mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1100 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Complex object implementation */
 | |
| 
 | |
| /* Borrows heavily from floatobject.c */
 | |
| 
 | |
| /* Submitted by Jim Hugunin */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pycore_long.h"          // _PyLong_GetZero()
 | |
| #include "pycore_object.h"        // _PyObject_Init()
 | |
| #include "structmember.h"         // PyMemberDef
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| class complex "PyComplexObject *" "&PyComplex_Type"
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/
 | |
| 
 | |
| #include "clinic/complexobject.c.h"
 | |
| 
 | |
| /* elementary operations on complex numbers */
 | |
| 
 | |
| static Py_complex c_1 = {1., 0.};
 | |
| 
 | |
| Py_complex
 | |
| _Py_c_sum(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real + b.real;
 | |
|     r.imag = a.imag + b.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| _Py_c_diff(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real - b.real;
 | |
|     r.imag = a.imag - b.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| _Py_c_neg(Py_complex a)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = -a.real;
 | |
|     r.imag = -a.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| _Py_c_prod(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real*b.real - a.imag*b.imag;
 | |
|     r.imag = a.real*b.imag + a.imag*b.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
 | |
| #ifdef _M_ARM64
 | |
| #pragma optimize("", off)
 | |
| #endif
 | |
| Py_complex
 | |
| _Py_c_quot(Py_complex a, Py_complex b)
 | |
| {
 | |
|     /******************************************************************
 | |
|     This was the original algorithm.  It's grossly prone to spurious
 | |
|     overflow and underflow errors.  It also merrily divides by 0 despite
 | |
|     checking for that(!).  The code still serves a doc purpose here, as
 | |
|     the algorithm following is a simple by-cases transformation of this
 | |
|     one:
 | |
| 
 | |
|     Py_complex r;
 | |
|     double d = b.real*b.real + b.imag*b.imag;
 | |
|     if (d == 0.)
 | |
|         errno = EDOM;
 | |
|     r.real = (a.real*b.real + a.imag*b.imag)/d;
 | |
|     r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | |
|     return r;
 | |
|     ******************************************************************/
 | |
| 
 | |
|     /* This algorithm is better, and is pretty obvious:  first divide the
 | |
|      * numerators and denominator by whichever of {b.real, b.imag} has
 | |
|      * larger magnitude.  The earliest reference I found was to CACM
 | |
|      * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | |
|      * University).  As usual, though, we're still ignoring all IEEE
 | |
|      * endcases.
 | |
|      */
 | |
|      Py_complex r;      /* the result */
 | |
|      const double abs_breal = b.real < 0 ? -b.real : b.real;
 | |
|      const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | |
| 
 | |
|     if (abs_breal >= abs_bimag) {
 | |
|         /* divide tops and bottom by b.real */
 | |
|         if (abs_breal == 0.0) {
 | |
|             errno = EDOM;
 | |
|             r.real = r.imag = 0.0;
 | |
|         }
 | |
|         else {
 | |
|             const double ratio = b.imag / b.real;
 | |
|             const double denom = b.real + b.imag * ratio;
 | |
|             r.real = (a.real + a.imag * ratio) / denom;
 | |
|             r.imag = (a.imag - a.real * ratio) / denom;
 | |
|         }
 | |
|     }
 | |
|     else if (abs_bimag >= abs_breal) {
 | |
|         /* divide tops and bottom by b.imag */
 | |
|         const double ratio = b.real / b.imag;
 | |
|         const double denom = b.real * ratio + b.imag;
 | |
|         assert(b.imag != 0.0);
 | |
|         r.real = (a.real * ratio + a.imag) / denom;
 | |
|         r.imag = (a.imag * ratio - a.real) / denom;
 | |
|     }
 | |
|     else {
 | |
|         /* At least one of b.real or b.imag is a NaN */
 | |
|         r.real = r.imag = Py_NAN;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| #ifdef _M_ARM64
 | |
| #pragma optimize("", on)
 | |
| #endif
 | |
| 
 | |
| Py_complex
 | |
| _Py_c_pow(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     double vabs,len,at,phase;
 | |
|     if (b.real == 0. && b.imag == 0.) {
 | |
|         r.real = 1.;
 | |
|         r.imag = 0.;
 | |
|     }
 | |
|     else if (a.real == 0. && a.imag == 0.) {
 | |
|         if (b.imag != 0. || b.real < 0.)
