mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	In C++, it's an error to pass a string literal to a char* function without a const_cast(). Rather than require every C++ extension module to put a cast around string literals, fix the API to state the const-ness. I focused on parts of the API where people usually pass literals: PyArg_ParseTuple() and friends, Py_BuildValue(), PyMethodDef, the type slots, etc. Predictably, there were a large set of functions that needed to be fixed as a result of these changes. The most pervasive change was to make the keyword args list passed to PyArg_ParseTupleAndKewords() to be a const char *kwlist[]. One cast was required as a result of the changes: A type object mallocs the memory for its tp_doc slot and later frees it. PyTypeObject says that tp_doc is const char *; but if the type was created by type_new(), we know it is safe to cast to char *.
		
			
				
	
	
		
			2928 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2928 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* List object implementation */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#ifdef STDC_HEADERS
 | 
						|
#include <stddef.h>
 | 
						|
#else
 | 
						|
#include <sys/types.h>		/* For size_t */
 | 
						|
#endif
 | 
						|
 | 
						|
/* Ensure ob_item has room for at least newsize elements, and set
 | 
						|
 * ob_size to newsize.  If newsize > ob_size on entry, the content
 | 
						|
 * of the new slots at exit is undefined heap trash; it's the caller's
 | 
						|
 * responsiblity to overwrite them with sane values.
 | 
						|
 * The number of allocated elements may grow, shrink, or stay the same.
 | 
						|
 * Failure is impossible if newsize <= self.allocated on entry, although
 | 
						|
 * that partly relies on an assumption that the system realloc() never
 | 
						|
 * fails when passed a number of bytes <= the number of bytes last
 | 
						|
 * allocated (the C standard doesn't guarantee this, but it's hard to
 | 
						|
 * imagine a realloc implementation where it wouldn't be true).
 | 
						|
 * Note that self->ob_item may change, and even if newsize is less
 | 
						|
 * than ob_size on entry.
 | 
						|
 */
 | 
						|
static int
 | 
						|
list_resize(PyListObject *self, int newsize)
 | 
						|
{
 | 
						|
	PyObject **items;
 | 
						|
	size_t new_allocated;
 | 
						|
	int allocated = self->allocated;
 | 
						|
 | 
						|
	/* Bypass realloc() when a previous overallocation is large enough
 | 
						|
	   to accommodate the newsize.  If the newsize falls lower than half
 | 
						|
	   the allocated size, then proceed with the realloc() to shrink the list.
 | 
						|
	*/
 | 
						|
	if (allocated >= newsize && newsize >= (allocated >> 1)) {
 | 
						|
		assert(self->ob_item != NULL || newsize == 0);
 | 
						|
		self->ob_size = newsize;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* This over-allocates proportional to the list size, making room
 | 
						|
	 * for additional growth.  The over-allocation is mild, but is
 | 
						|
	 * enough to give linear-time amortized behavior over a long
 | 
						|
	 * sequence of appends() in the presence of a poorly-performing
 | 
						|
	 * system realloc().
 | 
						|
	 * The growth pattern is:  0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
 | 
						|
	 */
 | 
						|
	new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6) + newsize;
 | 
						|
	if (newsize == 0)
 | 
						|
		new_allocated = 0;
 | 
						|
	items = self->ob_item;
 | 
						|
	if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *)))
 | 
						|
		PyMem_RESIZE(items, PyObject *, new_allocated);
 | 
						|
	else
 | 
						|
		items = NULL;
 | 
						|
	if (items == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	self->ob_item = items;
 | 
						|
	self->ob_size = newsize;
 | 
						|
	self->allocated = new_allocated;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Empty list reuse scheme to save calls to malloc and free */
 | 
						|
#define MAXFREELISTS 80
 | 
						|
static PyListObject *free_lists[MAXFREELISTS];
 | 
						|
static int num_free_lists = 0;
 | 
						|
 | 
						|
void
 | 
						|
PyList_Fini(void)
 | 
						|
{
 | 
						|
	PyListObject *op;
 | 
						|
 | 
						|
	while (num_free_lists) {
 | 
						|
		num_free_lists--;
 | 
						|
		op = free_lists[num_free_lists]; 
 | 
						|
		assert(PyList_CheckExact(op));
 | 
						|
		PyObject_GC_Del(op);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_New(int size)
 | 
						|
{
 | 
						|
	PyListObject *op;
 | 
						|
	size_t nbytes;
 | 
						|
 | 
						|
	if (size < 0) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	nbytes = size * sizeof(PyObject *);
 | 
						|
	/* Check for overflow */
 | 
						|
	if (nbytes / sizeof(PyObject *) != (size_t)size)
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	if (num_free_lists) {
 | 
						|
		num_free_lists--;
 | 
						|
		op = free_lists[num_free_lists];
 | 
						|
		_Py_NewReference((PyObject *)op);
 | 
						|
	} else {
 | 
						|
		op = PyObject_GC_New(PyListObject, &PyList_Type);
 | 
						|
		if (op == NULL)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	if (size <= 0)
 | 
						|
		op->ob_item = NULL;
 | 
						|
	else {
 | 
						|
		op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
 | 
						|
		if (op->ob_item == NULL)
 | 
						|
			return PyErr_NoMemory();
 | 
						|
		memset(op->ob_item, 0, nbytes);
 | 
						|
	}
 | 
						|
	op->ob_size = size;
 | 
						|
	op->allocated = size;
 | 
						|
	_PyObject_GC_TRACK(op);
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Size(PyObject *op)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return ((PyListObject *)op) -> ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *indexerr = NULL;
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetItem(PyObject *op, int i)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return ((PyListObject *)op) -> ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetItem(register PyObject *op, register int i,
 | 
						|
               register PyObject *newitem)
 | 
						|
{
 | 
						|
	register PyObject *olditem;
 | 
						|
	register PyObject **p;
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	p = ((PyListObject *)op) -> ob_item + i;
 | 
						|
	olditem = *p;
 | 
						|
	*p = newitem;
 | 
						|
	Py_XDECREF(olditem);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ins1(PyListObject *self, int where, PyObject *v)
 | 
						|
{
 | 
						|
	int i, n = self->ob_size;
 | 
						|
	PyObject **items;
 | 
						|
	if (v == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (n == INT_MAX) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"cannot add more objects to list");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (list_resize(self, n+1) == -1)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	if (where < 0) {
 | 
						|
		where += n;
 | 
						|
		if (where < 0)
 | 
						|
			where = 0;
 | 
						|
	}
 | 
						|
	if (where > n)
 | 
						|
		where = n;
 | 
						|
	items = self->ob_item;
 | 
						|
	for (i = n; --i >= where; )
 | 
						|
		items[i+1] = items[i];
 | 
						|
	Py_INCREF(v);
 | 
						|
	items[where] = v;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Insert(PyObject *op, int where, PyObject *newitem)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return ins1((PyListObject *)op, where, newitem);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
app1(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int n = PyList_GET_SIZE(self);
 | 
						|
 | 
						|
	assert (v != NULL);
 | 
						|
	if (n == INT_MAX) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"cannot add more objects to list");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (list_resize(self, n+1) == -1)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	Py_INCREF(v);
 | 
						|
	PyList_SET_ITEM(self, n, v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Append(PyObject *op, PyObject *newitem)
 | 
						|
{
 | 
						|
	if (PyList_Check(op) && (newitem != NULL))
 | 
						|
		return app1((PyListObject *)op, newitem);
 | 
						|
	PyErr_BadInternalCall();
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
list_dealloc(PyListObject *op)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject_GC_UnTrack(op);
 | 
						|
	Py_TRASHCAN_SAFE_BEGIN(op)
 | 
						|
	if (op->ob_item != NULL) {
 | 
						|
		/* Do it backwards, for Christian Tismer.
