
 | 
						|
    Bigint *b1;
 | 
						|
    ULong *x, *x1, *xe, z;
 | 
						|
 | 
						|
    if (!k || (!b->x[0] && b->wds == 1))
 | 
						|
        return b;
 | 
						|
 | 
						|
    n = k >> 5;
 | 
						|
    k1 = b->k;
 | 
						|
    n1 = n + b->wds + 1;
 | 
						|
    for(i = b->maxwds; n1 > i; i <<= 1)
 | 
						|
        k1++;
 | 
						|
    b1 = Balloc(k1);
 | 
						|
    if (b1 == NULL) {
 | 
						|
        Bfree(b);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    x1 = b1->x;
 | 
						|
    for(i = 0; i < n; i++)
 | 
						|
        *x1++ = 0;
 | 
						|
    x = b->x;
 | 
						|
    xe = x + b->wds;
 | 
						|
    if (k &= 0x1f) {
 | 
						|
        k1 = 32 - k;
 | 
						|
        z = 0;
 | 
						|
        do {
 | 
						|
            *x1++ = *x << k | z;
 | 
						|
            z = *x++ >> k1;
 | 
						|
        }
 | 
						|
        while(x < xe);
 | 
						|
        if ((*x1 = z))
 | 
						|
            ++n1;
 | 
						|
    }
 | 
						|
    else do
 | 
						|
             *x1++ = *x++;
 | 
						|
        while(x < xe);
 | 
						|
    b1->wds = n1 - 1;
 | 
						|
    Bfree(b);
 | 
						|
    return b1;
 | 
						|
}
 | 
						|
 | 
						|
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
 | 
						|
   1 if a > b.  Ignores signs of a and b. */
 | 
						|
 | 
						|
static int
 | 
						|
cmp(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
    ULong *xa, *xa0, *xb, *xb0;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    i = a->wds;
 | 
						|
    j = b->wds;
 | 
						|
#ifdef DEBUG
 | 
						|
    if (i > 1 && !a->x[i-1])
 | 
						|
        Bug("cmp called with a->x[a->wds-1] == 0");
 | 
						|
    if (j > 1 && !b->x[j-1])
 | 
						|
        Bug("cmp called with b->x[b->wds-1] == 0");
 | 
						|
#endif
 | 
						|
    if (i -= j)
 | 
						|
        return i;
 | 
						|
    xa0 = a->x;
 | 
						|
    xa = xa0 + j;
 | 
						|
    xb0 = b->x;
 | 
						|
    xb = xb0 + j;
 | 
						|
    for(;;) {
 | 
						|
        if (*--xa != *--xb)
 | 
						|
            return *xa < *xb ? -1 : 1;
 | 
						|
        if (xa <= xa0)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
 | 
						|
   NULL on failure.  The signs of a and b are ignored, but the sign of the
 | 
						|
   result is set appropriately. */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
diff(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
    Bigint *c;
 | 
						|
    int i, wa, wb;
 | 
						|
    ULong *xa, *xae, *xb, *xbe, *xc;
 | 
						|
#ifdef ULLong
 | 
						|
    ULLong borrow, y;
 | 
						|
#else
 | 
						|
    ULong borrow, y;
 | 
						|
    ULong z;
 | 
						|
#endif
 | 
						|
 | 
						|
    i = cmp(a,b);
 | 
						|
    if (!i) {
 | 
						|
        c = Balloc(0);
 | 
						|
        if (c == NULL)
 | 
						|
            return NULL;
 | 
						|
        c->wds = 1;
 | 
						|
        c->x[0] = 0;
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
    if (i < 0) {
 | 
						|
        c = a;
 | 
						|
        a = b;
 | 
						|
        b = c;
 | 
						|
        i = 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        i = 0;
 | 
						|
    c = Balloc(a->k);
 | 
						|
    if (c == NULL)
 | 
						|
        return NULL;
 | 
						|
    c->sign = i;
 | 
						|
    wa = a->wds;
 | 
						|
    xa = a->x;
 | 
						|
    xae = xa + wa;
 | 
						|
    wb = b->wds;
 | 
						|
    xb = b->x;
 | 
						|
    xbe = xb + wb;
 | 
						|
    xc = c->x;
 | 
						|
    borrow = 0;
 | 
						|
#ifdef ULLong
 | 
						|
    do {
 | 
						|
        y = (ULLong)*xa++ - *xb++ - borrow;
 | 
						|
        borrow = y >> 32 & (ULong)1;
 | 
						|
        *xc++ = (ULong)(y & FFFFFFFF);
 | 
						|
    }
 | 
						|
    while(xb < xbe);
 | 
						|
    while(xa < xae) {
 | 
						|
        y = *xa++ - borrow;
 | 
						|
        borrow = y >> 32 & (ULong)1;
 | 
						|
        *xc++ = (ULong)(y & FFFFFFFF);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    do {
 | 
						|
        y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
 | 
						|
        borrow = (y & 0x10000) >> 16;
 | 
						|
        z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
 | 
						|
        borrow = (z & 0x10000) >> 16;
 | 
						|
        Storeinc(xc, z, y);
 | 
						|
    }
 | 
						|
    while(xb < xbe);
 | 
						|
    while(xa < xae) {
 | 
						|
        y = (*xa & 0xffff) - borrow;
 | 
						|
        borrow = (y & 0x10000) >> 16;
 | 
						|
        z = (*xa++ >> 16) - borrow;
 | 
						|
        borrow = (z & 0x10000) >> 16;
 | 
						|
        Storeinc(xc, z, y);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    while(!*--xc)
 | 
						|
        wa--;
 | 
						|
    c->wds = wa;
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
/* Given a positive normal double x, return the difference between x and the
 | 
						|
   next double up.  Doesn't give correct results for subnormals. */
 | 
						|
 | 
						|
static double
 | 
						|
ulp(U *x)
 | 
						|
{
 | 
						|
    Long L;
 | 
						|
    U u;
 | 
						|
 | 
						|
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
 | 
						|
    word0(&u) = L;
 | 
						|
    word1(&u) = 0;
 | 
						|
    return dval(&u);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a Bigint to a double plus an exponent */
 | 
						|
 | 
						|
static double
 | 
						|
b2d(Bigint *a, int *e)
 | 
						|
{
 | 
						|
    ULong *xa, *xa0, w, y, z;
 | 
						|
    int k;
 | 
						|
    U d;
 | 
						|
 | 
						|
    xa0 = a->x;
 | 
						|
    xa = xa0 + a->wds;
 | 
						|
    y = *--xa;
 | 
						|
#ifdef DEBUG
 | 
						|
    if (!y) Bug("zero y in b2d");
 | 
						|
#endif
 | 
						|
    k = hi0bits(y);
 | 
						|
    *e = 32 - k;
 | 
						|
    if (k < Ebits) {
 | 
						|
        word0(&d) = Exp_1 | y >> (Ebits - k);
 | 
						|
        w = xa > xa0 ? *--xa : 0;
 | 
						|
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
 | 
						|
        goto ret_d;
 | 
						|
    }
 | 
						|
    z = xa > xa0 ? *--xa : 0;
 | 
						|
    if (k -= Ebits) {
 | 
						|
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
 | 
						|
        y = xa > xa0 ? *--xa : 0;
 | 
						|
        word1(&d) = z << k | y >> (32 - k);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        word0(&d) = Exp_1 | y;
 | 
						|
        word1(&d) = z;
 | 
						|
    }
 | 
						|
  ret_d:
 | 
						|
    return dval(&d);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
 | 
						|
   except that it accepts the scale parameter used in _Py_dg_strtod (which
 | 
						|
   should be either 0 or 2*P), and the normalization for the return value is
 | 
						|
   different (see below).  On input, d should be finite and nonnegative, and d
 | 
						|
   / 2**scale should be exactly representable as an IEEE 754 double.
 | 
						|
 | 
						|
   Returns a Bigint b and an integer e such that
 | 
						|
 | 
						|
     dval(d) / 2**scale = b * 2**e.
 | 
						|
 | 
						|
   Unlike d2b, b is not necessarily odd: b and e are normalized so
 | 
						|
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
 | 
						|
   and e == Etiny.  This applies equally to an input of 0.0: in that
 | 
						|
   case the return values are b = 0 and e = Etiny.
 | 
						|
 | 
						|
   The above normalization ensures that for all possible inputs d,
 | 
						|
   2**e gives ulp(d/2**scale).
 | 
						|
 | 
						|
   Returns NULL on failure.