 | |
|             errno = EDOM;
 | |
|         r.real = 0.;
 | |
|         r.imag = 0.;
 | |
|     }
 | |
|     else {
 | |
|         vabs = hypot(a.real,a.imag);
 | |
|         len = pow(vabs,b.real);
 | |
|         at = atan2(a.imag, a.real);
 | |
|         phase = at*b.real;
 | |
|         if (b.imag != 0.0) {
 | |
|             len /= exp(at*b.imag);
 | |
|             phase += b.imag*log(vabs);
 | |
|         }
 | |
|         r.real = len*cos(phase);
 | |
|         r.imag = len*sin(phase);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powu(Py_complex x, long n)
 | |
| {
 | |
|     Py_complex r, p;
 | |
|     long mask = 1;
 | |
|     r = c_1;
 | |
|     p = x;
 | |
|     while (mask > 0 && n >= mask) {
 | |
|         if (n & mask)
 | |
|             r = _Py_c_prod(r,p);
 | |
|         mask <<= 1;
 | |
|         p = _Py_c_prod(p,p);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powi(Py_complex x, long n)
 | |
| {
 | |
|     Py_complex cn;
 | |
| 
 | |
|     if (n > 100 || n < -100) {
 | |
|         cn.real = (double) n;
 | |
|         cn.imag = 0.;
 | |
|         return _Py_c_pow(x,cn);
 | |
|     }
 | |
|     else if (n > 0)
 | |
|         return c_powu(x,n);
 | |
|     else
 | |
|         return _Py_c_quot(c_1, c_powu(x,-n));
 | |
| 
 | |
| }
 | |
| 
 | |
| double
 | |
| _Py_c_abs(Py_complex z)
 | |
| {
 | |
|     /* sets errno = ERANGE on overflow;  otherwise errno = 0 */
 | |
|     double result;
 | |
| 
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         /* C99 rules: if either the real or the imaginary part is an
 | |
|            infinity, return infinity, even if the other part is a
 | |
|            NaN. */
 | |
|         if (Py_IS_INFINITY(z.real)) {
 | |
|             result = fabs(z.real);
 | |
|             errno = 0;
 | |
|             return result;
 | |
|         }
 | |
|         if (Py_IS_INFINITY(z.imag)) {
 | |
|             result = fabs(z.imag);
 | |
|             errno = 0;
 | |
|             return result;
 | |
|         }
 | |
|         /* either the real or imaginary part is a NaN,
 | |
|            and neither is infinite. Result should be NaN. */
 | |
|         return Py_NAN;
 | |
|     }
 | |
|     result = hypot(z.real, z.imag);
 | |
|     if (!Py_IS_FINITE(result))
 | |
|         errno = ERANGE;
 | |
|     else
 | |
|         errno = 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
 | |
| {
 | |
|     PyObject *op;
 | |
| 
 | |
|     op = type->tp_alloc(type, 0);
 | |
|     if (op != NULL)
 | |
|         ((PyComplexObject *)op)->cval = cval;
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromCComplex(Py_complex cval)
 | |
| {
 | |
|     /* Inline PyObject_New */
 | |
|     PyComplexObject *op = PyObject_MALLOC(sizeof(PyComplexObject));
 | |
|     if (op == NULL) {
 | |
|         return PyErr_NoMemory();
 | |
|     }
 | |
|     _PyObject_Init((PyObject*)op, &PyComplex_Type);
 | |
|     op->cval = cval;
 | |
|     return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c.real = real;
 | |
|     c.imag = imag;
 | |
|     return complex_subtype_from_c_complex(type, c);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromDoubles(double real, double imag)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c.real = real;
 | |
|     c.imag = imag;
 | |
|     return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_RealAsDouble(PyObject *op)
 | |
| {
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval.real;
 | |
|     }
 | |
|     else {
 | |
|         return PyFloat_AsDouble(op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_ImagAsDouble(PyObject *op)
 | |
| {
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval.imag;
 | |
|     }
 | |
|     else {
 | |
|         return 0.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| try_complex_special_method(PyObject *op)
 | |
| {
 | |
|     PyObject *f;
 | |
|     _Py_IDENTIFIER(__complex__);
 | |
| 
 | |
|     f = _PyObject_LookupSpecial(op, &PyId___complex__);
 | |
|     if (f) {
 | |
|         PyObject *res = _PyObject_CallNoArg(f);
 | |
|         Py_DECREF(f);
 | |
|         if (!res || PyComplex_CheckExact(res)) {
 | |
|             return res;
 | |
|         }
 | |
|         if (!PyComplex_Check(res)) {
 | |
|             PyErr_Format(PyExc_TypeError,
 | |
|                 "__complex__ returned non-complex (type %.200s)",
 | |