 | 
						|
		   There's a simple test case where somehow this reduces
 | 
						|
		   thrashing when a *very* large list is created and
 | 
						|
		   immediately deleted. */
 | 
						|
		i = op->ob_size;
 | 
						|
		while (--i >= 0) {
 | 
						|
			Py_XDECREF(op->ob_item[i]);
 | 
						|
		}
 | 
						|
		PyMem_FREE(op->ob_item);
 | 
						|
	}
 | 
						|
	if (num_free_lists < MAXFREELISTS && PyList_CheckExact(op))
 | 
						|
		free_lists[num_free_lists++] = op;
 | 
						|
	else
 | 
						|
		op->ob_type->tp_free((PyObject *)op);
 | 
						|
	Py_TRASHCAN_SAFE_END(op)
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_print(PyListObject *op, FILE *fp, int flags)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)op);
 | 
						|
	if (i != 0) {
 | 
						|
		if (i < 0)
 | 
						|
			return i;
 | 
						|
		fprintf(fp, "[...]");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	fprintf(fp, "[");
 | 
						|
	for (i = 0; i < op->ob_size; i++) {
 | 
						|
		if (i > 0)
 | 
						|
			fprintf(fp, ", ");
 | 
						|
		if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
 | 
						|
			Py_ReprLeave((PyObject *)op);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fprintf(fp, "]");
 | 
						|
	Py_ReprLeave((PyObject *)op);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repr(PyListObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject *s, *temp;
 | 
						|
	PyObject *pieces = NULL, *result = NULL;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)v);
 | 
						|
	if (i != 0) {
 | 
						|
		return i > 0 ? PyString_FromString("[...]") : NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (v->ob_size == 0) {
 | 
						|
		result = PyString_FromString("[]");
 | 
						|
		goto Done;
 | 
						|
	}
 | 
						|
 | 
						|
	pieces = PyList_New(0);
 | 
						|
	if (pieces == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	/* Do repr() on each element.  Note that this may mutate the list,
 | 
						|
	   so must refetch the list size on each iteration. */
 | 
						|
	for (i = 0; i < v->ob_size; ++i) {
 | 
						|
		int status;
 | 
						|
		s = PyObject_Repr(v->ob_item[i]);
 | 
						|
		if (s == NULL)
 | 
						|
			goto Done;
 | 
						|
		status = PyList_Append(pieces, s);
 | 
						|
		Py_DECREF(s);  /* append created a new ref */
 | 
						|
		if (status < 0)
 | 
						|
			goto Done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add "[]" decorations to the first and last items. */
 | 
						|
	assert(PyList_GET_SIZE(pieces) > 0);
 | 
						|
	s = PyString_FromString("[");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	temp = PyList_GET_ITEM(pieces, 0);
 | 
						|
	PyString_ConcatAndDel(&s, temp);
 | 
						|
	PyList_SET_ITEM(pieces, 0, s);
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	s = PyString_FromString("]");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
 | 
						|
	PyString_ConcatAndDel(&temp, s);
 | 
						|
	PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
 | 
						|
	if (temp == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	/* Paste them all together with ", " between. */
 | 
						|
	s = PyString_FromString(", ");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	result = _PyString_Join(s, pieces);
 | 
						|
	Py_DECREF(s);
 | 
						|
 | 
						|
Done:
 | 
						|
	Py_XDECREF(pieces);
 | 
						|
	Py_ReprLeave((PyObject *)v);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_length(PyListObject *a)
 | 
						|
{
 | 
						|
	return a->ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_contains(PyListObject *a, PyObject *el)
 | 
						|
{
 | 
						|
	int i, cmp;
 | 
						|
 | 
						|
	for (i = 0, cmp = 0 ; cmp == 0 && i < a->ob_size; ++i)
 | 
						|
		cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
 | 
						|
						   Py_EQ);
 | 
						|
	return cmp;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_item(PyListObject *a, int i)
 | 
						|
{
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	Py_INCREF(a->ob_item[i]);
 | 
						|
	return a->ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_slice(PyListObject *a, int ilow, int ihigh)
 | 
						|
{
 | 
						|
	PyListObject *np;
 | 
						|
	PyObject **src, **dest;
 | 
						|
	int i, len;
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
	len = ihigh - ilow;
 | 
						|
	np = (PyListObject *) PyList_New(len);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	src = a->ob_item + ilow;
 | 
						|
	dest = np->ob_item;
 | 
						|
	for (i = 0; i < len; i++) {
 | 
						|
		PyObject *v = src[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		dest[i] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetSlice(PyObject *a, int ilow, int ihigh)
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return list_slice((PyListObject *)a, ilow, ihigh);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_concat(PyListObject *a, PyObject *bb)
 | 
						|
{
 | 
						|
	int size;
 | 
						|
	int i;
 | 
						|
	PyObject **src, **dest;
 | 
						|
	PyListObject *np;
 | 
						|
	if (!PyList_Check(bb)) {
 | 
						|
		PyErr_Format(PyExc_TypeError,
 | 
						|
			  "can only concatenate list (not \"%.200s\") to list",
 | 
						|
			  bb->ob_type->tp_name);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
#define b ((PyListObject *)bb)
 | 
						|
	size = a->ob_size + b->ob_size;
 | 
						|
	if (size < 0)
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	src = a->ob_item;
 | 
						|
	dest = np->ob_item;
 | 
						|
	for (i = 0; i < a->ob_size; i++) {
 | 
						|
		PyObject *v = src[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		dest[i] = v;
 | 
						|
	}
 | 
						|
	src = b->ob_item;
 | 
						|
	dest = np->ob_item + a->ob_size;
 | 
						|
	for (i = 0; i < b->ob_size; i++) {
 | 
						|
		PyObject *v = src[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		dest[i] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repeat(PyListObject *a, int n)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int size;
 | 
						|
	PyListObject *np;
 | 
						|
	PyObject **p, **items;
 | 
						|
	PyObject *elem;
 | 
						|
	if (n < 0)
 | 
						|
		n = 0;
 | 
						|
	size = a->ob_size * n;
 | 
						|
	if (size == 0)
 | 
						|
              return PyList_New(0);
 | 
						|
	if (n && size/n != a->ob_size)
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	items = np->ob_item;
 | 
						|
	if (a->ob_size == 1) {
 | 
						|
		elem = a->ob_item[0];
 | 
						|
		for (i = 0; i < n; i++) {
 | 
						|
			items[i] = elem;
 | 
						|
			Py_INCREF(elem);
 | 
						|
		}
 | 
						|
		return (PyObject *) np;
 | 
						|
	}
 | 
						|
	p = np->ob_item;
 | 
						|
	items = a->ob_item;
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		for (j = 0; j < a->ob_size; j++) {
 | 
						|
			*p = items[j];
 | 
						|
			Py_INCREF(*p);
 | 
						|
			p++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *) np;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_clear(PyListObject *a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject **item = a->ob_item;
 | 
						|
	if (item != NULL) {
 | 
						|
		/* Because XDECREF can recursively invoke operations on
 | 
						|
		   this list, we make it empty first. */
 | 
						|
		i = a->ob_size;
 | 
						|
		a->ob_size = 0;
 | 
						|
		a->ob_item = NULL;
 | 
						|
		a->allocated = 0;
 | 
						|
		while (--i >= 0) {
 | 
						|
			Py_XDECREF(item[i]);
 | 
						|
		}
 | 
						|
		PyMem_FREE(item);
 | 
						|
	}
 | 
						|
	/* Never fails; the return value can be ignored.