 | 
						|
*/
 | 
						|
 | 
						|
static Bigint *
 | 
						|
sd2b(U *d, int scale, int *e)
 | 
						|
{
 | 
						|
    Bigint *b;
 | 
						|
 | 
						|
    b = Balloc(1);
 | 
						|
    if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    
 | 
						|
    /* First construct b and e assuming that scale == 0. */
 | 
						|
    b->wds = 2;
 | 
						|
    b->x[0] = word1(d);
 | 
						|
    b->x[1] = word0(d) & Frac_mask;
 | 
						|
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
 | 
						|
    if (*e < Etiny)
 | 
						|
        *e = Etiny;
 | 
						|
    else
 | 
						|
        b->x[1] |= Exp_msk1;
 | 
						|
 | 
						|
    /* Now adjust for scale, provided that b != 0. */
 | 
						|
    if (scale && (b->x[0] || b->x[1])) {
 | 
						|
        *e -= scale;
 | 
						|
        if (*e < Etiny) {
 | 
						|
            scale = Etiny - *e;
 | 
						|
            *e = Etiny;
 | 
						|
            /* We can't shift more than P-1 bits without shifting out a 1. */
 | 
						|
            assert(0 < scale && scale <= P - 1);
 | 
						|
            if (scale >= 32) {
 | 
						|
                /* The bits shifted out should all be zero. */
 | 
						|
                assert(b->x[0] == 0);
 | 
						|
                b->x[0] = b->x[1];
 | 
						|
                b->x[1] = 0;
 | 
						|
                scale -= 32;
 | 
						|
            }
 | 
						|
            if (scale) {
 | 
						|
                /* The bits shifted out should all be zero. */
 | 
						|
                assert(b->x[0] << (32 - scale) == 0);
 | 
						|
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
 | 
						|
                b->x[1] >>= scale;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* Ensure b is normalized. */
 | 
						|
    if (!b->x[1])
 | 
						|
        b->wds = 1;
 | 
						|
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
 | 
						|
 | 
						|
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
 | 
						|
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
 | 
						|
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
 | 
						|
 | 
						|
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
 | 
						|
 */
 | 
						|
 | 
						|
static Bigint *
 | 
						|
d2b(U *d, int *e, int *bits)
 | 
						|
{
 | 
						|
    Bigint *b;
 | 
						|
    int de, k;
 | 
						|
    ULong *x, y, z;
 | 
						|
    int i;
 | 
						|
 | 
						|
    b = Balloc(1);
 | 
						|
    if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    x = b->x;
 | 
						|
 | 
						|
    z = word0(d) & Frac_mask;
 | 
						|
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
 | 
						|
    if ((de = (int)(word0(d) >> Exp_shift)))
 | 
						|
        z |= Exp_msk1;
 | 
						|
    if ((y = word1(d))) {
 | 
						|
        if ((k = lo0bits(&y))) {
 | 
						|
            x[0] = y | z << (32 - k);
 | 
						|
            z >>= k;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            x[0] = y;
 | 
						|
        i =
 | 
						|
            b->wds = (x[1] = z) ? 2 : 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        k = lo0bits(&z);
 | 
						|
        x[0] = z;
 | 
						|
        i =
 | 
						|
            b->wds = 1;
 | 
						|
        k += 32;
 | 
						|
    }
 | 
						|
    if (de) {
 | 
						|
        *e = de - Bias - (P-1) + k;
 | 
						|
        *bits = P - k;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        *e = de - Bias - (P-1) + 1 + k;
 | 
						|
        *bits = 32*i - hi0bits(x[i-1]);
 | 
						|
    }
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the ratio of two Bigints, as a double.  The result may have an
 | 
						|
   error of up to 2.5 ulps. */
 | 
						|
 | 
						|
static double
 | 
						|
ratio(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
    U da, db;
 | 
						|
    int k, ka, kb;
 | 
						|
 | 
						|
    dval(&da) = b2d(a, &ka);
 | 
						|
    dval(&db) = b2d(b, &kb);
 | 
						|
    k = ka - kb + 32*(a->wds - b->wds);
 | 
						|
    if (k > 0)
 | 
						|
        word0(&da) += k*Exp_msk1;
 | 
						|
    else {
 | 
						|
        k = -k;
 | 
						|
        word0(&db) += k*Exp_msk1;
 | 
						|
    }
 | 
						|
    return dval(&da) / dval(&db);
 | 
						|
}
 | 
						|
 | 
						|
static const double
 | 
						|
tens[] = {
 | 
						|
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
 | 
						|
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
 | 
						|
    1e20, 1e21, 1e22
 | 
						|
};
 | 
						|
 | 
						|
static const double
 | 
						|
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
 | 
						|
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
 | 
						|
                                   9007199254740992.*9007199254740992.e-256
 | 
						|
                                   /* = 2^106 * 1e-256 */
 | 
						|
};
 | 
						|
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
 | 
						|
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
 | 
						|
#define Scale_Bit 0x10
 | 
						|
#define n_bigtens 5
 | 
						|
 | 
						|
#define ULbits 32
 | 
						|
#define kshift 5
 | 
						|
#define kmask 31
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
dshift(Bigint *b, int p2)
 | 
						|
{
 | 
						|
    int rv = hi0bits(b->x[b->wds-1]) - 4;
 | 
						|
    if (p2 > 0)
 | 
						|
        rv -= p2;
 | 
						|
    return rv & kmask;
 | 
						|
}
 | 
						|
 | 
						|
/* special case of Bigint division.  The quotient is always in the range 0 <=
 | 
						|
   quotient < 10, and on entry the divisor S is normalized so that its top 4
 | 
						|
   bits (28--31) are zero and bit 27 is set. */
 | 
						|
 | 
						|
static int
 | 
						|
quorem(Bigint *b, Bigint *S)
 | 
						|
{
 | 
						|
    int n;
 | 
						|
    ULong *bx, *bxe, q, *sx, *sxe;
 | 
						|
#ifdef ULLong
 | 
						|
    ULLong borrow, carry, y, ys;
 | 
						|
#else
 | 
						|
    ULong borrow, carry, y, ys;
 | 
						|
    ULong si, z, zs;
 | 
						|
#endif
 | 
						|
 | 
						|
    n = S->wds;
 | 
						|
#ifdef DEBUG
 | 
						|
    /*debug*/ if (b->wds > n)
 | 
						|
        /*debug*/       Bug("oversize b in quorem");
 | 
						|
#endif
 | 
						|
    if (b->wds < n)
 | 
						|
        return 0;
 | 
						|
    sx = S->x;
 | 
						|
    sxe = sx + --n;
 | 
						|
    bx = b->x;
 | 
						|
    bxe = bx + n;
 | 
						|
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
 | 
						|
#ifdef DEBUG
 | 
						|
    /*debug*/ if (q > 9)
 | 
						|
        /*debug*/       Bug("oversized quotient in quorem");
 | 
						|
#endif
 | 
						|
    if (q) {
 | 
						|
        borrow = 0;
 | 
						|
        carry = 0;
 | 
						|
        do {
 | 
						|
#ifdef ULLong
 | 
						|
            ys = *sx++ * (ULLong)q + carry;
 | 
						|
            carry = ys >> 32;
 | 
						|
            y = *bx - (ys & FFFFFFFF) - borrow;
 | 
						|
            borrow = y >> 32 & (ULong)1;
 | 
						|
            *bx++ = (ULong)(y & FFFFFFFF);
 | 
						|
#else
 | 
						|
            si = *sx++;
 | 
						|
            ys = (si & 0xffff) * q + carry;
 | 
						|
            zs = (si >> 16) * q + (ys >> 16);
 | 
						|
            carry = zs >> 16;
 | 
						|
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | 
						|
            borrow = (y & 0x10000) >> 16;
 | 
						|
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | 
						|
            borrow = (z & 0x10000) >> 16;
 | 
						|
            Storeinc(bx, z, y);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        while(sx <= sxe);
 | 
						|
        if (!*bxe) {
 | 
						|
            bx = b->x;
 | 
						|
            while(--bxe > bx && !*bxe)
 | 
						|
                --n;
 | 
						|
            b->wds = n;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (cmp(b, S) >= 0) {
 | 
						|
        q++;
 | 
						|
        borrow = 0;
 | 
						|
        carry = 0;
 | 
						|
        bx = b->x;
 | 
						|
        sx = S->x;
 | 
						|
        do {
 | 
						|
#ifdef ULLong
 | 
						|
            ys = *sx++ + carry;
 | 
						|
            carry = ys >> 32;
 | 
						|
            y = *bx - (ys & FFFFFFFF) - borrow;
 | 
						|
            borrow = y >> 32 & (ULong)1;
 | 
						|
            *bx++ = (ULong)(y & FFFFFFFF);
 | 
						|
#else
 | 
						|
            si = *sx++;
 | 
						|
            ys = (si & 0xffff) + carry;
 | 
						|
            zs = (si >> 16) + (ys >> 16);
 | 
						|
            carry = zs >> 16;
 | 
						|
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | 
						|
            borrow = (y & 0x10000) >> 16;
 | 
						|
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | 
						|
            borrow = (z & 0x10000) >> 16;
 | 
						|
            Storeinc(bx, z, y);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        while(sx <= sxe);
 | 
						|
        bx = b->x;
 | 
						|
        bxe = bx + n;
 | 
						|
        if (!*bxe) {
 | 
						|
            while(--bxe > bx && !*bxe)
 | 
						|
                --n;
 | 
						|
            b->wds = n;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return q;
 | 
						|
}
 | 
						|
 | 
						|
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
 | 
						|
 | 
						|
   Assuming that x is finite and nonnegative (positive zero is fine
 | 
						|
   here) and x / 2^bc.scale is exactly representable as a double,
 | 
						|
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
 | 
						|
 | 
						|
static double
 | 
						|
sulp(U *x, BCinfo *bc)
 | 
						|
{
 | 
						|
    U u;
 | 
						|
 | 
						|
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
 | 
						|
        /* rv/2^bc->scale is subnormal */
 | 
						|
        word0(&u) = (P+2)*Exp_msk1;
 | 
						|
        word1(&u) = 0;
 | 
						|
        return u.d;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(word0(x) || word1(x)); /* x != 0.0 */
 | 
						|
        return ulp(x);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* The bigcomp function handles some hard cases for strtod, for inputs
 | 
						|
   with more than STRTOD_DIGLIM digits.  It's called once an initial
 | 
						|
   estimate for the double corresponding to the input string has
 | 
						|
   already been obtained by the code in _Py_dg_strtod.
 | 
						|
 | 
						|
   The bigcomp function is only called after _Py_dg_strtod has found a
 | 
						|
   double value rv such that either rv or rv + 1ulp represents the
 | 
						|
   correctly rounded value corresponding to the original string.  It
 | 
						|
   determines which of these two values is the correct one by
 | 
						|
   computing the decimal digits of rv + 0.5ulp and comparing them with
 | 
						|
   the corresponding digits of s0.
 | 
						|
 | 
						|
   In the following, write dv for the absolute value of the number represented
 | 
						|
   by the input string.