|                 Py_TYPE(res)->tp_name);
 | |
|             Py_DECREF(res);
 | |
|             return NULL;
 | |
|         }
 | |
|         /* Issue #29894: warn if 'res' not of exact type complex. */
 | |
|         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
 | |
|                 "__complex__ returned non-complex (type %.200s).  "
 | |
|                 "The ability to return an instance of a strict subclass of complex "
 | |
|                 "is deprecated, and may be removed in a future version of Python.",
 | |
|                 Py_TYPE(res)->tp_name)) {
 | |
|             Py_DECREF(res);
 | |
|             return NULL;
 | |
|         }
 | |
|         return res;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| PyComplex_AsCComplex(PyObject *op)
 | |
| {
 | |
|     Py_complex cv;
 | |
|     PyObject *newop = NULL;
 | |
| 
 | |
|     assert(op);
 | |
|     /* If op is already of type PyComplex_Type, return its value */
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval;
 | |
|     }
 | |
|     /* If not, use op's __complex__  method, if it exists */
 | |
| 
 | |
|     /* return -1 on failure */
 | |
|     cv.real = -1.;
 | |
|     cv.imag = 0.;
 | |
| 
 | |
|     newop = try_complex_special_method(op);
 | |
| 
 | |
|     if (newop) {
 | |
|         cv = ((PyComplexObject *)newop)->cval;
 | |
|         Py_DECREF(newop);
 | |
|         return cv;
 | |
|     }
 | |
|     else if (PyErr_Occurred()) {
 | |
|         return cv;
 | |
|     }
 | |
|     /* If neither of the above works, interpret op as a float giving the
 | |
|        real part of the result, and fill in the imaginary part as 0. */
 | |
|     else {
 | |
|         /* PyFloat_AsDouble will return -1 on failure */
 | |
|         cv.real = PyFloat_AsDouble(op);
 | |
|         return cv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_repr(PyComplexObject *v)
 | |
| {
 | |
|     int precision = 0;
 | |
|     char format_code = 'r';
 | |
|     PyObject *result = NULL;
 | |
| 
 | |
|     /* If these are non-NULL, they'll need to be freed. */
 | |
|     char *pre = NULL;
 | |
|     char *im = NULL;
 | |
| 
 | |
|     /* These do not need to be freed. re is either an alias
 | |
|        for pre or a pointer to a constant.  lead and tail
 | |
|        are pointers to constants. */
 | |
|     const char *re = NULL;
 | |
|     const char *lead = "";
 | |
|     const char *tail = "";
 | |
| 
 | |
|     if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
 | |
|         /* Real part is +0: just output the imaginary part and do not
 | |
|            include parens. */
 | |
|         re = "";
 | |
|         im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
|                                    precision, 0, NULL);
 | |
|         if (!im) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|     } else {
 | |
|         /* Format imaginary part with sign, real part without. Include
 | |
|            parens in the result. */
 | |
|         pre = PyOS_double_to_string(v->cval.real, format_code,
 | |
|                                     precision, 0, NULL);
 | |
|         if (!pre) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|         re = pre;
 | |
| 
 | |
|         im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
|                                    precision, Py_DTSF_SIGN, NULL);
 | |
|         if (!im) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|         lead = "(";
 | |
|         tail = ")";
 | |
|     }
 | |
|     result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
 | |
|   done:
 | |
|     PyMem_Free(im);
 | |
|     PyMem_Free(pre);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static Py_hash_t
 | |
| complex_hash(PyComplexObject *v)
 | |
| {
 | |
|     Py_uhash_t hashreal, hashimag, combined;
 | |
|     hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real);
 | |
|     if (hashreal == (Py_uhash_t)-1)
 | |
|         return -1;
 | |
|     hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag);
 | |
|     if (hashimag == (Py_uhash_t)-1)
 | |
|         return -1;
 | |
|     /* Note:  if the imaginary part is 0, hashimag is 0 now,
 | |
|      * so the following returns hashreal unchanged.  This is
 | |
|      * important because numbers of different types that
 | |
|      * compare equal must have the same hash value, so that
 | |
|      * hash(x + 0*j) must equal hash(x).