 | 
						|
	   Note that there is no guarantee that the list is actually empty
 | 
						|
	   at this point, because XDECREF may have populated it again! */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* a[ilow:ihigh] = v if v != NULL.
 | 
						|
 * del a[ilow:ihigh] if v == NULL.
 | 
						|
 *
 | 
						|
 * Special speed gimmick:  when v is NULL and ihigh - ilow <= 8, it's
 | 
						|
 * guaranteed the call cannot fail.
 | 
						|
 */
 | 
						|
static int
 | 
						|
list_ass_slice(PyListObject *a, int ilow, int ihigh, PyObject *v)
 | 
						|
{
 | 
						|
	/* Because [X]DECREF can recursively invoke list operations on
 | 
						|
	   this list, we must postpone all [X]DECREF activity until
 | 
						|
	   after the list is back in its canonical shape.  Therefore
 | 
						|
	   we must allocate an additional array, 'recycle', into which
 | 
						|
	   we temporarily copy the items that are deleted from the
 | 
						|
	   list. :-( */
 | 
						|
	PyObject *recycle_on_stack[8];
 | 
						|
	PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
 | 
						|
	PyObject **item;
 | 
						|
	PyObject **vitem = NULL;
 | 
						|
	PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
 | 
						|
	int n; /* # of elements in replacement list */
 | 
						|
	int norig; /* # of elements in list getting replaced */
 | 
						|
	int d; /* Change in size */
 | 
						|
	int k;
 | 
						|
	size_t s;
 | 
						|
	int result = -1;	/* guilty until proved innocent */
 | 
						|
#define b ((PyListObject *)v)
 | 
						|
	if (v == NULL)
 | 
						|
		n = 0;
 | 
						|
	else {
 | 
						|
		if (a == b) {
 | 
						|
			/* Special case "a[i:j] = a" -- copy b first */
 | 
						|
			v = list_slice(b, 0, b->ob_size);
 | 
						|
			if (v == NULL)
 | 
						|
				return result;
 | 
						|
			result = list_ass_slice(a, ilow, ihigh, v);
 | 
						|
			Py_DECREF(v);
 | 
						|
			return result;
 | 
						|
		}
 | 
						|
		v_as_SF = PySequence_Fast(v, "can only assign an iterable");
 | 
						|
		if(v_as_SF == NULL)
 | 
						|
			goto Error;
 | 
						|
		n = PySequence_Fast_GET_SIZE(v_as_SF);
 | 
						|
		vitem = PySequence_Fast_ITEMS(v_as_SF);
 | 
						|
	}
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
 | 
						|
	norig = ihigh - ilow;
 | 
						|
	assert(norig >= 0);
 | 
						|
	d = n - norig;
 | 
						|
	if (a->ob_size + d == 0) {
 | 
						|
		Py_XDECREF(v_as_SF);
 | 
						|
		return list_clear(a);
 | 
						|
	}
 | 
						|
	item = a->ob_item;
 | 
						|
	/* recycle the items that we are about to remove */
 | 
						|
	s = norig * sizeof(PyObject *);
 | 
						|
	if (s > sizeof(recycle_on_stack)) {
 | 
						|
		recycle = (PyObject **)PyMem_MALLOC(s);
 | 
						|
		if (recycle == NULL) {
 | 
						|
			PyErr_NoMemory();
 | 
						|
			goto Error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	memcpy(recycle, &item[ilow], s);
 | 
						|
 | 
						|
	if (d < 0) { /* Delete -d items */
 | 
						|
		memmove(&item[ihigh+d], &item[ihigh],
 | 
						|
			(a->ob_size - ihigh)*sizeof(PyObject *));
 | 
						|
		list_resize(a, a->ob_size + d);
 | 
						|
		item = a->ob_item;
 | 
						|
	}
 | 
						|
	else if (d > 0) { /* Insert d items */
 | 
						|
		k = a->ob_size;
 | 
						|
		if (list_resize(a, k+d) < 0)
 | 
						|
			goto Error;
 | 
						|
		item = a->ob_item;
 | 
						|
		memmove(&item[ihigh+d], &item[ihigh],
 | 
						|
			(k - ihigh)*sizeof(PyObject *));
 | 
						|
	}
 | 
						|
	for (k = 0; k < n; k++, ilow++) {
 | 
						|
		PyObject *w = vitem[k];
 | 
						|
		Py_XINCREF(w);
 | 
						|
		item[ilow] = w;
 | 
						|
	}
 | 
						|
	for (k = norig - 1; k >= 0; --k)
 | 
						|
		Py_XDECREF(recycle[k]);
 | 
						|
	result = 0;
 | 
						|
 Error:
 | 
						|
	if (recycle != recycle_on_stack)
 | 
						|
		PyMem_FREE(recycle);
 | 
						|
	Py_XDECREF(v_as_SF);
 | 
						|
	return result;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetSlice(PyObject *a, int ilow, int ihigh, PyObject *v)
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_repeat(PyListObject *self, int n)
 | 
						|
{
 | 
						|
	PyObject **items;
 | 
						|
	int size, i, j, p;
 | 
						|
 | 
						|
 | 
						|
	size = PyList_GET_SIZE(self);
 | 
						|
	if (size == 0) {
 | 
						|
		Py_INCREF(self);
 | 
						|
		return (PyObject *)self;
 | 
						|
	}
 | 
						|
 | 
						|
	if (n < 1) {
 | 
						|
		(void)list_clear(self);
 | 
						|
		Py_INCREF(self);
 | 
						|
		return (PyObject *)self;
 | 
						|
	}
 | 
						|
 | 
						|
	if (list_resize(self, size*n) == -1)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	p = size;
 | 
						|
	items = self->ob_item;
 | 
						|
	for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
 | 
						|
		for (j = 0; j < size; j++) {
 | 
						|
			PyObject *o = items[j];
 | 
						|
			Py_INCREF(o);
 | 
						|
			items[p++] = o;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	Py_INCREF(self);
 | 
						|
	return (PyObject *)self;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_item(PyListObject *a, int i, PyObject *v)
 | 
						|
{
 | 
						|
	PyObject *old_value;
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (v == NULL)
 | 
						|
		return list_ass_slice(a, i, i+1, v);
 | 
						|
	Py_INCREF(v);
 | 
						|
	old_value = a->ob_item[i];
 | 
						|
	a->ob_item[i] = v;
 | 
						|
	Py_DECREF(old_value);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listinsert(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_ParseTuple(args, "iO:insert", &i, &v))
 | 
						|
		return NULL;
 | 
						|
	if (ins1(self, i, v) == 0)
 | 
						|
		Py_RETURN_NONE;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listappend(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	if (app1(self, v) == 0)
 | 
						|
		Py_RETURN_NONE;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listextend(PyListObject *self, PyObject *b)
 | 
						|
{
 | 
						|
	PyObject *it;      /* iter(v) */
 | 
						|
	int m;		   /* size of self */
 | 
						|
	int n;		   /* guess for size of b */
 | 
						|
	int mn;		   /* m + n */
 | 
						|
	int i;
 | 
						|
	PyObject *(*iternext)(PyObject *);
 | 
						|
 | 
						|
	/* Special cases:
 | 
						|
	   1) lists and tuples which can use PySequence_Fast ops
 | 
						|
	   2) extending self to self requires making a copy first
 | 
						|
	*/
 | 
						|
	if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) {
 | 
						|
		PyObject **src, **dest;
 | 
						|
		b = PySequence_Fast(b, "argument must be iterable");
 | 
						|
		if (!b)
 | 
						|
			return NULL;
 | 
						|
		n = PySequence_Fast_GET_SIZE(b);
 | 
						|
		if (n == 0) {
 | 
						|
			/* short circuit when b is empty */
 | 
						|
			Py_DECREF(b);
 | 
						|
			Py_RETURN_NONE;
 | 
						|
		}
 | 
						|
		m = self->ob_size;
 | 
						|
		if (list_resize(self, m + n) == -1) {
 | 
						|
			Py_DECREF(b);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		/* note that we may still have self == b here for the
 | 
						|
		 * situation a.extend(a), but the following code works
 | 
						|
		 * in that case too.  Just make sure to resize self
 | 
						|
		 * before calling PySequence_Fast_ITEMS.