 | 
						|
 | 
						|
   Inputs:
 | 
						|
 | 
						|
     s0 points to the first significant digit of the input string.
 | 
						|
 | 
						|
     rv is a (possibly scaled) estimate for the closest double value to the
 | 
						|
        value represented by the original input to _Py_dg_strtod.  If
 | 
						|
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
 | 
						|
        the input value.
 | 
						|
 | 
						|
     bc is a struct containing information gathered during the parsing and
 | 
						|
        estimation steps of _Py_dg_strtod.  Description of fields follows:
 | 
						|
 | 
						|
        bc->e0 gives the exponent of the input value, such that dv = (integer
 | 
						|
           given by the bd->nd digits of s0) * 10**e0
 | 
						|
 | 
						|
        bc->nd gives the total number of significant digits of s0.  It will
 | 
						|
           be at least 1.
 | 
						|
 | 
						|
        bc->nd0 gives the number of significant digits of s0 before the
 | 
						|
           decimal separator.  If there's no decimal separator, bc->nd0 ==
 | 
						|
           bc->nd.
 | 
						|
 | 
						|
        bc->scale is the value used to scale rv to avoid doing arithmetic with
 | 
						|
           subnormal values.  It's either 0 or 2*P (=106).
 | 
						|
 | 
						|
   Outputs:
 | 
						|
 | 
						|
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
 | 
						|
 | 
						|
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
 | 
						|
 | 
						|
static int
 | 
						|
bigcomp(U *rv, const char *s0, BCinfo *bc)
 | 
						|
{
 | 
						|
    Bigint *b, *d;
 | 
						|
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
 | 
						|
 | 
						|
    nd = bc->nd;
 | 
						|
    nd0 = bc->nd0;
 | 
						|
    p5 = nd + bc->e0;
 | 
						|
    b = sd2b(rv, bc->scale, &p2);
 | 
						|
    if (b == NULL)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
 | 
						|
       case, this is used for round to even. */
 | 
						|
    odd = b->x[0] & 1;
 | 
						|
 | 
						|
    /* left shift b by 1 bit and or a 1 into the least significant bit;
 | 
						|
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
 | 
						|
    b = lshift(b, 1);
 | 
						|
    if (b == NULL)
 | 
						|
        return -1;
 | 
						|
    b->x[0] |= 1;
 | 
						|
    p2--;
 | 
						|
 | 
						|
    p2 -= p5;
 | 
						|
    d = i2b(1);
 | 
						|
    if (d == NULL) {
 | 
						|
        Bfree(b);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    /* Arrange for convenient computation of quotients:
 | 
						|
     * shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
     */
 | 
						|
    if (p5 > 0) {
 | 
						|
        d = pow5mult(d, p5);
 | 
						|
        if (d == NULL) {
 | 
						|
            Bfree(b);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (p5 < 0) {
 | 
						|
        b = pow5mult(b, -p5);
 | 
						|
        if (b == NULL) {
 | 
						|
            Bfree(d);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (p2 > 0) {
 | 
						|
        b2 = p2;
 | 
						|
        d2 = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        b2 = 0;
 | 
						|
        d2 = -p2;
 | 
						|
    }
 | 
						|
    i = dshift(d, d2);
 | 
						|
    if ((b2 += i) > 0) {
 | 
						|
        b = lshift(b, b2);
 | 
						|
        if (b == NULL) {
 | 
						|
            Bfree(d);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ((d2 += i) > 0) {
 | 
						|
        d = lshift(d, d2);
 | 
						|
        if (d == NULL) {
 | 
						|
            Bfree(b);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
 | 
						|
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
 | 
						|
     * a number in the range [0.1, 1). */
 | 
						|
    if (cmp(b, d) >= 0)
 | 
						|
        /* b/d >= 1 */
 | 
						|
        dd = -1;
 | 
						|
    else {
 | 
						|
        i = 0;
 | 
						|
        for(;;) {
 | 
						|
            b = multadd(b, 10, 0);
 | 
						|
            if (b == NULL) {
 | 
						|
                Bfree(d);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
 | 
						|
            i++;
 | 
						|
 | 
						|
            if (dd)
 | 
						|
                break;
 | 
						|
            if (!b->x[0] && b->wds == 1) {
 | 
						|
                /* b/d == 0 */
 | 
						|
                dd = i < nd;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (!(i < nd)) {
 | 
						|
                /* b/d != 0, but digits of s0 exhausted */
 | 
						|
                dd = -1;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    Bfree(b);
 | 
						|
    Bfree(d);
 | 
						|
    if (dd > 0 || (dd == 0 && odd))
 | 
						|
        dval(rv) += sulp(rv, bc);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
_Py_dg_strtod(const char *s00, char **se)
 | 
						|
{
 | 
						|
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
 | 
						|
    int esign, i, j, k, lz, nd, nd0, odd, sign;
 | 
						|
    const char *s, *s0, *s1;
 | 
						|
    double aadj, aadj1;
 | 
						|
    U aadj2, adj, rv, rv0;
 | 
						|
    ULong y, z, abs_exp;
 | 
						|
    Long L;
 | 
						|
    BCinfo bc;
 | 
						|
    Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
 | 
						|
 | 
						|
    dval(&rv) = 0.;
 | 
						|
 | 
						|
    /* Start parsing. */
 | 
						|
    c = *(s = s00);
 | 
						|
 | 
						|
    /* Parse optional sign, if present. */
 | 
						|
    sign = 0;
 | 
						|
    switch (c) {
 | 
						|
    case '-':
 | 
						|
        sign = 1;
 | 
						|
        /* no break */
 | 
						|
    case '+':
 | 
						|
        c = *++s;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Skip leading zeros: lz is true iff there were leading zeros. */
 | 
						|
    s1 = s;
 | 
						|
    while (c == '0')
 | 
						|
        c = *++s;
 | 
						|
    lz = s != s1;
 | 
						|
 | 
						|
    /* Point s0 at the first nonzero digit (if any).  nd0 will be the position
 | 
						|
       of the point relative to s0.  nd will be the total number of digits
 | 
						|
       ignoring leading zeros. */
 | 
						|
    s0 = s1 = s;
 | 
						|
    while ('0' <= c && c <= '9')
 | 
						|
        c = *++s;
 | 
						|
    nd0 = nd = s - s1;
 | 
						|
 | 
						|
    /* Parse decimal point and following digits. */
 | 
						|
    if (c == '.') {
 | 
						|
        c = *++s;
 | 
						|
        if (!nd) {
 | 
						|
            s1 = s;
 | 
						|
            while (c == '0')
 | 
						|
                c = *++s;
 | 
						|
            lz = lz || s != s1;
 | 
						|
            nd0 -= s - s1;
 | 
						|
            s0 = s;
 | 
						|
        }
 | 
						|
        s1 = s;
 | 
						|
        while ('0' <= c && c <= '9')
 | 
						|
            c = *++s;
 | 
						|
        nd += s - s1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now lz is true if and only if there were leading zero digits, and nd
 | 
						|
       gives the total number of digits ignoring leading zeros.  A valid input
 | 
						|
       must have at least one digit. */
 | 
						|
    if (!nd && !lz) {
 | 
						|
        if (se)
 | 
						|
            *se = (char *)s00;
 | 
						|
        goto parse_error;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Parse exponent. */
 | 
						|
    e = 0;
 | 
						|
    if (c == 'e' || c == 'E') {
 | 
						|
        s00 = s;
 | 
						|
        c = *++s;
 | 
						|
 | 
						|
        /* Exponent sign. */
 | 
						|
        esign = 0;
 | 
						|
        switch (c) {
 | 
						|
        case '-':
 | 
						|
            esign = 1;
 | 
						|
            /* no break */
 | 
						|
        case '+':
 | 
						|
            c = *++s;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Skip zeros.  lz is true iff there are leading zeros. */
 | 
						|
        s1 = s;
 | 
						|
        while (c == '0')
 | 
						|
            c = *++s;
 | 
						|
        lz = s != s1;
 | 
						|
 | 
						|
        /* Get absolute value of the exponent. */
 | 
						|
        s1 = s;
 | 
						|
        abs_exp = 0;
 | 
						|
        while ('0' <= c && c <= '9') {
 | 
						|
            abs_exp = 10*abs_exp + (c - '0');
 | 
						|
            c = *++s;
 | 
						|
        }
 | 
						|
 | 
						|
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
 | 
						|
           there are at most 9 significant exponent digits then overflow is
 | 
						|
           impossible. */
 | 
						|
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
 | 
						|
            e = (int)MAX_ABS_EXP;
 | 
						|
        else
 | 
						|
            e = (int)abs_exp;
 | 
						|
        if (esign)
 | 
						|
            e = -e;
 | 
						|
 | 
						|
        /* A valid exponent must have at least one digit. */
 | 
						|
        if (s == s1 && !lz)
 | 
						|
            s = s00;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Adjust exponent to take into account position of the point. */
 | 
						|
    e -= nd - nd0;
 | 
						|
    if (nd0 <= 0)
 | 
						|
        nd0 = nd;
 | 
						|
 | 
						|
    /* Finished parsing.  Set se to indicate how far we parsed */
 | 
						|
    if (se)
 | 
						|
        *se = (char *)s;
 | 
						|
 | 
						|
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
 | 
						|
       strip trailing zeros: scan back until we hit a nonzero digit. */
 | 
						|
    if (!nd)
 | 
						|
        goto ret;
 | 
						|
    for (i = nd; i > 0; ) {
 | 
						|
        --i;
 | 
						|
        if (s0[i < nd0 ? i : i+1] != '0') {
 | 
						|
            ++i;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    e += nd - i;
 | 
						|
    nd = i;
 | 
						|
    if (nd0 > nd)
 | 
						|
        nd0 = nd;
 | 
						|
 | 
						|
    /* Summary of parsing results.  After parsing, and dealing with zero
 | 
						|
     * inputs, we have values s0, nd0, nd, e, sign, where:
 | 
						|
     *
 | 
						|
     *  - s0 points to the first significant digit of the input string
 | 
						|
     *
 | 
						|
     *  - nd is the total number of significant digits (here, and
 | 
						|
     *    below, 'significant digits' means the set of digits of the
 | 
						|
     *    significand of the input that remain after ignoring leading
 | 
						|
     *    and trailing zeros).