 | |
|      */
 | |
|     combined = hashreal + _PyHASH_IMAG * hashimag;
 | |
|     if (combined == (Py_uhash_t)-1)
 | |
|         combined = (Py_uhash_t)-2;
 | |
|     return (Py_hash_t)combined;
 | |
| }
 | |
| 
 | |
| /* This macro may return! */
 | |
| #define TO_COMPLEX(obj, c) \
 | |
|     if (PyComplex_Check(obj)) \
 | |
|         c = ((PyComplexObject *)(obj))->cval; \
 | |
|     else if (to_complex(&(obj), &(c)) < 0) \
 | |
|         return (obj)
 | |
| 
 | |
| static int
 | |
| to_complex(PyObject **pobj, Py_complex *pc)
 | |
| {
 | |
|     PyObject *obj = *pobj;
 | |
| 
 | |
|     pc->real = pc->imag = 0.0;
 | |
|     if (PyLong_Check(obj)) {
 | |
|         pc->real = PyLong_AsDouble(obj);
 | |
|         if (pc->real == -1.0 && PyErr_Occurred()) {
 | |
|             *pobj = NULL;
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         pc->real = PyFloat_AsDouble(obj);
 | |
|         return 0;
 | |
|     }
 | |
|     Py_INCREF(Py_NotImplemented);
 | |
|     *pobj = Py_NotImplemented;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_add(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     result = _Py_c_sum(a, b);
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     result = _Py_c_diff(a, b);
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     result = _Py_c_prod(a, b);
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex quot;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     errno = 0;
 | |
|     quot = _Py_c_quot(a, b);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyComplex_FromCComplex(quot);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
|     Py_complex p;
 | |
|     Py_complex exponent;
 | |
|     long int_exponent;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
| 
 | |
|     if (z != Py_None) {
 | |
|         PyErr_SetString(PyExc_ValueError, "complex modulo");
 | |
|         return NULL;
 | |
|     }
 | |
|     errno = 0;
 | |
|     exponent = b;
 | |
|     int_exponent = (long)exponent.real;
 | |
|     if (exponent.imag == 0. && exponent.real == int_exponent)
 | |
|         p = c_powi(a, int_exponent);
 | |
|     else
 | |
|         p = _Py_c_pow(a, exponent);
 | |
| 
 | |
|     Py_ADJUST_ERANGE2(p.real, p.imag);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "0.0 to a negative or complex power");
 | |
|         return NULL;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "complex exponentiation");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyComplex_FromCComplex(p);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_neg(PyComplexObject *v)
 | |
| {
 | |
|     Py_complex neg;
 | |
|     neg.real = -v->cval.real;
 | |
|     neg.imag = -v->cval.imag;
 | |
|     return PyComplex_FromCComplex(neg);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pos(PyComplexObject *v)
 | |
| {
 | |
|     if (PyComplex_CheckExact(v)) {
 | |
|         Py_INCREF(v);
 | |
|         return (PyObject *)v;
 | |
|     }
 | |
|     else
 | |
|         return PyComplex_FromCComplex(v->cval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_abs(PyComplexObject *v)
 | |
| {
 | |
|     double result;
 | |
| 
 | |
|     result = _Py_c_abs(v->cval);
 | |
| 
 | |
|     if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "absolute value too large");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_bool(PyComplexObject *v)
 | |
| {
 | |
|     return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
|     PyObject *res;
 | |
|     Py_complex i;
 | |
|     int equal;
 | |
| 
 | |
|     if (op != Py_EQ && op != Py_NE) {
 | |
|         goto Unimplemented;
 | |
|     }
 | |
| 
 | |
|     assert(PyComplex_Check(v));
 | |
|     TO_COMPLEX(v, i);
 | |
| 
 | |
|     if (PyLong_Check(w)) {
 | |
|         /* Check for 0.0 imaginary part first to avoid the rich
 | |
|          * comparison when possible.