 | 
						|
		 */
 | 
						|
		/* populate the end of self with b's items */
 | 
						|
		src = PySequence_Fast_ITEMS(b);
 | 
						|
		dest = self->ob_item + m;
 | 
						|
		for (i = 0; i < n; i++) {
 | 
						|
			PyObject *o = src[i];
 | 
						|
			Py_INCREF(o);
 | 
						|
			dest[i] = o;
 | 
						|
		}
 | 
						|
		Py_DECREF(b);
 | 
						|
		Py_RETURN_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	it = PyObject_GetIter(b);
 | 
						|
	if (it == NULL)
 | 
						|
		return NULL;
 | 
						|
	iternext = *it->ob_type->tp_iternext;
 | 
						|
 | 
						|
	/* Guess a result list size. */
 | 
						|
	n = _PyObject_LengthCue(b);
 | 
						|
	if (n < 0) {
 | 
						|
		if (!PyErr_ExceptionMatches(PyExc_TypeError)  &&
 | 
						|
		    !PyErr_ExceptionMatches(PyExc_AttributeError)) {
 | 
						|
			Py_DECREF(it);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		PyErr_Clear();
 | 
						|
		n = 8;	/* arbitrary */
 | 
						|
	}
 | 
						|
	m = self->ob_size;
 | 
						|
	mn = m + n;
 | 
						|
	if (mn >= m) {
 | 
						|
		/* Make room. */
 | 
						|
		if (list_resize(self, mn) == -1)
 | 
						|
			goto error;
 | 
						|
		/* Make the list sane again. */
 | 
						|
		self->ob_size = m;
 | 
						|
	}
 | 
						|
	/* Else m + n overflowed; on the chance that n lied, and there really
 | 
						|
	 * is enough room, ignore it.  If n was telling the truth, we'll
 | 
						|
	 * eventually run out of memory during the loop.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Run iterator to exhaustion. */
 | 
						|
	for (;;) {
 | 
						|
		PyObject *item = iternext(it);
 | 
						|
		if (item == NULL) {
 | 
						|
			if (PyErr_Occurred()) {
 | 
						|
				if (PyErr_ExceptionMatches(PyExc_StopIteration))
 | 
						|
					PyErr_Clear();
 | 
						|
				else
 | 
						|
					goto error;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (self->ob_size < self->allocated) {
 | 
						|
			/* steals ref */
 | 
						|
			PyList_SET_ITEM(self, self->ob_size, item);
 | 
						|
			++self->ob_size;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			int status = app1(self, item);
 | 
						|
			Py_DECREF(item);  /* append creates a new ref */
 | 
						|
			if (status < 0)
 | 
						|
				goto error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Cut back result list if initial guess was too large. */
 | 
						|
	if (self->ob_size < self->allocated)
 | 
						|
		list_resize(self, self->ob_size);  /* shrinking can't fail */
 | 
						|
 | 
						|
	Py_DECREF(it);
 | 
						|
	Py_RETURN_NONE;
 | 
						|
 | 
						|
  error:
 | 
						|
	Py_DECREF(it);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyList_Extend(PyListObject *self, PyObject *b)
 | 
						|
{
 | 
						|
	return listextend(self, b);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_concat(PyListObject *self, PyObject *other)
 | 
						|
{
 | 
						|
	PyObject *result;
 | 
						|
 | 
						|
	result = listextend(self, other);
 | 
						|
	if (result == NULL)
 | 
						|
		return result;
 | 
						|
	Py_DECREF(result);
 | 
						|
	Py_INCREF(self);
 | 
						|
	return (PyObject *)self;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listpop(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int i = -1;
 | 
						|
	PyObject *v, *arg = NULL;
 | 
						|
	int status;
 | 
						|
 | 
						|
	if (!PyArg_UnpackTuple(args, "pop", 0, 1, &arg))
 | 
						|
		return NULL;
 | 
						|
	if (arg != NULL) {
 | 
						|
		if (PyInt_Check(arg))
 | 
						|
			i = (int)(PyInt_AS_LONG((PyIntObject*) arg));
 | 
						|
		else if (!PyArg_ParseTuple(args, "|i:pop", &i))
 | 
						|
   			return NULL;
 | 
						|
	}
 | 
						|
	if (self->ob_size == 0) {
 | 
						|
		/* Special-case most common failure cause */
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0)
 | 
						|
		i += self->ob_size;
 | 
						|
	if (i < 0 || i >= self->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	v = self->ob_item[i];
 | 
						|
	if (i == self->ob_size - 1) {
 | 
						|
		status = list_resize(self, self->ob_size - 1);
 | 
						|
		assert(status >= 0);
 | 
						|
		return v; /* and v now owns the reference the list had */
 | 
						|
	}
 | 
						|
	Py_INCREF(v);
 | 
						|
	status = list_ass_slice(self, i, i+1, (PyObject *)NULL);
 | 
						|
	assert(status >= 0);
 | 
						|
	/* Use status, so that in a release build compilers don't
 | 
						|
	 * complain about the unused name.
 | 
						|
	 */
 | 
						|
	(void) status;
 | 
						|
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
 | 
						|
static void
 | 
						|
reverse_slice(PyObject **lo, PyObject **hi)
 | 
						|
{
 | 
						|
	assert(lo && hi);
 | 
						|
 | 
						|
	--hi;
 | 
						|
	while (lo < hi) {
 | 
						|
		PyObject *t = *lo;
 | 
						|
		*lo = *hi;
 | 
						|
		*hi = t;
 | 
						|
		++lo;
 | 
						|
		--hi;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Lots of code for an adaptive, stable, natural mergesort.  There are many
 | 
						|
 * pieces to this algorithm; read listsort.txt for overviews and details.
 | 
						|
 */
 | 
						|
 | 
						|
/* Comparison function.  Takes care of calling a user-supplied
 | 
						|
 * comparison function (any callable Python object), which must not be
 | 
						|
 * NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
 | 
						|
 * with Py_LT if you know it's NULL).
 | 
						|
 * Returns -1 on error, 1 if x < y, 0 if x >= y.