 | 
						|
     *
 | 
						|
     *  - nd0 indicates the position of the decimal point, if present; it
 | 
						|
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
 | 
						|
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
 | 
						|
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
 | 
						|
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
 | 
						|
     *
 | 
						|
     *  - e is the adjusted exponent: the absolute value of the number
 | 
						|
     *    represented by the original input string is n * 10**e, where
 | 
						|
     *    n is the integer represented by the concatenation of
 | 
						|
     *    s0[0:nd0] and s0[nd0+1:nd+1]
 | 
						|
     *
 | 
						|
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
 | 
						|
     *
 | 
						|
     *  - the first and last significant digits are nonzero
 | 
						|
     */
 | 
						|
 | 
						|
    /* put first DBL_DIG+1 digits into integer y and z.
 | 
						|
     *
 | 
						|
     *  - y contains the value represented by the first min(9, nd)
 | 
						|
     *    significant digits
 | 
						|
     *
 | 
						|
     *  - if nd > 9, z contains the value represented by significant digits
 | 
						|
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
 | 
						|
     *    gives the value represented by the first min(16, nd) sig. digits.
 | 
						|
     */
 | 
						|
 | 
						|
    bc.e0 = e1 = e;
 | 
						|
    y = z = 0;
 | 
						|
    for (i = 0; i < nd; i++) {
 | 
						|
        if (i < 9)
 | 
						|
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
 | 
						|
        else if (i < DBL_DIG+1)
 | 
						|
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
 | 
						|
        else
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
 | 
						|
    dval(&rv) = y;
 | 
						|
    if (k > 9) {
 | 
						|
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
 | 
						|
    }
 | 
						|
    bd0 = 0;
 | 
						|
    if (nd <= DBL_DIG
 | 
						|
        && Flt_Rounds == 1
 | 
						|
        ) {
 | 
						|
        if (!e)
 | 
						|
            goto ret;
 | 
						|
        if (e > 0) {
 | 
						|
            if (e <= Ten_pmax) {
 | 
						|
                dval(&rv) *= tens[e];
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
            i = DBL_DIG - nd;
 | 
						|
            if (e <= Ten_pmax + i) {
 | 
						|
                /* A fancier test would sometimes let us do
 | 
						|
                 * this for larger i values.
 | 
						|
                 */
 | 
						|
                e -= i;
 | 
						|
                dval(&rv) *= tens[i];
 | 
						|
                dval(&rv) *= tens[e];
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else if (e >= -Ten_pmax) {
 | 
						|
            dval(&rv) /= tens[-e];
 | 
						|
            goto ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    e1 += nd - k;
 | 
						|
 | 
						|
    bc.scale = 0;
 | 
						|
 | 
						|
    /* Get starting approximation = rv * 10**e1 */
 | 
						|
 | 
						|
    if (e1 > 0) {
 | 
						|
        if ((i = e1 & 15))
 | 
						|
            dval(&rv) *= tens[i];
 | 
						|
        if (e1 &= ~15) {
 | 
						|
            if (e1 > DBL_MAX_10_EXP)
 | 
						|
                goto ovfl;
 | 
						|
            e1 >>= 4;
 | 
						|
            for(j = 0; e1 > 1; j++, e1 >>= 1)
 | 
						|
                if (e1 & 1)
 | 
						|
                    dval(&rv) *= bigtens[j];
 | 
						|
            /* The last multiplication could overflow. */
 | 
						|
            word0(&rv) -= P*Exp_msk1;
 | 
						|
            dval(&rv) *= bigtens[j];
 | 
						|
            if ((z = word0(&rv) & Exp_mask)
 | 
						|
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
 | 
						|
                goto ovfl;
 | 
						|
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
 | 
						|
                /* set to largest number */
 | 
						|
                /* (Can't trust DBL_MAX) */
 | 
						|
                word0(&rv) = Big0;
 | 
						|
                word1(&rv) = Big1;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                word0(&rv) += P*Exp_msk1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (e1 < 0) {
 | 
						|
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
 | 
						|
 | 
						|
           If e1 <= -512, underflow immediately.
 | 
						|
           If e1 <= -256, set bc.scale to 2*P.
 | 
						|
 | 
						|
           So for input value < 1e-256, bc.scale is always set;
 | 
						|
           for input value >= 1e-240, bc.scale is never set.
 | 
						|
           For input values in [1e-256, 1e-240), bc.scale may or may
 | 
						|
           not be set. */
 | 
						|
 | 
						|
        e1 = -e1;
 | 
						|
        if ((i = e1 & 15))
 | 
						|
            dval(&rv) /= tens[i];
 | 
						|
        if (e1 >>= 4) {
 | 
						|
            if (e1 >= 1 << n_bigtens)
 | 
						|
                goto undfl;
 | 
						|
            if (e1 & Scale_Bit)
 | 
						|
                bc.scale = 2*P;
 | 
						|
            for(j = 0; e1 > 0; j++, e1 >>= 1)
 | 
						|
                if (e1 & 1)
 | 
						|
                    dval(&rv) *= tinytens[j];
 | 
						|
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
 | 
						|
                                            >> Exp_shift)) > 0) {
 | 
						|
                /* scaled rv is denormal; clear j low bits */
 | 
						|
                if (j >= 32) {
 | 
						|
                    word1(&rv) = 0;
 | 
						|
                    if (j >= 53)
 | 
						|
                        word0(&rv) = (P+2)*Exp_msk1;
 | 
						|
                    else
 | 
						|
                        word0(&rv) &= 0xffffffff << (j-32);
 | 
						|
                }
 | 
						|
                else
 | 
						|
                    word1(&rv) &= 0xffffffff << j;
 | 
						|
            }
 | 
						|
            if (!dval(&rv))
 | 
						|
                goto undfl;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now the hard part -- adjusting rv to the correct value.*/
 | 
						|
 | 
						|
    /* Put digits into bd: true value = bd * 10^e */
 | 
						|
 | 
						|
    bc.nd = nd;
 | 
						|
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
 | 
						|
                        /* to silence an erroneous warning about bc.nd0 */
 | 
						|
                        /* possibly not being initialized. */
 | 
						|
    if (nd > STRTOD_DIGLIM) {
 | 
						|
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
 | 
						|
        /* minimum number of decimal digits to distinguish double values */
 | 
						|
        /* in IEEE arithmetic. */
 | 
						|
 | 
						|
        /* Truncate input to 18 significant digits, then discard any trailing
 | 
						|
           zeros on the result by updating nd, nd0, e and y suitably. (There's
 | 
						|
           no need to update z; it's not reused beyond this point.) */
 | 
						|
        for (i = 18; i > 0; ) {
 | 
						|
            /* scan back until we hit a nonzero digit.  significant digit 'i'
 | 
						|
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
 | 
						|
            --i;
 | 
						|
            if (s0[i < nd0 ? i : i+1] != '0') {
 | 
						|
                ++i;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        e += nd - i;
 | 
						|
        nd = i;
 | 
						|
        if (nd0 > nd)
 | 
						|
            nd0 = nd;
 | 
						|
        if (nd < 9) { /* must recompute y */
 | 
						|
            y = 0;
 | 
						|
            for(i = 0; i < nd0; ++i)
 | 
						|
                y = 10*y + s0[i] - '0';
 | 
						|
            for(; i < nd; ++i)
 | 
						|
                y = 10*y + s0[i+1] - '0';
 | 
						|
        }
 | 
						|
    }
 | 
						|
    bd0 = s2b(s0, nd0, nd, y);
 | 
						|
    if (bd0 == NULL)
 | 
						|
        goto failed_malloc;
 | 
						|
 | 
						|
    /* Notation for the comments below.  Write:
 | 
						|
 | 
						|
         - dv for the absolute value of the number represented by the original
 | 
						|
           decimal input string.
 | 
						|
 | 
						|
         - if we've truncated dv, write tdv for the truncated value.
 | 
						|
           Otherwise, set tdv == dv.
 | 
						|
 | 
						|
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
 | 
						|
           approximation to tdv (and dv).  It should be exactly representable
 | 
						|
           in an IEEE 754 double.
 | 
						|
    */
 | 
						|
 | 
						|
    for(;;) {
 | 
						|
 | 
						|
        /* This is the main correction loop for _Py_dg_strtod.
 | 
						|
 | 
						|
           We've got a decimal value tdv, and a floating-point approximation
 | 
						|
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
 | 
						|
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
 | 
						|
           approximation if not.