 | |
|          */
 | |
|         if (i.imag == 0.0) {
 | |
|             PyObject *j, *sub_res;
 | |
|             j = PyFloat_FromDouble(i.real);
 | |
|             if (j == NULL)
 | |
|                 return NULL;
 | |
| 
 | |
|             sub_res = PyObject_RichCompare(j, w, op);
 | |
|             Py_DECREF(j);
 | |
|             return sub_res;
 | |
|         }
 | |
|         else {
 | |
|             equal = 0;
 | |
|         }
 | |
|     }
 | |
|     else if (PyFloat_Check(w)) {
 | |
|         equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
 | |
|     }
 | |
|     else if (PyComplex_Check(w)) {
 | |
|         Py_complex j;
 | |
| 
 | |
|         TO_COMPLEX(w, j);
 | |
|         equal = (i.real == j.real && i.imag == j.imag);
 | |
|     }
 | |
|     else {
 | |
|         goto Unimplemented;
 | |
|     }
 | |
| 
 | |
|     if (equal == (op == Py_EQ))
 | |
|          res = Py_True;
 | |
|     else
 | |
|          res = Py_False;
 | |
| 
 | |
|     Py_INCREF(res);
 | |
|     return res;
 | |
| 
 | |
| Unimplemented:
 | |
|     Py_RETURN_NOTIMPLEMENTED;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| complex.conjugate
 | |
| 
 | |
| Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| complex_conjugate_impl(PyComplexObject *self)
 | |
| /*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
 | |
| {
 | |
|     Py_complex c = self->cval;
 | |
|     c.imag = -c.imag;
 | |
|     return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| complex.__getnewargs__
 | |
| 
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| complex___getnewargs___impl(PyComplexObject *self)
 | |
| /*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
 | |
| {
 | |
|     Py_complex c = self->cval;
 | |
|     return Py_BuildValue("(dd)", c.real, c.imag);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| complex.__format__
 | |
| 
 | |
|     format_spec: unicode
 | |
|     /
 | |
| 
 | |
| Convert to a string according to format_spec.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| complex___format___impl(PyComplexObject *self, PyObject *format_spec)
 | |
| /*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
 | |
| {
 | |
|     _PyUnicodeWriter writer;
 | |
|     int ret;
 | |
|     _PyUnicodeWriter_Init(&writer);
 | |
|     ret = _PyComplex_FormatAdvancedWriter(
 | |
|         &writer,
 | |
|         (PyObject *)self,
 | |
|         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | |
|     if (ret == -1) {
 | |
|         _PyUnicodeWriter_Dealloc(&writer);
 | |
|         return NULL;
 | |
|     }
 | |
|     return _PyUnicodeWriter_Finish(&writer);
 | |
| }
 | |
| 
 | |
| static PyMethodDef complex_methods[] = {
 | |
|     COMPLEX_CONJUGATE_METHODDEF
 | |
|     COMPLEX___GETNEWARGS___METHODDEF
 | |
|     COMPLEX___FORMAT___METHODDEF
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| static PyMemberDef complex_members[] = {
 | |
|     {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
 | |
|      "the real part of a complex number"},
 | |
|     {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
 | |
|      "the imaginary part of a complex number"},
 | |
|     {0},
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
 | |
| {
 | |
|     double x=0.0, y=0.0, z;
 | |
|     int got_bracket=0;
 | |
|     const char *start;
 | |
|     char *end;
 | |
| 
 | |
|     /* position on first nonblank */
 | |
|     start = s;
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (*s == '(') {
 | |
|         /* Skip over possible bracket from repr(). */
 | |
|         got_bracket = 1;
 | |
|         s++;
 | |
|         while (Py_ISSPACE(*s))
 | |
|             s++;
 | |
|     }
 | |
| 
 | |
|     /* a valid complex string usually takes one of the three forms:
 | |
| 
 | |
|          <float>                  - real part only
 | |
|          <float>j                 - imaginary part only
 | |
|          <float><signed-float>j   - real and imaginary parts
 | |
| 
 | |
|        where <float> represents any numeric string that's accepted by the
 | |
|        float constructor (including 'nan', 'inf', 'infinity', etc.), and
 | |
|        <signed-float> is any string of the form <float> whose first
 | |
|        character is '+' or '-'.
 | |
| 
 | |
|        For backwards compatibility, the extra forms
 | |
| 
 | |
|          <float><sign>j
 | |
|          <sign>j
 | |
|          j
 | |
| 
 | |
|        are also accepted, though support for these forms may be removed from
 | |
|        a future version of Python.