 | 
						|
 */
 | 
						|
static int
 | 
						|
islt(PyObject *x, PyObject *y, PyObject *compare)
 | 
						|
{
 | 
						|
	PyObject *res;
 | 
						|
	PyObject *args;
 | 
						|
	int i;
 | 
						|
 | 
						|
	assert(compare != NULL);
 | 
						|
	/* Call the user's comparison function and translate the 3-way
 | 
						|
	 * result into true or false (or error).
 | 
						|
	 */
 | 
						|
	args = PyTuple_New(2);
 | 
						|
	if (args == NULL)
 | 
						|
		return -1;
 | 
						|
	Py_INCREF(x);
 | 
						|
	Py_INCREF(y);
 | 
						|
	PyTuple_SET_ITEM(args, 0, x);
 | 
						|
	PyTuple_SET_ITEM(args, 1, y);
 | 
						|
	res = PyObject_Call(compare, args, NULL);
 | 
						|
	Py_DECREF(args);
 | 
						|
	if (res == NULL)
 | 
						|
		return -1;
 | 
						|
	if (!PyInt_Check(res)) {
 | 
						|
		Py_DECREF(res);
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"comparison function must return int");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	i = PyInt_AsLong(res);
 | 
						|
	Py_DECREF(res);
 | 
						|
	return i < 0;
 | 
						|
}
 | 
						|
 | 
						|
/* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
 | 
						|
 * islt.  This avoids a layer of function call in the usual case, and
 | 
						|
 * sorting does many comparisons.
 | 
						|
 * Returns -1 on error, 1 if x < y, 0 if x >= y.
 | 
						|
 */
 | 
						|
#define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ?			\
 | 
						|
			     PyObject_RichCompareBool(X, Y, Py_LT) :	\
 | 
						|
			     islt(X, Y, COMPARE))
 | 
						|
 | 
						|
/* Compare X to Y via "<".  Goto "fail" if the comparison raises an
 | 
						|
   error.  Else "k" is set to true iff X<Y, and an "if (k)" block is
 | 
						|
   started.  It makes more sense in context <wink>.  X and Y are PyObject*s.
 | 
						|
*/
 | 
						|
#define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail;  \
 | 
						|
		   if (k)
 | 
						|
 | 
						|
/* binarysort is the best method for sorting small arrays: it does
 | 
						|
   few compares, but can do data movement quadratic in the number of
 | 
						|
   elements.
 | 
						|
   [lo, hi) is a contiguous slice of a list, and is sorted via
 | 
						|
   binary insertion.  This sort is stable.
 | 
						|
   On entry, must have lo <= start <= hi, and that [lo, start) is already
 | 
						|
   sorted (pass start == lo if you don't know!).
 | 
						|
   If islt() complains return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
*/
 | 
						|
static int
 | 
						|
binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
 | 
						|
     /* compare -- comparison function object, or NULL for default */
 | 
						|
{
 | 
						|
	register int k;
 | 
						|
	register PyObject **l, **p, **r;
 | 
						|
	register PyObject *pivot;
 | 
						|
 | 
						|
	assert(lo <= start && start <= hi);
 | 
						|
	/* assert [lo, start) is sorted */
 | 
						|
	if (lo == start)
 | 
						|
		++start;
 | 
						|
	for (; start < hi; ++start) {
 | 
						|
		/* set l to where *start belongs */
 | 
						|
		l = lo;
 | 
						|
		r = start;
 | 
						|
		pivot = *r;
 | 
						|
		/* Invariants:
 | 
						|
		 * pivot >= all in [lo, l).
 | 
						|
		 * pivot  < all in [r, start).
 | 
						|
		 * The second is vacuously true at the start.
 | 
						|
		 */
 | 
						|
		assert(l < r);
 | 
						|
		do {
 | 
						|
			p = l + ((r - l) >> 1);
 | 
						|
			IFLT(pivot, *p)
 | 
						|
				r = p;
 | 
						|
			else
 | 
						|
				l = p+1;
 | 
						|
		} while (l < r);
 | 
						|
		assert(l == r);
 | 
						|
		/* The invariants still hold, so pivot >= all in [lo, l) and
 | 
						|
		   pivot < all in [l, start), so pivot belongs at l.  Note
 | 
						|
		   that if there are elements equal to pivot, l points to the
 | 
						|
		   first slot after them -- that's why this sort is stable.
 | 
						|
		   Slide over to make room.
 | 
						|
		   Caution: using memmove is much slower under MSVC 5;
 | 
						|
		   we're not usually moving many slots. */
 | 
						|
		for (p = start; p > l; --p)
 | 
						|
			*p = *(p-1);
 | 
						|
		*l = pivot;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Return the length of the run beginning at lo, in the slice [lo, hi).  lo < hi
 | 
						|
is required on entry.  "A run" is the longest ascending sequence, with
 | 
						|
 | 
						|
    lo[0] <= lo[1] <= lo[2] <= ...
 | 
						|
 | 
						|
or the longest descending sequence, with
 | 
						|
 | 
						|
    lo[0] > lo[1] > lo[2] > ...
 | 
						|
 | 
						|
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
 | 
						|
For its intended use in a stable mergesort, the strictness of the defn of
 | 
						|
"descending" is needed so that the caller can safely reverse a descending
 | 
						|
sequence without violating stability (strict > ensures there are no equal
 | 
						|
elements to get out of order).
 | 
						|
 | 
						|
Returns -1 in case of error.
 | 
						|
*/
 | 
						|
static int
 | 
						|
count_run(PyObject **lo, PyObject **hi, PyObject *compare, int *descending)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
	int n;
 | 
						|
 | 
						|
	assert(lo < hi);
 | 
						|
	*descending = 0;
 | 
						|
	++lo;
 | 
						|
	if (lo == hi)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	n = 2;
 | 
						|
	IFLT(*lo, *(lo-1)) {
 | 
						|
		*descending = 1;
 | 
						|
		for (lo = lo+1; lo < hi; ++lo, ++n) {
 | 
						|
			IFLT(*lo, *(lo-1))
 | 
						|
				;
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for (lo = lo+1; lo < hi; ++lo, ++n) {
 | 
						|
			IFLT(*lo, *(lo-1))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return n;
 | 
						|
fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Locate the proper position of key in a sorted vector; if the vector contains
 | 
						|
an element equal to key, return the position immediately to the left of
 | 
						|
the leftmost equal element.  [gallop_right() does the same except returns
 | 
						|
the position to the right of the rightmost equal element (if any).]
 | 
						|
 | 
						|
"a" is a sorted vector with n elements, starting at a[0].  n must be > 0.
 | 
						|
 | 
						|
"hint" is an index at which to begin the search, 0 <= hint < n.  The closer
 | 
						|
hint is to the final result, the faster this runs.
 | 
						|
 | 
						|
The return value is the int k in 0..n such that
 | 
						|
 | 
						|
    a[k-1] < key <= a[k]
 | 
						|
 | 
						|
pretending that *(a-1) is minus infinity and a[n] is plus infinity.  IOW,
 | 
						|
key belongs at index k; or, IOW, the first k elements of a should precede
 | 
						|
key, and the last n-k should follow key.
 | 
						|
 | 
						|
Returns -1 on error.  See listsort.txt for info on the method.