 | 
						|
 | 
						|
           To determine whether srv is close enough to tdv, compute integers
 | 
						|
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
 | 
						|
           respectively, and then use integer arithmetic to determine whether
 | 
						|
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
 | 
						|
        */
 | 
						|
 | 
						|
        bd = Balloc(bd0->k);
 | 
						|
        if (bd == NULL) {
 | 
						|
            Bfree(bd0);
 | 
						|
            goto failed_malloc;
 | 
						|
        }
 | 
						|
        Bcopy(bd, bd0);
 | 
						|
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
 | 
						|
        if (bb == NULL) {
 | 
						|
            Bfree(bd);
 | 
						|
            Bfree(bd0);
 | 
						|
            goto failed_malloc;
 | 
						|
        }
 | 
						|
        /* Record whether lsb of bb is odd, in case we need this
 | 
						|
           for the round-to-even step later. */
 | 
						|
        odd = bb->x[0] & 1;
 | 
						|
 | 
						|
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
 | 
						|
        bs = i2b(1);
 | 
						|
        if (bs == NULL) {
 | 
						|
            Bfree(bb);
 | 
						|
            Bfree(bd);
 | 
						|
            Bfree(bd0);
 | 
						|
            goto failed_malloc;
 | 
						|
        }
 | 
						|
 | 
						|
        if (e >= 0) {
 | 
						|
            bb2 = bb5 = 0;
 | 
						|
            bd2 = bd5 = e;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            bb2 = bb5 = -e;
 | 
						|
            bd2 = bd5 = 0;
 | 
						|
        }
 | 
						|
        if (bbe >= 0)
 | 
						|
            bb2 += bbe;
 | 
						|
        else
 | 
						|
            bd2 -= bbe;
 | 
						|
        bs2 = bb2;
 | 
						|
        bb2++;
 | 
						|
        bd2++;
 | 
						|
 | 
						|
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
 | 
						|
	   and bs == 1, so:
 | 
						|
 | 
						|
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
 | 
						|
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
 | 
						|
	      0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
 | 
						|
 | 
						|
	   It follows that:
 | 
						|
 | 
						|
              M * tdv = bd * 2**bd2 * 5**bd5
 | 
						|
              M * srv = bb * 2**bb2 * 5**bb5
 | 
						|
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
 | 
						|
 | 
						|
	   for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
 | 
						|
	   this fact is not needed below.)
 | 
						|
        */
 | 
						|
 | 
						|
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
 | 
						|
        i = bb2 < bd2 ? bb2 : bd2;
 | 
						|
        if (i > bs2)
 | 
						|
            i = bs2;
 | 
						|
        if (i > 0) {
 | 
						|
            bb2 -= i;
 | 
						|
            bd2 -= i;
 | 
						|
            bs2 -= i;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
 | 
						|
        if (bb5 > 0) {
 | 
						|
            bs = pow5mult(bs, bb5);
 | 
						|
            if (bs == NULL) {
 | 
						|
                Bfree(bb);
 | 
						|
                Bfree(bd);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
            bb1 = mult(bs, bb);
 | 
						|
            Bfree(bb);
 | 
						|
            bb = bb1;
 | 
						|
            if (bb == NULL) {
 | 
						|
                Bfree(bs);
 | 
						|
                Bfree(bd);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (bb2 > 0) {
 | 
						|
            bb = lshift(bb, bb2);
 | 
						|
            if (bb == NULL) {
 | 
						|
                Bfree(bs);
 | 
						|
                Bfree(bd);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (bd5 > 0) {
 | 
						|
            bd = pow5mult(bd, bd5);
 | 
						|
            if (bd == NULL) {
 | 
						|
                Bfree(bb);
 | 
						|
                Bfree(bs);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (bd2 > 0) {
 | 
						|
            bd = lshift(bd, bd2);
 | 
						|
            if (bd == NULL) {
 | 
						|
                Bfree(bb);
 | 
						|
                Bfree(bs);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (bs2 > 0) {
 | 
						|
            bs = lshift(bs, bs2);
 | 
						|
            if (bs == NULL) {
 | 
						|
                Bfree(bb);
 | 
						|
                Bfree(bd);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
 | 
						|
           respectively.  Compute the difference |tdv - srv|, and compare
 | 
						|
           with 0.5 ulp(srv). */
 | 
						|
 | 
						|
        delta = diff(bb, bd);
 | 
						|
        if (delta == NULL) {
 | 
						|
            Bfree(bb);
 | 
						|
            Bfree(bs);
 | 
						|
            Bfree(bd);
 | 
						|
            Bfree(bd0);
 | 
						|
            goto failed_malloc;
 | 
						|
        }
 | 
						|
        dsign = delta->sign;
 | 
						|
        delta->sign = 0;
 | 
						|
        i = cmp(delta, bs);
 | 
						|
        if (bc.nd > nd && i <= 0) {
 | 
						|
            if (dsign)
 | 
						|
                break;  /* Must use bigcomp(). */
 | 
						|
 | 
						|
            /* Here rv overestimates the truncated decimal value by at most
 | 
						|
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
 | 
						|
               value by <= 0.5 ulp(rv), or underestimates it by some small
 | 
						|
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
 | 
						|
               the true decimal value, so it's possible to exit.
 | 
						|
 | 
						|
               Exception: if scaled rv is a normal exact power of 2, but not
 | 
						|
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
 | 
						|
               next double, so the correctly rounded result is either rv - 0.5
 | 
						|
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
 | 
						|
 | 
						|
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
 | 
						|
                /* rv can't be 0, since it's an overestimate for some
 | 
						|
                   nonzero value.  So rv is a normal power of 2. */
 | 
						|
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
 | 
						|
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
 | 
						|
                   rv / 2^bc.scale >= 2^-1021. */
 | 
						|
                if (j - bc.scale >= 2) {
 | 
						|
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
 | 
						|
                    break; /* Use bigcomp. */
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            {
 | 
						|
                bc.nd = nd;
 | 
						|
                i = -1; /* Discarded digits make delta smaller. */
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (i < 0) {
 | 
						|
            /* Error is less than half an ulp -- check for
 | 
						|
             * special case of mantissa a power of two.
 | 
						|
             */
 | 
						|
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
 | 
						|
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
 | 
						|
                ) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (!delta->x[0] && delta->wds <= 1) {
 | 
						|
                /* exact result */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            delta = lshift(delta,Log2P);
 | 
						|
            if (delta == NULL) {
 | 
						|
                Bfree(bb);
 | 
						|
                Bfree(bs);
 | 
						|
                Bfree(bd);
 | 
						|
                Bfree(bd0);
 | 
						|
                goto failed_malloc;
 | 
						|
            }
 | 
						|
            if (cmp(delta, bs) > 0)
 | 
						|
                goto drop_down;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (i == 0) {
 | 
						|
            /* exactly half-way between */
 | 
						|
            if (dsign) {
 | 
						|
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
 | 
						|
                    &&  word1(&rv) == (
 | 
						|
                        (bc.scale &&
 | 
						|
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
 | 
						|
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
 | 
						|
                        0xffffffff)) {
 | 
						|
                    /*boundary case -- increment exponent*/
 | 
						|
                    word0(&rv) = (word0(&rv) & Exp_mask)
 | 
						|
                        + Exp_msk1
 | 
						|
                        ;
 | 
						|
                    word1(&rv) = 0;
 | 
						|
                    /* dsign = 0; */
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
 | 
						|
              drop_down:
 | 
						|
                /* boundary case -- decrement exponent */
 | 
						|
                if (bc.scale) {
 | 
						|
                    L = word0(&rv) & Exp_mask;
 | 
						|
                    if (L <= (2*P+1)*Exp_msk1) {
 | 
						|
                        if (L > (P+2)*Exp_msk1)
 | 
						|
                            /* round even ==> */
 | 
						|
                            /* accept rv */
 | 
						|
                            break;
 | 
						|
                        /* rv = smallest denormal */
 | 
						|
                        if (bc.nd > nd)
 | 
						|
                            break;
 | 
						|
                        goto undfl;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
 | 
						|
                word0(&rv) = L | Bndry_mask1;
 | 
						|
                word1(&rv) = 0xffffffff;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (!odd)
 | 
						|
                break;
 | 
						|
            if (dsign)
 | 
						|
                dval(&rv) += sulp(&rv, &bc);
 | 
						|
            else {
 | 
						|
                dval(&rv) -= sulp(&rv, &bc);
 | 
						|
                if (!dval(&rv)) {
 | 
						|
                    if (bc.nd >nd)
 | 
						|
                        break;
 | 
						|
                    goto undfl;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* dsign = 1 - dsign; */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if ((aadj = ratio(delta, bs)) <= 2.) {
 | 
						|
            if (dsign)
 | 
						|
                aadj = aadj1 = 1.;
 | 
						|
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
 | 
						|
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
 | 
						|
                    if (bc.nd >nd)
 | 
						|
                        break;
 | 
						|
                    goto undfl;
 | 
						|
                }
 | 
						|