 | |
|     */
 | |
| 
 | |
|     /* first look for forms starting with <float> */
 | |
|     z = PyOS_string_to_double(s, &end, NULL);
 | |
|     if (z == -1.0 && PyErr_Occurred()) {
 | |
|         if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
|             PyErr_Clear();
 | |
|         else
 | |
|             return NULL;
 | |
|     }
 | |
|     if (end != s) {
 | |
|         /* all 4 forms starting with <float> land here */
 | |
|         s = end;
 | |
|         if (*s == '+' || *s == '-') {
 | |
|             /* <float><signed-float>j | <float><sign>j */
 | |
|             x = z;
 | |
|             y = PyOS_string_to_double(s, &end, NULL);
 | |
|             if (y == -1.0 && PyErr_Occurred()) {
 | |
|                 if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
|                     PyErr_Clear();
 | |
|                 else
 | |
|                     return NULL;
 | |
|             }
 | |
|             if (end != s)
 | |
|                 /* <float><signed-float>j */
 | |
|                 s = end;
 | |
|             else {
 | |
|                 /* <float><sign>j */
 | |
|                 y = *s == '+' ? 1.0 : -1.0;
 | |
|                 s++;
 | |
|             }
 | |
|             if (!(*s == 'j' || *s == 'J'))
 | |
|                 goto parse_error;
 | |
|             s++;
 | |
|         }
 | |
|         else if (*s == 'j' || *s == 'J') {
 | |
|             /* <float>j */
 | |
|             s++;
 | |
|             y = z;
 | |
|         }
 | |
|         else
 | |
|             /* <float> */
 | |
|             x = z;
 | |
|     }
 | |
|     else {
 | |
|         /* not starting with <float>; must be <sign>j or j */
 | |
|         if (*s == '+' || *s == '-') {
 | |
|             /* <sign>j */
 | |
|             y = *s == '+' ? 1.0 : -1.0;
 | |
|             s++;
 | |
|         }
 | |
|         else
 | |
|             /* j */
 | |
|             y = 1.0;
 | |
|         if (!(*s == 'j' || *s == 'J'))
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|     }
 | |
| 
 | |
|     /* trailing whitespace and closing bracket */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (got_bracket) {
 | |
|         /* if there was an opening parenthesis, then the corresponding
 | |
|            closing parenthesis should be right here */
 | |
|         if (*s != ')')
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|         while (Py_ISSPACE(*s))
 | |
|             s++;
 | |
|     }
 | |
| 
 | |
|     /* we should now be at the end of the string */
 | |
|     if (s-start != len)
 | |
|         goto parse_error;
 | |
| 
 | |
|     return complex_subtype_from_doubles((PyTypeObject *)type, x, y);
 | |
| 
 | |
|   parse_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "complex() arg is a malformed string");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_string(PyTypeObject *type, PyObject *v)
 | |
| {
 | |
|     const char *s;
 | |
|     PyObject *s_buffer = NULL, *result = NULL;
 | |
|     Py_ssize_t len;
 | |
| 
 | |
|     if (PyUnicode_Check(v)) {
 | |
|         s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
 | |
|         if (s_buffer == NULL) {
 | |
|             return NULL;
 | |
|         }
 | |
|         assert(PyUnicode_IS_ASCII(s_buffer));
 | |
|         /* Simply get a pointer to existing ASCII characters. */
 | |
|         s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
 | |
|         assert(s != NULL);
 | |
|     }
 | |
|     else {
 | |
|         PyErr_Format(PyExc_TypeError,
 | |
|             "complex() argument must be a string or a number, not '%.200s'",
 | |
|             Py_TYPE(v)->tp_name);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
 | |
|                                                    complex_from_string_inner);
 | |
|     Py_DECREF(s_buffer);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| complex.__new__ as complex_new
 | |
|     real as r: object(c_default="NULL") = 0
 | |
|     imag as i: object(c_default="NULL") = 0
 | |
| 
 | |
| Create a complex number from a real part and an optional imaginary part.