 | 
						|
*/
 | 
						|
static int
 | 
						|
gallop_left(PyObject *key, PyObject **a, int n, int hint, PyObject *compare)
 | 
						|
{
 | 
						|
	int ofs;
 | 
						|
	int lastofs;
 | 
						|
	int k;
 | 
						|
 | 
						|
	assert(key && a && n > 0 && hint >= 0 && hint < n);
 | 
						|
 | 
						|
	a += hint;
 | 
						|
	lastofs = 0;
 | 
						|
	ofs = 1;
 | 
						|
	IFLT(*a, key) {
 | 
						|
		/* a[hint] < key -- gallop right, until
 | 
						|
		 * a[hint + lastofs] < key <= a[hint + ofs]
 | 
						|
		 */
 | 
						|
		const int maxofs = n - hint;	/* &a[n-1] is highest */
 | 
						|
		while (ofs < maxofs) {
 | 
						|
			IFLT(a[ofs], key) {
 | 
						|
				lastofs = ofs;
 | 
						|
				ofs = (ofs << 1) + 1;
 | 
						|
				if (ofs <= 0)	/* int overflow */
 | 
						|
					ofs = maxofs;
 | 
						|
			}
 | 
						|
 			else	/* key <= a[hint + ofs] */
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (ofs > maxofs)
 | 
						|
			ofs = maxofs;
 | 
						|
		/* Translate back to offsets relative to &a[0]. */
 | 
						|
		lastofs += hint;
 | 
						|
		ofs += hint;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* key <= a[hint] -- gallop left, until
 | 
						|
		 * a[hint - ofs] < key <= a[hint - lastofs]
 | 
						|
		 */
 | 
						|
		const int maxofs = hint + 1;	/* &a[0] is lowest */
 | 
						|
		while (ofs < maxofs) {
 | 
						|
			IFLT(*(a-ofs), key)
 | 
						|
				break;
 | 
						|
			/* key <= a[hint - ofs] */
 | 
						|
			lastofs = ofs;
 | 
						|
			ofs = (ofs << 1) + 1;
 | 
						|
			if (ofs <= 0)	/* int overflow */
 | 
						|
				ofs = maxofs;
 | 
						|
		}
 | 
						|
		if (ofs > maxofs)
 | 
						|
			ofs = maxofs;
 | 
						|
		/* Translate back to positive offsets relative to &a[0]. */
 | 
						|
		k = lastofs;
 | 
						|
		lastofs = hint - ofs;
 | 
						|
		ofs = hint - k;
 | 
						|
	}
 | 
						|
	a -= hint;
 | 
						|
 | 
						|
	assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | 
						|
	/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
 | 
						|
	 * right of lastofs but no farther right than ofs.  Do a binary
 | 
						|
	 * search, with invariant a[lastofs-1] < key <= a[ofs].
 | 
						|
	 */
 | 
						|
	++lastofs;
 | 
						|
	while (lastofs < ofs) {
 | 
						|
		int m = lastofs + ((ofs - lastofs) >> 1);
 | 
						|
 | 
						|
		IFLT(a[m], key)
 | 
						|
			lastofs = m+1;	/* a[m] < key */
 | 
						|
		else
 | 
						|
			ofs = m;	/* key <= a[m] */
 | 
						|
	}
 | 
						|
	assert(lastofs == ofs);		/* so a[ofs-1] < key <= a[ofs] */
 | 
						|
	return ofs;
 | 
						|
 | 
						|
fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Exactly like gallop_left(), except that if key already exists in a[0:n],
 | 
						|
finds the position immediately to the right of the rightmost equal value.
 | 
						|
 | 
						|
The return value is the int k in 0..n such that
 | 
						|
 | 
						|
    a[k-1] <= key < a[k]
 | 
						|
 | 
						|
or -1 if error.
 | 
						|
 | 
						|
The code duplication is massive, but this is enough different given that
 | 
						|
we're sticking to "<" comparisons that it's much harder to follow if
 | 
						|
written as one routine with yet another "left or right?" flag.
 | 
						|
*/
 | 
						|
static int
 | 
						|
gallop_right(PyObject *key, PyObject **a, int n, int hint, PyObject *compare)
 | 
						|
{
 | 
						|
	int ofs;
 | 
						|
	int lastofs;
 | 
						|
	int k;
 | 
						|
 | 
						|
	assert(key && a && n > 0 && hint >= 0 && hint < n);
 | 
						|
 | 
						|
	a += hint;
 | 
						|
	lastofs = 0;
 | 
						|
	ofs = 1;
 | 
						|
	IFLT(key, *a) {
 | 
						|
		/* key < a[hint] -- gallop left, until
 | 
						|
		 * a[hint - ofs] <= key < a[hint - lastofs]
 | 
						|
		 */
 | 
						|
		const int maxofs = hint + 1;	/* &a[0] is lowest */
 | 
						|
		while (ofs < maxofs) {
 | 
						|
			IFLT(key, *(a-ofs)) {
 | 
						|
				lastofs = ofs;
 | 
						|
				ofs = (ofs << 1) + 1;
 | 
						|
				if (ofs <= 0)	/* int overflow */
 | 
						|
					ofs = maxofs;
 | 
						|
			}
 | 
						|
			else	/* a[hint - ofs] <= key */
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (ofs > maxofs)
 | 
						|
			ofs = maxofs;
 | 
						|
		/* Translate back to positive offsets relative to &a[0]. */
 | 
						|
		k = lastofs;
 | 
						|
		lastofs = hint - ofs;
 | 
						|
		ofs = hint - k;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* a[hint] <= key -- gallop right, until
 | 
						|
		 * a[hint + lastofs] <= key < a[hint + ofs]
 | 
						|
		*/
 | 
						|
		const int maxofs = n - hint;	/* &a[n-1] is highest */
 | 
						|
		while (ofs < maxofs) {
 | 
						|
			IFLT(key, a[ofs])
 | 
						|
				break;
 | 
						|
			/* a[hint + ofs] <= key */
 | 
						|
			lastofs = ofs;
 | 
						|
			ofs = (ofs << 1) + 1;
 | 
						|
			if (ofs <= 0)	/* int overflow */
 | 
						|
				ofs = maxofs;
 | 
						|
		}
 | 
						|
		if (ofs > maxofs)
 | 
						|
			ofs = maxofs;
 | 
						|
		/* Translate back to offsets relative to &a[0]. */
 | 
						|
		lastofs += hint;
 | 
						|
		ofs += hint;
 | 
						|
	}
 | 
						|
	a -= hint;
 | 
						|
 | 
						|
	assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | 
						|
	/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
 | 
						|
	 * right of lastofs but no farther right than ofs.  Do a binary
 | 
						|
	 * search, with invariant a[lastofs-1] <= key < a[ofs].
 | 
						|
	 */
 | 
						|
	++lastofs;
 | 
						|
	while (lastofs < ofs) {
 | 
						|
		int m = lastofs + ((ofs - lastofs) >> 1);
 | 
						|
 | 
						|
		IFLT(key, a[m])
 | 
						|
			ofs = m;	/* key < a[m] */
 | 
						|
		else
 | 
						|
			lastofs = m+1;	/* a[m] <= key */
 | 
						|
	}
 | 
						|
	assert(lastofs == ofs);		/* so a[ofs-1] <= key < a[ofs] */
 | 
						|
	return ofs;
 | 
						|
 | 
						|
fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* The maximum number of entries in a MergeState's pending-runs stack.