                aadj = 1.;
 | 
						|
                aadj1 = -1.;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                /* special case -- power of FLT_RADIX to be */
 | 
						|
                /* rounded down... */
 | 
						|
 | 
						|
                if (aadj < 2./FLT_RADIX)
 | 
						|
                    aadj = 1./FLT_RADIX;
 | 
						|
                else
 | 
						|
                    aadj *= 0.5;
 | 
						|
                aadj1 = -aadj;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aadj *= 0.5;
 | 
						|
            aadj1 = dsign ? aadj : -aadj;
 | 
						|
            if (Flt_Rounds == 0)
 | 
						|
                aadj1 += 0.5;
 | 
						|
        }
 | 
						|
        y = word0(&rv) & Exp_mask;
 | 
						|
 | 
						|
        /* Check for overflow */
 | 
						|
 | 
						|
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
 | 
						|
            dval(&rv0) = dval(&rv);
 | 
						|
            word0(&rv) -= P*Exp_msk1;
 | 
						|
            adj.d = aadj1 * ulp(&rv);
 | 
						|
            dval(&rv) += adj.d;
 | 
						|
            if ((word0(&rv) & Exp_mask) >=
 | 
						|
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
 | 
						|
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
 | 
						|
                    Bfree(bb);
 | 
						|
                    Bfree(bd);
 | 
						|
                    Bfree(bs);
 | 
						|
                    Bfree(bd0);
 | 
						|
                    Bfree(delta);
 | 
						|
                    goto ovfl;
 | 
						|
                }
 | 
						|
                word0(&rv) = Big0;
 | 
						|
                word1(&rv) = Big1;
 | 
						|
                goto cont;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                word0(&rv) += P*Exp_msk1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (bc.scale && y <= 2*P*Exp_msk1) {
 | 
						|
                if (aadj <= 0x7fffffff) {
 | 
						|
                    if ((z = (ULong)aadj) <= 0)
 | 
						|
                        z = 1;
 | 
						|
                    aadj = z;
 | 
						|
                    aadj1 = dsign ? aadj : -aadj;
 | 
						|
                }
 | 
						|
                dval(&aadj2) = aadj1;
 | 
						|
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
 | 
						|
                aadj1 = dval(&aadj2);
 | 
						|
            }
 | 
						|
            adj.d = aadj1 * ulp(&rv);
 | 
						|
            dval(&rv) += adj.d;
 | 
						|
        }
 | 
						|
        z = word0(&rv) & Exp_mask;
 | 
						|
        if (bc.nd == nd) {
 | 
						|
            if (!bc.scale)
 | 
						|
                if (y == z) {
 | 
						|
                    /* Can we stop now? */
 | 
						|
                    L = (Long)aadj;
 | 
						|
                    aadj -= L;
 | 
						|
                    /* The tolerances below are conservative. */
 | 
						|
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
 | 
						|
                        if (aadj < .4999999 || aadj > .5000001)
 | 
						|
                            break;
 | 
						|
                    }
 | 
						|
                    else if (aadj < .4999999/FLT_RADIX)
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
        }
 | 
						|
      cont:
 | 
						|
        Bfree(bb);
 | 
						|
        Bfree(bd);
 | 
						|
        Bfree(bs);
 | 
						|
        Bfree(delta);
 | 
						|
    }
 | 
						|
    Bfree(bb);
 | 
						|
    Bfree(bd);
 | 
						|
    Bfree(bs);
 | 
						|
    Bfree(bd0);
 | 
						|
    Bfree(delta);
 | 
						|
    if (bc.nd > nd) {
 | 
						|
        error = bigcomp(&rv, s0, &bc);
 | 
						|
        if (error)
 | 
						|
            goto failed_malloc;
 | 
						|
    }
 | 
						|
 | 
						|
    if (bc.scale) {
 | 
						|
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
 | 
						|
        word1(&rv0) = 0;
 | 
						|
        dval(&rv) *= dval(&rv0);
 | 
						|
    }
 | 
						|
 | 
						|
  ret:
 | 
						|
    return sign ? -dval(&rv) : dval(&rv);
 | 
						|
 | 
						|
  parse_error:
 | 
						|
    return 0.0;
 | 
						|
 | 
						|
  failed_malloc:
 | 
						|
    errno = ENOMEM;
 | 
						|
    return -1.0;
 | 
						|
 | 
						|
  undfl:
 | 
						|
    return sign ? -0.0 : 0.0;
 | 
						|
 | 
						|
  ovfl:
 | 
						|
    errno = ERANGE;
 | 
						|
    /* Can't trust HUGE_VAL */
 | 
						|
    word0(&rv) = Exp_mask;
 | 
						|
    word1(&rv) = 0;
 | 
						|
    return sign ? -dval(&rv) : dval(&rv);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static char *
 | 
						|
rv_alloc(int i)
 | 
						|
{
 | 
						|
    int j, k, *r;
 | 
						|
 | 
						|
    j = sizeof(ULong);
 | 
						|
    for(k = 0;
 | 
						|
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
 | 
						|
        j <<= 1)
 | 
						|
        k++;
 | 
						|
    r = (int*)Balloc(k);
 | 
						|
    if (r == NULL)
 | 
						|
        return NULL;
 | 
						|
    *r = k;
 | 
						|
    return (char *)(r+1);
 | 
						|
}
 | 
						|
 | 
						|
static char *
 | 
						|
nrv_alloc(char *s, char **rve, int n)
 | 
						|
{
 | 
						|
    char *rv, *t;
 | 
						|
 | 
						|
    rv = rv_alloc(n);
 | 
						|
    if (rv == NULL)
 | 
						|
        return NULL;
 | 
						|
    t = rv;
 | 
						|
    while((*t = *s++)) t++;
 | 
						|
    if (rve)
 | 
						|
        *rve = t;
 | 
						|
    return rv;
 | 
						|
}
 | 
						|
 | 
						|
/* freedtoa(s) must be used to free values s returned by dtoa
 | 
						|
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
 | 
						|
 * but for consistency with earlier versions of dtoa, it is optional
 | 
						|
 * when MULTIPLE_THREADS is not defined.
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
_Py_dg_freedtoa(char *s)
 | 
						|
{
 | 
						|
    Bigint *b = (Bigint *)((int *)s - 1);
 | 
						|
    b->maxwds = 1 << (b->k = *(int*)b);
 | 
						|
    Bfree(b);
 | 
						|
}
 | 
						|
 | 
						|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | 
						|
 *
 | 
						|
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | 
						|
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | 
						|
 *
 | 
						|
 * Modifications:
 | 
						|
 *      1. Rather than iterating, we use a simple numeric overestimate
 | 
						|
 *         to determine k = floor(log10(d)).  We scale relevant
 | 
						|
 *         quantities using O(log2(k)) rather than O(k) multiplications.
 | 
						|
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | 
						|
 *         try to generate digits strictly left to right.  Instead, we
 | 
						|
 *         compute with fewer bits and propagate the carry if necessary
 | 
						|
 *         when rounding the final digit up.  This is often faster.
 | 
						|
 *      3. Under the assumption that input will be rounded nearest,
 | 
						|
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | 
						|
 *         That is, we allow equality in stopping tests when the
 | 
						|
 *         round-nearest rule will give the same floating-point value
 | 
						|
 *         as would satisfaction of the stopping test with strict
 | 
						|
 *         inequality.
 | 
						|
 *      4. We remove common factors of powers of 2 from relevant
 | 
						|
 *         quantities.
 | 
						|
 *      5. When converting floating-point integers less than 1e16,
 | 
						|
 *         we use floating-point arithmetic rather than resorting
 | 
						|
 *         to multiple-precision integers.
 | 
						|
 *      6. When asked to produce fewer than 15 digits, we first try
 | 
						|
 *         to get by with floating-point arithmetic; we resort to
 | 
						|
 *         multiple-precision integer arithmetic only if we cannot
 | 
						|
 *         guarantee that the floating-point calculation has given
 | 
						|
 *         the correctly rounded result.  For k requested digits and
 | 
						|
 *         "uniformly" distributed input, the probability is
 | 
						|
 *         something like 10^(k-15) that we must resort to the Long
 | 
						|
 *         calculation.
 | 
						|
 */
 | 
						|
 | 
						|
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
 | 
						|
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
 | 
						|
   call to _Py_dg_freedtoa. */
 | 
						|
 | 
						|
char *
 | 
						|
_Py_dg_dtoa(double dd, int mode, int ndigits,
 | 
						|
            int *decpt, int *sign, char **rve)
 | 
						|
{
 | 
						|
    /*  Arguments ndigits, decpt, sign are similar to those
 | 
						|
        of ecvt and fcvt; trailing zeros are suppressed from
 | 
						|
        the returned string.  If not null, *rve is set to point
 | 
						|
        to the end of the return value.  If d is +-Infinity or NaN,
 | 
						|
        then *decpt is set to 9999.
 | 
						|
 | 
						|
        mode:
 | 
						|
        0 ==> shortest string that yields d when read in
 | 
						|
        and rounded to nearest.
 | 
						|
        1 ==> like 0, but with Steele & White stopping rule;
 | 
						|
        e.g. with IEEE P754 arithmetic , mode 0 gives
 | 
						|
        1e23 whereas mode 1 gives 9.999999999999999e22.
 | 
						|
        2 ==> max(1,ndigits) significant digits.  This gives a
 | 
						|
        return value similar to that of ecvt, except
 | 
						|
        that trailing zeros are suppressed.
 | 
						|
        3 ==> through ndigits past the decimal point.  This
 | 
						|
        gives a return value similar to that from fcvt,
 | 
						|
        except that trailing zeros are suppressed, and
 | 
						|
        ndigits can be negative.
 | 
						|
        4,5 ==> similar to 2 and 3, respectively, but (in
 | 
						|
        round-nearest mode) with the tests of mode 0 to
 | 
						|
        possibly return a shorter string that rounds to d.
 | 
						|
        With IEEE arithmetic and compilation with
 | 
						|
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | 
						|
        as modes 2 and 3 when FLT_ROUNDS != 1.
 | 
						|
        6-9 ==> Debugging modes similar to mode - 4:  don't try
 | 
						|
        fast floating-point estimate (if applicable).
 | 
						|
 | 
						|
        Values of mode other than 0-9 are treated as mode 0.
 | 
						|
 | 
						|
        Sufficient space is allocated to the return value
 | 
						|
        to hold the suppressed trailing zeros.