 | |
| 
 | |
| This is equivalent to (real + imag*1j) where imag defaults to 0.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
 | |
| /*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
 | |
| {
 | |
|     PyObject *tmp;
 | |
|     PyNumberMethods *nbr, *nbi = NULL;
 | |
|     Py_complex cr, ci;
 | |
|     int own_r = 0;
 | |
|     int cr_is_complex = 0;
 | |
|     int ci_is_complex = 0;
 | |
| 
 | |
|     if (r == NULL) {
 | |
|         r = _PyLong_GetZero();
 | |
|     }
 | |
| 
 | |
|     /* Special-case for a single argument when type(arg) is complex. */
 | |
|     if (PyComplex_CheckExact(r) && i == NULL &&
 | |
|         type == &PyComplex_Type) {
 | |
|         /* Note that we can't know whether it's safe to return
 | |
|            a complex *subclass* instance as-is, hence the restriction
 | |
|            to exact complexes here.  If either the input or the
 | |
|            output is a complex subclass, it will be handled below
 | |
|            as a non-orthogonal vector.  */
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     if (PyUnicode_Check(r)) {
 | |
|         if (i != NULL) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                             "complex() can't take second arg"
 | |
|                             " if first is a string");
 | |
|             return NULL;
 | |
|         }
 | |
|         return complex_subtype_from_string(type, r);
 | |
|     }
 | |
|     if (i != NULL && PyUnicode_Check(i)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "complex() second arg can't be a string");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     tmp = try_complex_special_method(r);
 | |
|     if (tmp) {
 | |
|         r = tmp;
 | |
|         own_r = 1;
 | |
|     }
 | |
|     else if (PyErr_Occurred()) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     nbr = Py_TYPE(r)->tp_as_number;
 | |
|     if (nbr == NULL ||
 | |
|         (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
 | |
|     {
 | |
|         PyErr_Format(PyExc_TypeError,
 | |
|                      "complex() first argument must be a string or a number, "
 | |
|                      "not '%.200s'",
 | |
|                      Py_TYPE(r)->tp_name);
 | |
|         if (own_r) {
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|         return NULL;
 | |
|     }
 | |
|     if (i != NULL) {
 | |
|         nbi = Py_TYPE(i)->tp_as_number;
 | |
|         if (nbi == NULL ||
 | |
|             (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
 | |
|         {
 | |
|             PyErr_Format(PyExc_TypeError,
 | |
|                          "complex() second argument must be a number, "
 | |
|                          "not '%.200s'",
 | |
|                          Py_TYPE(i)->tp_name);
 | |
|             if (own_r) {
 | |
|                 Py_DECREF(r);
 | |
|             }
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* If we get this far, then the "real" and "imag" parts should
 | |
|        both be treated as numbers, and the constructor should return a
 | |
|        complex number equal to (real + imag*1j).
 | |
| 
 | |
|        Note that we do NOT assume the input to already be in canonical
 | |
|        form; the "real" and "imag" parts might themselves be complex
 | |
|        numbers, which slightly complicates the code below. */
 | |
|     if (PyComplex_Check(r)) {
 | |
|         /* Note that if r is of a complex subtype, we're only
 | |
|            retaining its real & imag parts here, and the return
 | |
|            value is (properly) of the builtin complex type. */
 | |
|         cr = ((PyComplexObject*)r)->cval;
 | |
|         cr_is_complex = 1;
 | |
|         if (own_r) {
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* The "real" part really is entirely real, and contributes
 | |
|            nothing in the imaginary direction.
 | |
|            Just treat it as a double. */
 | |
|         tmp = PyNumber_Float(r);
 | |
|         if (own_r) {
 | |
|             /* r was a newly created complex number, rather
 | |
|                than the original "real" argument. */
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|         if (tmp == NULL)
 | |
|             return NULL;
 | |
|         assert(PyFloat_Check(tmp));
 | |
|         cr.real = PyFloat_AsDouble(tmp);
 | |
|         cr.imag = 0.0;
 | |
|         Py_DECREF(tmp);
 | |
|     }
 | |
|     if (i == NULL) {
 | |
|         ci.real = cr.imag;
 | |
|     }
 | |
|     else if (PyComplex_Check(i)) {
 | |
|         ci = ((PyComplexObject*)i)->cval;
 | |
|         ci_is_complex = 1;
 | |
|     } else {
 | |
|         /* The "imag" part really is entirely imaginary, and
 | |
|            contributes nothing in the real direction.
 | |
|            Just treat it as a double. */
 | |
|         tmp = PyNumber_Float(i);
 | |
|         if (tmp == NULL)
 | |
|             return NULL;
 | |
|         ci.real = PyFloat_AsDouble(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|     }
 | |
|     /*  If the input was in canonical form, then the "real" and "imag"
 | |
|         parts are real numbers, so that ci.imag and cr.imag are zero.