 | 
						|
 * This is enough to sort arrays of size up to about
 | 
						|
 *     32 * phi ** MAX_MERGE_PENDING
 | 
						|
 * where phi ~= 1.618.  85 is ridiculouslylarge enough, good for an array
 | 
						|
 * with 2**64 elements.
 | 
						|
 */
 | 
						|
#define MAX_MERGE_PENDING 85
 | 
						|
 | 
						|
/* When we get into galloping mode, we stay there until both runs win less
 | 
						|
 * often than MIN_GALLOP consecutive times.  See listsort.txt for more info.
 | 
						|
 */
 | 
						|
#define MIN_GALLOP 7
 | 
						|
 | 
						|
/* Avoid malloc for small temp arrays. */
 | 
						|
#define MERGESTATE_TEMP_SIZE 256
 | 
						|
 | 
						|
/* One MergeState exists on the stack per invocation of mergesort.  It's just
 | 
						|
 * a convenient way to pass state around among the helper functions.
 | 
						|
 */
 | 
						|
struct s_slice {
 | 
						|
	PyObject **base;
 | 
						|
	int len;
 | 
						|
};
 | 
						|
 | 
						|
typedef struct s_MergeState {
 | 
						|
	/* The user-supplied comparison function. or NULL if none given. */
 | 
						|
	PyObject *compare;
 | 
						|
 | 
						|
	/* This controls when we get *into* galloping mode.  It's initialized
 | 
						|
	 * to MIN_GALLOP.  merge_lo and merge_hi tend to nudge it higher for
 | 
						|
	 * random data, and lower for highly structured data.
 | 
						|
	 */
 | 
						|
	int min_gallop;
 | 
						|
 | 
						|
	/* 'a' is temp storage to help with merges.  It contains room for
 | 
						|
	 * alloced entries.
 | 
						|
	 */
 | 
						|
	PyObject **a;	/* may point to temparray below */
 | 
						|
	int alloced;
 | 
						|
 | 
						|
	/* A stack of n pending runs yet to be merged.  Run #i starts at
 | 
						|
	 * address base[i] and extends for len[i] elements.  It's always
 | 
						|
	 * true (so long as the indices are in bounds) that
 | 
						|
	 *
 | 
						|
	 *     pending[i].base + pending[i].len == pending[i+1].base
 | 
						|
	 *
 | 
						|
	 * so we could cut the storage for this, but it's a minor amount,
 | 
						|
	 * and keeping all the info explicit simplifies the code.
 | 
						|
	 */
 | 
						|
	int n;
 | 
						|
	struct s_slice pending[MAX_MERGE_PENDING];
 | 
						|
 | 
						|
	/* 'a' points to this when possible, rather than muck with malloc. */
 | 
						|
	PyObject *temparray[MERGESTATE_TEMP_SIZE];
 | 
						|
} MergeState;
 | 
						|
 | 
						|
/* Conceptually a MergeState's constructor. */
 | 
						|
static void
 | 
						|
merge_init(MergeState *ms, PyObject *compare)
 | 
						|
{
 | 
						|
	assert(ms != NULL);
 | 
						|
	ms->compare = compare;
 | 
						|
	ms->a = ms->temparray;
 | 
						|
	ms->alloced = MERGESTATE_TEMP_SIZE;
 | 
						|
	ms->n = 0;
 | 
						|
	ms->min_gallop = MIN_GALLOP;
 | 
						|
}
 | 
						|
 | 
						|
/* Free all the temp memory owned by the MergeState.  This must be called
 | 
						|
 * when you're done with a MergeState, and may be called before then if
 | 
						|
 * you want to free the temp memory early.
 | 
						|
 */
 | 
						|
static void
 | 
						|
merge_freemem(MergeState *ms)
 | 
						|
{
 | 
						|
	assert(ms != NULL);
 | 
						|
	if (ms->a != ms->temparray)
 | 
						|
		PyMem_Free(ms->a);
 | 
						|
	ms->a = ms->temparray;
 | 
						|
	ms->alloced = MERGESTATE_TEMP_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
/* Ensure enough temp memory for 'need' array slots is available.
 | 
						|
 * Returns 0 on success and -1 if the memory can't be gotten.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_getmem(MergeState *ms, int need)
 | 
						|
{
 | 
						|
	assert(ms != NULL);
 | 
						|
	if (need <= ms->alloced)
 | 
						|
		return 0;
 | 
						|
	/* Don't realloc!  That can cost cycles to copy the old data, but
 | 
						|
	 * we don't care what's in the block.
 | 
						|
	 */
 | 
						|
	merge_freemem(ms);
 | 
						|
	ms->a = (PyObject **)PyMem_Malloc(need * sizeof(PyObject*));
 | 
						|
	if (ms->a) {
 | 
						|
		ms->alloced = need;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	PyErr_NoMemory();
 | 
						|
	merge_freemem(ms);	/* reset to sane state */
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 :	\
 | 
						|
				merge_getmem(MS, NEED))
 | 
						|
 | 
						|
/* Merge the na elements starting at pa with the nb elements starting at pb
 | 
						|
 * in a stable way, in-place.  na and nb must be > 0, and pa + na == pb.
 | 
						|
 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
 | 
						|
 * merge, and should have na <= nb.  See listsort.txt for more info.
 | 
						|
 * Return 0 if successful, -1 if error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_lo(MergeState *ms, PyObject **pa, int na, PyObject **pb, int nb)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
	PyObject *compare;
 | 
						|
	PyObject **dest;
 | 
						|
	int result = -1;	/* guilty until proved innocent */
 | 
						|
	int min_gallop = ms->min_gallop;
 | 
						|
 | 
						|
	assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
 | 
						|
	if (MERGE_GETMEM(ms, na) < 0)
 | 
						|
		return -1;
 | 
						|
	memcpy(ms->a, pa, na * sizeof(PyObject*));
 | 
						|
	dest = pa;
 | 
						|
	pa = ms->a;
 | 
						|
 | 
						|
	*dest++ = *pb++;
 | 
						|
	--nb;
 | 
						|
	if (nb == 0)
 | 
						|
		goto Succeed;
 | 
						|
	if (na == 1)
 | 
						|
		goto CopyB;
 | 
						|
 | 
						|
	compare = ms->compare;
 | 
						|
	for (;;) {
 | 
						|
		int acount = 0;	/* # of times A won in a row */
 | 
						|
		int bcount = 0;	/* # of times B won in a row */
 | 
						|
 | 
						|
		/* Do the straightforward thing until (if ever) one run
 | 
						|
		 * appears to win consistently.
 | 
						|
		 */
 | 
						|
 		for (;;) {
 | 
						|
 			assert(na > 1 && nb > 0);
 | 
						|
	 		k = ISLT(*pb, *pa, compare);
 | 
						|
			if (k) {
 | 
						|
				if (k < 0)
 | 
						|
					goto Fail;
 | 
						|
				*dest++ = *pb++;
 | 
						|
				++bcount;
 | 
						|
				acount = 0;
 | 
						|
				--nb;
 | 
						|
				if (nb == 0)
 | 
						|
					goto Succeed;
 | 
						|
				if (bcount >= min_gallop)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				*dest++ = *pa++;
 | 
						|
				++acount;
 | 
						|
				bcount = 0;
 | 
						|
				--na;
 | 
						|
				if (na == 1)
 | 
						|
					goto CopyB;
 | 
						|
				if (acount >= min_gallop)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 		}
 | 
						|
 | 
						|
		/* One run is winning so consistently that galloping may
 | 
						|
		 * be a huge win.  So try that, and continue galloping until
 | 
						|
		 * (if ever) neither run appears to be winning consistently
 | 
						|
		 * anymore.