 | 
						|
    */
 | 
						|
 | 
						|
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
 | 
						|
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | 
						|
        spec_case, try_quick;
 | 
						|
    Long L;
 | 
						|
    int denorm;
 | 
						|
    ULong x;
 | 
						|
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
 | 
						|
    U d2, eps, u;
 | 
						|
    double ds;
 | 
						|
    char *s, *s0;
 | 
						|
 | 
						|
    /* set pointers to NULL, to silence gcc compiler warnings and make
 | 
						|
       cleanup easier on error */
 | 
						|
    mlo = mhi = S = 0;
 | 
						|
    s0 = 0;
 | 
						|
 | 
						|
    u.d = dd;
 | 
						|
    if (word0(&u) & Sign_bit) {
 | 
						|
        /* set sign for everything, including 0's and NaNs */
 | 
						|
        *sign = 1;
 | 
						|
        word0(&u) &= ~Sign_bit; /* clear sign bit */
 | 
						|
    }
 | 
						|
    else
 | 
						|
        *sign = 0;
 | 
						|
 | 
						|
    /* quick return for Infinities, NaNs and zeros */
 | 
						|
    if ((word0(&u) & Exp_mask) == Exp_mask)
 | 
						|
    {
 | 
						|
        /* Infinity or NaN */
 | 
						|
        *decpt = 9999;
 | 
						|
        if (!word1(&u) && !(word0(&u) & 0xfffff))
 | 
						|
            return nrv_alloc("Infinity", rve, 8);
 | 
						|
        return nrv_alloc("NaN", rve, 3);
 | 
						|
    }
 | 
						|
    if (!dval(&u)) {
 | 
						|
        *decpt = 1;
 | 
						|
        return nrv_alloc("0", rve, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute k = floor(log10(d)).  The computation may leave k
 | 
						|
       one too large, but should never leave k too small. */
 | 
						|
    b = d2b(&u, &be, &bbits);
 | 
						|
    if (b == NULL)
 | 
						|
        goto failed_malloc;
 | 
						|
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
 | 
						|
        dval(&d2) = dval(&u);
 | 
						|
        word0(&d2) &= Frac_mask1;
 | 
						|
        word0(&d2) |= Exp_11;
 | 
						|
 | 
						|
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
 | 
						|
         * log10(x)      =  log(x) / log(10)
 | 
						|
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | 
						|
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | 
						|
         *
 | 
						|
         * This suggests computing an approximation k to log10(d) by
 | 
						|
         *
 | 
						|
         * k = (i - Bias)*0.301029995663981
 | 
						|
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | 
						|
         *
 | 
						|
         * We want k to be too large rather than too small.
 | 
						|
         * The error in the first-order Taylor series approximation
 | 
						|
         * is in our favor, so we just round up the constant enough
 | 
						|
         * to compensate for any error in the multiplication of
 | 
						|
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | 
						|
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | 
						|
         * adding 1e-13 to the constant term more than suffices.
 | 
						|
         * Hence we adjust the constant term to 0.1760912590558.
 | 
						|
         * (We could get a more accurate k by invoking log10,
 | 
						|
         *  but this is probably not worthwhile.)
 | 
						|
         */
 | 
						|
 | 
						|
        i -= Bias;
 | 
						|
        denorm = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* d is denormalized */
 | 
						|
 | 
						|
        i = bbits + be + (Bias + (P-1) - 1);
 | 
						|
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
 | 
						|
            : word1(&u) << (32 - i);
 | 
						|
        dval(&d2) = x;
 | 
						|
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
 | 
						|
        i -= (Bias + (P-1) - 1) + 1;
 | 
						|
        denorm = 1;
 | 
						|
    }
 | 
						|
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
 | 
						|
        i*0.301029995663981;
 | 
						|
    k = (int)ds;
 | 
						|
    if (ds < 0. && ds != k)
 | 
						|
        k--;    /* want k = floor(ds) */
 | 
						|
    k_check = 1;
 | 
						|
    if (k >= 0 && k <= Ten_pmax) {
 | 
						|
        if (dval(&u) < tens[k])
 | 
						|
            k--;
 | 
						|
        k_check = 0;
 | 
						|
    }
 | 
						|
    j = bbits - i - 1;
 | 
						|
    if (j >= 0) {
 | 
						|
        b2 = 0;
 | 
						|
        s2 = j;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        b2 = -j;
 | 
						|
        s2 = 0;
 | 
						|
    }
 | 
						|
    if (k >= 0) {
 | 
						|
        b5 = 0;
 | 
						|
        s5 = k;
 | 
						|
        s2 += k;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        b2 -= k;
 | 
						|
        b5 = -k;
 | 
						|
        s5 = 0;
 | 
						|
    }
 | 
						|
    if (mode < 0 || mode > 9)
 | 
						|
        mode = 0;
 | 
						|
 | 
						|
    try_quick = 1;
 | 
						|
 | 
						|
    if (mode > 5) {
 | 
						|
        mode -= 4;
 | 
						|
        try_quick = 0;
 | 
						|
    }
 | 
						|
    leftright = 1;
 | 
						|
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
 | 
						|
    /* silence erroneous "gcc -Wall" warning. */
 | 
						|
    switch(mode) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
        i = 18;
 | 
						|
        ndigits = 0;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        leftright = 0;
 | 
						|
        /* no break */
 | 
						|
    case 4:
 | 
						|
        if (ndigits <= 0)
 | 
						|
            ndigits = 1;
 | 
						|
        ilim = ilim1 = i = ndigits;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        leftright = 0;
 | 
						|
        /* no break */
 | 
						|
    case 5:
 | 
						|
        i = ndigits + k + 1;
 | 
						|
        ilim = i;
 | 
						|
        ilim1 = i - 1;
 | 
						|
        if (i <= 0)
 | 
						|
            i = 1;
 | 
						|
    }
 | 
						|
    s0 = rv_alloc(i);
 | 
						|
    if (s0 == NULL)
 | 
						|
        goto failed_malloc;
 | 
						|
    s = s0;
 | 
						|
 | 
						|
 | 
						|
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | 
						|
 | 
						|
        /* Try to get by with floating-point arithmetic. */
 | 
						|
 | 
						|
        i = 0;
 | 
						|
        dval(&d2) = dval(&u);
 | 
						|
        k0 = k;
 | 
						|
        ilim0 = ilim;
 | 
						|
        ieps = 2; /* conservative */
 | 
						|
        if (k > 0) {
 | 
						|
            ds = tens[k&0xf];
 | 
						|
            j = k >> 4;
 | 
						|
            if (j & Bletch) {
 | 
						|
                /* prevent overflows */
 | 
						|
                j &= Bletch - 1;
 | 
						|
                dval(&u) /= bigtens[n_bigtens-1];
 | 
						|
                ieps++;
 | 
						|
            }
 | 
						|
            for(; j; j >>= 1, i++)
 | 
						|
                if (j & 1) {
 | 
						|
                    ieps++;
 | 
						|
                    ds *= bigtens[i];
 | 
						|
                }
 | 
						|
            dval(&u) /= ds;
 | 
						|
        }
 | 
						|
        else if ((j1 = -k)) {
 | 
						|
            dval(&u) *= tens[j1 & 0xf];
 | 
						|
            for(j = j1 >> 4; j; j >>= 1, i++)
 | 
						|
                if (j & 1) {
 | 
						|
                    ieps++;
 | 
						|
                    dval(&u) *= bigtens[i];
 | 
						|
                }
 | 
						|
        }
 | 
						|
        if (k_check && dval(&u) < 1. && ilim > 0) {
 | 
						|
            if (ilim1 <= 0)
 | 
						|
                goto fast_failed;
 | 
						|
            ilim = ilim1;
 | 
						|
            k--;
 | 
						|
            dval(&u) *= 10.;
 | 
						|
            ieps++;
 | 
						|
        }
 | 
						|
        dval(&eps) = ieps*dval(&u) + 7.;
 | 
						|
        word0(&eps) -= (P-1)*Exp_msk1;
 | 
						|
        if (ilim == 0) {
 | 
						|
            S = mhi = 0;
 | 
						|
            dval(&u) -= 5.;
 | 
						|
            if (dval(&u) > dval(&eps))
 | 
						|
                goto one_digit;
 | 
						|
            if (dval(&u) < -dval(&eps))
 | 
						|
                goto no_digits;
 | 
						|
            goto fast_failed;
 | 
						|
        }
 | 
						|
        if (leftright) {
 | 
						|
            /* Use Steele & White method of only
 | 
						|
             * generating digits needed.