 | |
|         We need this correction in case they were not real numbers. */
 | |
| 
 | |
|     if (ci_is_complex) {
 | |
|         cr.real -= ci.imag;
 | |
|     }
 | |
|     if (cr_is_complex && i != NULL) {
 | |
|         ci.real += cr.imag;
 | |
|     }
 | |
|     return complex_subtype_from_doubles(type, cr.real, ci.real);
 | |
| }
 | |
| 
 | |
| static PyNumberMethods complex_as_number = {
 | |
|     (binaryfunc)complex_add,                    /* nb_add */
 | |
|     (binaryfunc)complex_sub,                    /* nb_subtract */
 | |
|     (binaryfunc)complex_mul,                    /* nb_multiply */
 | |
|     0,                                          /* nb_remainder */
 | |
|     0,                                          /* nb_divmod */
 | |
|     (ternaryfunc)complex_pow,                   /* nb_power */
 | |
|     (unaryfunc)complex_neg,                     /* nb_negative */
 | |
|     (unaryfunc)complex_pos,                     /* nb_positive */
 | |
|     (unaryfunc)complex_abs,                     /* nb_absolute */
 | |
|     (inquiry)complex_bool,                      /* nb_bool */
 | |
|     0,                                          /* nb_invert */
 | |
|     0,                                          /* nb_lshift */
 | |
|     0,                                          /* nb_rshift */
 | |
|     0,                                          /* nb_and */
 | |
|     0,                                          /* nb_xor */
 | |
|     0,                                          /* nb_or */
 | |
|     0,                                          /* nb_int */
 | |
|     0,                                          /* nb_reserved */
 | |
|     0,                                          /* nb_float */
 | |
|     0,                                          /* nb_inplace_add */
 | |
|     0,                                          /* nb_inplace_subtract */
 | |
|     0,                                          /* nb_inplace_multiply*/
 | |
|     0,                                          /* nb_inplace_remainder */
 | |
|     0,                                          /* nb_inplace_power */
 | |
|     0,                                          /* nb_inplace_lshift */
 | |
|     0,                                          /* nb_inplace_rshift */
 | |
|     0,                                          /* nb_inplace_and */
 | |
|     0,                                          /* nb_inplace_xor */
 | |
|     0,                                          /* nb_inplace_or */
 | |
|     0,                                          /* nb_floor_divide */
 | |
|     (binaryfunc)complex_div,                    /* nb_true_divide */
 | |
|     0,                                          /* nb_inplace_floor_divide */
 | |
|     0,                                          /* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyComplex_Type = {
 | |
|     PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
|     "complex",
 | |
|     sizeof(PyComplexObject),
 | |
|     0,
 | |
|     0,                                          /* tp_dealloc */
 | |
|     0,                                          /* tp_vectorcall_offset */
 | |
|     0,                                          /* tp_getattr */
 | |
|     0,                                          /* tp_setattr */
 | |
|     0,                                          /* tp_as_async */
 | |
|     (reprfunc)complex_repr,                     /* tp_repr */
 | |
|     &complex_as_number,                         /* tp_as_number */
 | |
|     0,                                          /* tp_as_sequence */
 | |
|     0,                                          /* tp_as_mapping */
 | |
|     (hashfunc)complex_hash,                     /* tp_hash */
 | |
|     0,                                          /* tp_call */
 | |
|     0,                                          /* tp_str */
 | |
|     PyObject_GenericGetAttr,                    /* tp_getattro */
 | |
|     0,                                          /* tp_setattro */
 | |
|     0,                                          /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */
 | |
|     complex_new__doc__,                         /* tp_doc */
 | |
|     0,                                          /* tp_traverse */
 | |
|     0,                                          /* tp_clear */
 | |
|     complex_richcompare,                        /* tp_richcompare */
 | |
|     0,                                          /* tp_weaklistoffset */
 | |
|     0,                                          /* tp_iter */
 | |
|     0,                                          /* tp_iternext */
 | |
|     complex_methods,                            /* tp_methods */
 | |
|     complex_members,                            /* tp_members */
 | |
|     0,                                          /* tp_getset */
 | |
|     0,                                          /* tp_base */
 | |
|     0,                                          /* tp_dict */
 | |
|     0,                                          /* tp_descr_get */
 | |
|     0,                                          /* tp_descr_set */
 | |
|     0,                                          /* tp_dictoffset */
 | |
|     0,                                          /* tp_init */
 | |
|     PyType_GenericAlloc,                        /* tp_alloc */
 | |
|     complex_new,                                /* tp_new */
 | |
|     PyObject_Del,                               /* tp_free */
 | |
| };
 | 