 | 
						|
             */
 | 
						|
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
 | 
						|
            for(i = 0;;) {
 | 
						|
                L = (Long)dval(&u);
 | 
						|
                dval(&u) -= L;
 | 
						|
                *s++ = '0' + (int)L;
 | 
						|
                if (dval(&u) < dval(&eps))
 | 
						|
                    goto ret1;
 | 
						|
                if (1. - dval(&u) < dval(&eps))
 | 
						|
                    goto bump_up;
 | 
						|
                if (++i >= ilim)
 | 
						|
                    break;
 | 
						|
                dval(&eps) *= 10.;
 | 
						|
                dval(&u) *= 10.;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* Generate ilim digits, then fix them up. */
 | 
						|
            dval(&eps) *= tens[ilim-1];
 | 
						|
            for(i = 1;; i++, dval(&u) *= 10.) {
 | 
						|
                L = (Long)(dval(&u));
 | 
						|
                if (!(dval(&u) -= L))
 | 
						|
                    ilim = i;
 | 
						|
                *s++ = '0' + (int)L;
 | 
						|
                if (i == ilim) {
 | 
						|
                    if (dval(&u) > 0.5 + dval(&eps))
 | 
						|
                        goto bump_up;
 | 
						|
                    else if (dval(&u) < 0.5 - dval(&eps)) {
 | 
						|
                        while(*--s == '0');
 | 
						|
                        s++;
 | 
						|
                        goto ret1;
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
      fast_failed:
 | 
						|
        s = s0;
 | 
						|
        dval(&u) = dval(&d2);
 | 
						|
        k = k0;
 | 
						|
        ilim = ilim0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Do we have a "small" integer? */
 | 
						|
 | 
						|
    if (be >= 0 && k <= Int_max) {
 | 
						|
        /* Yes. */
 | 
						|
        ds = tens[k];
 | 
						|
        if (ndigits < 0 && ilim <= 0) {
 | 
						|
            S = mhi = 0;
 | 
						|
            if (ilim < 0 || dval(&u) <= 5*ds)
 | 
						|
                goto no_digits;
 | 
						|
            goto one_digit;
 | 
						|
        }
 | 
						|
        for(i = 1;; i++, dval(&u) *= 10.) {
 | 
						|
            L = (Long)(dval(&u) / ds);
 | 
						|
            dval(&u) -= L*ds;
 | 
						|
            *s++ = '0' + (int)L;
 | 
						|
            if (!dval(&u)) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (i == ilim) {
 | 
						|
                dval(&u) += dval(&u);
 | 
						|
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
 | 
						|
                  bump_up:
 | 
						|
                    while(*--s == '9')
 | 
						|
                        if (s == s0) {
 | 
						|
                            k++;
 | 
						|
                            *s = '0';
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                    ++*s++;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        goto ret1;
 | 
						|
    }
 | 
						|
 | 
						|
    m2 = b2;
 | 
						|
    m5 = b5;
 | 
						|
    if (leftright) {
 | 
						|
        i =
 | 
						|
            denorm ? be + (Bias + (P-1) - 1 + 1) :
 | 
						|
            1 + P - bbits;
 | 
						|
        b2 += i;
 | 
						|
        s2 += i;
 | 
						|
        mhi = i2b(1);
 | 
						|
        if (mhi == NULL)
 | 
						|
            goto failed_malloc;
 | 
						|
    }
 | 
						|
    if (m2 > 0 && s2 > 0) {
 | 
						|
        i = m2 < s2 ? m2 : s2;
 | 
						|
        b2 -= i;
 | 
						|
        m2 -= i;
 | 
						|
        s2 -= i;
 | 
						|
    }
 | 
						|
    if (b5 > 0) {
 | 
						|
        if (leftright) {
 | 
						|
            if (m5 > 0) {
 | 
						|
                mhi = pow5mult(mhi, m5);
 | 
						|
                if (mhi == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
                b1 = mult(mhi, b);
 | 
						|
                Bfree(b);
 | 
						|
                b = b1;
 | 
						|
                if (b == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
            }
 | 
						|
            if ((j = b5 - m5)) {
 | 
						|
                b = pow5mult(b, j);
 | 
						|
                if (b == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            b = pow5mult(b, b5);
 | 
						|
            if (b == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    S = i2b(1);
 | 
						|
    if (S == NULL)
 | 
						|
        goto failed_malloc;
 | 
						|
    if (s5 > 0) {
 | 
						|
        S = pow5mult(S, s5);
 | 
						|
        if (S == NULL)
 | 
						|
            goto failed_malloc;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check for special case that d is a normalized power of 2. */
 | 
						|
 | 
						|
    spec_case = 0;
 | 
						|
    if ((mode < 2 || leftright)
 | 
						|
        ) {
 | 
						|
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
 | 
						|
            && word0(&u) & (Exp_mask & ~Exp_msk1)
 | 
						|
            ) {
 | 
						|
            /* The special case */
 | 
						|
            b2 += Log2P;
 | 
						|
            s2 += Log2P;
 | 
						|
            spec_case = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Arrange for convenient computation of quotients:
 | 
						|
     * shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
     *
 | 
						|
     * Perhaps we should just compute leading 28 bits of S once
 | 
						|
     * and for all and pass them and a shift to quorem, so it
 | 
						|
     * can do shifts and ors to compute the numerator for q.
 | 
						|
     */
 | 
						|
#define iInc 28
 | 
						|
    i = dshift(S, s2);
 | 
						|
    b2 += i;
 | 
						|
    m2 += i;
 | 
						|
    s2 += i;
 | 
						|
    if (b2 > 0) {
 | 
						|
        b = lshift(b, b2);
 | 
						|
        if (b == NULL)
 | 
						|
            goto failed_malloc;
 | 
						|
    }
 | 
						|
    if (s2 > 0) {
 | 
						|
        S = lshift(S, s2);
 | 
						|
        if (S == NULL)
 | 
						|
            goto failed_malloc;
 | 
						|
    }
 | 
						|
    if (k_check) {
 | 
						|
        if (cmp(b,S) < 0) {
 | 
						|
            k--;
 | 
						|
            b = multadd(b, 10, 0);      /* we botched the k estimate */
 | 
						|
            if (b == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
            if (leftright) {
 | 
						|
                mhi = multadd(mhi, 10, 0);
 | 
						|
                if (mhi == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
            }
 | 
						|
            ilim = ilim1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | 
						|
        if (ilim < 0) {
 | 
						|
            /* no digits, fcvt style */
 | 
						|
          no_digits:
 | 
						|
            k = -1 - ndigits;
 | 
						|
            goto ret;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            S = multadd(S, 5, 0);
 | 
						|
            if (S == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
            if (cmp(b, S) <= 0)
 | 
						|
                goto no_digits;
 | 
						|
        }
 | 
						|
      one_digit:
 | 
						|
        *s++ = '1';
 | 
						|
        k++;
 | 
						|
        goto ret;
 | 
						|
    }
 | 
						|
    if (leftright) {
 | 
						|
        if (m2 > 0) {
 | 
						|
            mhi = lshift(mhi, m2);
 | 
						|
            if (mhi == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Compute mlo -- check for special case
 | 
						|
         * that d is a normalized power of 2.
 | 
						|
         */
 | 
						|
 | 
						|
        mlo = mhi;
 | 
						|
        if (spec_case) {
 | 
						|
            mhi = Balloc(mhi->k);
 | 
						|
            if (mhi == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
            Bcopy(mhi, mlo);
 | 
						|
            mhi = lshift(mhi, Log2P);
 | 
						|
            if (mhi == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
        }
 | 
						|
 | 
						|
        for(i = 1;;i++) {
 | 
						|
            dig = quorem(b,S) + '0';
 | 
						|
            /* Do we yet have the shortest decimal string
 | 
						|
             * that will round to d?
 | 
						|
             */
 | 
						|
            j = cmp(b, mlo);
 | 
						|
            delta = diff(S, mhi);
 | 
						|
            if (delta == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
            j1 = delta->sign ? 1 : cmp(b, delta);
 | 
						|
            Bfree(delta);
 | 
						|
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
 | 
						|
                ) {
 | 
						|
                if (dig == '9')
 | 
						|
                    goto round_9_up;
 | 
						|
                if (j > 0)
 | 
						|
                    dig++;
 | 
						|
                *s++ = dig;
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
            if (j < 0 || (j == 0 && mode != 1
 | 
						|
                          && !(word1(&u) & 1)
 | 
						|
                    )) {
 | 
						|
                if (!b->x[0] && b->wds <= 1) {
 | 
						|
                    goto accept_dig;
 | 
						|
                }
 | 
						|
                if (j1 > 0) {
 | 
						|
                    b = lshift(b, 1);
 | 
						|
                    if (b == NULL)
 | 
						|
                        goto failed_malloc;
 | 
						|
                    j1 = cmp(b, S);
 | 
						|
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
 | 
						|
                        && dig++ == '9')
 | 
						|
                        goto round_9_up;
 | 
						|
                }
 | 
						|
              accept_dig:
 | 
						|
                *s++ = dig;
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
            if (j1 > 0) {
 | 
						|
                if (dig == '9') { /* possible if i == 1 */
 | 
						|
                  round_9_up:
 | 
						|
                    *s++ = '9';
 | 
						|
                    goto roundoff;
 | 
						|
                }
 | 
						|
                *s++ = dig + 1;
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
            *s++ = dig;
 | 
						|
            if (i == ilim)
 | 
						|
                break;
 | 
						|
            b = multadd(b, 10, 0);
 | 
						|
            if (b == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
            if (mlo == mhi) {
 | 
						|
                mlo = mhi = multadd(mhi, 10, 0);
 | 
						|
                if (mlo == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                mlo = multadd(mlo, 10, 0);
 | 
						|
                if (mlo == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
                mhi = multadd(mhi, 10, 0);
 | 
						|
                if (mhi == NULL)
 | 
						|
                    goto failed_malloc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
        for(i = 1;; i++) {
 | 
						|
            *s++ = dig = quorem(b,S) + '0';
 | 
						|
            if (!b->x[0] && b->wds <= 1) {
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
            if (i >= ilim)
 | 
						|
                break;
 | 
						|
            b = multadd(b, 10, 0);
 | 
						|
            if (b == NULL)
 | 
						|
                goto failed_malloc;
 | 
						|
        }
 | 
						|
 | 
						|
    /* Round off last digit */
 | 
						|
 | 
						|
    b = lshift(b, 1);
 | 
						|
    if (b == NULL)
 | 
						|
        goto failed_malloc;
 | 
						|
    j = cmp(b, S);
 | 
						|
    if (j > 0 || (j == 0 && dig & 1)) {
 | 
						|
      roundoff:
 | 
						|
        while(*--s == '9')
 | 
						|
            if (s == s0) {
 | 
						|
                k++;
 | 
						|
                *s++ = '1';
 | 
						|
                goto ret;
 | 
						|
            }
 | 
						|
        ++*s++;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        while(*--s == '0');
 | 
						|
        s++;
 | 
						|
    }
 | 
						|
  ret:
 | 
						|
    Bfree(S);
 | 
						|
    if (mhi) {
 | 
						|
        if (mlo && mlo != mhi)
 | 
						|
            Bfree(mlo);
 | 
						|
        Bfree(mhi);
 | 
						|
    }
 | 
						|
  ret1:
 | 
						|
    Bfree(b);
 | 
						|
    *s = 0;
 | 
						|
    *decpt = k + 1;
 | 
						|
    if (rve)
 | 
						|
        *rve = s;
 | 
						|
    return s0;
 | 
						|
  failed_malloc:
 | 
						|
    if (S)
 | 
						|
        Bfree(S);
 | 
						|
    if (mlo && mlo != mhi)
 | 
						|
        Bfree(mlo);
 | 
						|
    if (mhi)
 | 
						|
        Bfree(mhi);
 | 
						|
    if (b)
 | 
						|
        Bfree(b);
 | 
						|
    if (s0)
 | 
						|
        _Py_dg_freedtoa(s0);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif  /* PY_NO_SHORT_FLOAT_REPR */
 |