 | 
						|
		 */
 | 
						|
		++min_gallop;
 | 
						|
		do {
 | 
						|
 			assert(na > 1 && nb > 0);
 | 
						|
			min_gallop -= min_gallop > 1;
 | 
						|
	 		ms->min_gallop = min_gallop;
 | 
						|
			k = gallop_right(*pb, pa, na, 0, compare);
 | 
						|
			acount = k;
 | 
						|
			if (k) {
 | 
						|
				if (k < 0)
 | 
						|
					goto Fail;
 | 
						|
				memcpy(dest, pa, k * sizeof(PyObject *));
 | 
						|
				dest += k;
 | 
						|
				pa += k;
 | 
						|
				na -= k;
 | 
						|
				if (na == 1)
 | 
						|
					goto CopyB;
 | 
						|
				/* na==0 is impossible now if the comparison
 | 
						|
				 * function is consistent, but we can't assume
 | 
						|
				 * that it is.
 | 
						|
				 */
 | 
						|
				if (na == 0)
 | 
						|
					goto Succeed;
 | 
						|
			}
 | 
						|
			*dest++ = *pb++;
 | 
						|
			--nb;
 | 
						|
			if (nb == 0)
 | 
						|
				goto Succeed;
 | 
						|
 | 
						|
 			k = gallop_left(*pa, pb, nb, 0, compare);
 | 
						|
 			bcount = k;
 | 
						|
			if (k) {
 | 
						|
				if (k < 0)
 | 
						|
					goto Fail;
 | 
						|
				memmove(dest, pb, k * sizeof(PyObject *));
 | 
						|
				dest += k;
 | 
						|
				pb += k;
 | 
						|
				nb -= k;
 | 
						|
				if (nb == 0)
 | 
						|
					goto Succeed;
 | 
						|
			}
 | 
						|
			*dest++ = *pa++;
 | 
						|
			--na;
 | 
						|
			if (na == 1)
 | 
						|
				goto CopyB;
 | 
						|
 		} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | 
						|
 		++min_gallop;	/* penalize it for leaving galloping mode */
 | 
						|
 		ms->min_gallop = min_gallop;
 | 
						|
 	}
 | 
						|
Succeed:
 | 
						|
	result = 0;
 | 
						|
Fail:
 | 
						|
	if (na)
 | 
						|
		memcpy(dest, pa, na * sizeof(PyObject*));
 | 
						|
	return result;
 | 
						|
CopyB:
 | 
						|
	assert(na == 1 && nb > 0);
 | 
						|
	/* The last element of pa belongs at the end of the merge. */
 | 
						|
	memmove(dest, pb, nb * sizeof(PyObject *));
 | 
						|
	dest[nb] = *pa;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Merge the na elements starting at pa with the nb elements starting at pb
 | 
						|
 * in a stable way, in-place.  na and nb must be > 0, and pa + na == pb.
 | 
						|
 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
 | 
						|
 * merge, and should have na >= nb.  See listsort.txt for more info.
 | 
						|
 * Return 0 if successful, -1 if error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_hi(MergeState *ms, PyObject **pa, int na, PyObject **pb, int nb)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
	PyObject *compare;
 | 
						|
	PyObject **dest;
 | 
						|
	int result = -1;	/* guilty until proved innocent */
 | 
						|
	PyObject **basea;
 | 
						|
	PyObject **baseb;
 | 
						|
	int min_gallop = ms->min_gallop;
 | 
						|
 | 
						|
	assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
 | 
						|
	if (MERGE_GETMEM(ms, nb) < 0)
 | 
						|
		return -1;
 | 
						|
	dest = pb + nb - 1;
 | 
						|
	memcpy(ms->a, pb, nb * sizeof(PyObject*));
 | 
						|
	basea = pa;
 | 
						|
	baseb = ms->a;
 | 
						|
	pb = ms->a + nb - 1;
 | 
						|
	pa += na - 1;
 | 
						|
 | 
						|
	*dest-- = *pa--;
 | 
						|
	--na;
 | 
						|
	if (na == 0)
 | 
						|
		goto Succeed;
 | 
						|
	if (nb == 1)
 | 
						|
		goto CopyA;
 | 
						|
 | 
						|
	compare = ms->compare;
 | 
						|
	for (;;) {
 | 
						|
		int acount = 0;	/* # of times A won in a row */
 | 
						|
		int bcount = 0;	/* # of times B won in a row */
 | 
						|
 | 
						|
		/* Do the straightforward thing until (if ever) one run
 | 
						|
		 * appears to win consistently.
 | 
						|
		 */
 | 
						|
 		for (;;) {
 | 
						|
 			assert(na > 0 && nb > 1);
 | 
						|
	 		k = ISLT(*pb, *pa, compare);
 | 
						|
			if (k) {
 | 
						|
				if (k < 0)
 | 
						|
					goto Fail;
 | 
						|
				*dest-- = *pa--;
 | 
						|
				++acount;
 | 
						|
				bcount = 0;
 | 
						|
				--na;
 | 
						|
				if (na == 0)
 | 
						|
					goto Succeed;
 | 
						|
				if (acount >= min_gallop)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				*dest-- = *pb--;
 | 
						|
				++bcount;
 | 
						|
				acount = 0;
 | 
						|
				--nb;
 | 
						|
				if (nb == 1)
 | 
						|
					goto CopyA;
 | 
						|
				if (bcount >= min_gallop)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 		}
 | 
						|
 | 
						|
		/* One run is winning so consistently that galloping may
 | 
						|
		 * be a huge win.  So try that, and continue galloping until
 | 
						|
		 * (if ever) neither run appears to be winning consistently
 | 
						|
		 * anymore.
 | 
						|
		 */
 | 
						|
		++min_gallop;
 | 
						|
		do {
 | 
						|
 			assert(na > 0 && nb > 1);
 | 
						|
			min_gallop -= min_gallop > 1;
 | 
						|
	 		ms->min_gallop = min_gallop;
 | 
						|
			k = gallop_right(*pb, basea, na, na-1, compare);
 | 
						|
			if (k < 0)
 | 
						|
				goto Fail;
 | 
						|
			k = na - k;
 | 
						|
			acount = k;
 | 
						|
			if (k) {
 | 
						|
				dest -= k;
 | 
						|
				pa -= k;
 | 
						|
				memmove(dest+1, pa+1, k * sizeof(PyObject *));
 | 
						|
				na -= k;
 | 
						|
				if (na == 0)
 | 
						|
					goto Succeed;
 | 
						|
			}
 | 
						|
			*dest-- = *pb--;
 | 
						|
			--nb;
 | 
						|
			if (nb == 1)
 | 
						|
				goto CopyA;
 | 
						|
 | 
						|
 			k = gallop_left(*pa, baseb, nb, nb-1, compare);
 | 
						|
			if (k < 0)
 | 
						|
				goto Fail;
 | 
						|
			k = nb - k;
 | 
						|
			bcount = k;
 | 
						|
			if (k) {
 | 
						|
				dest -= k;
 | 
						|
				pb -= k;
 | 
						|
				memcpy(dest+1, pb+1, k * sizeof(PyObject *));
 | 
						|
				nb -= k;
 | 
						|
				if (nb == 1)
 | 
						|
					goto CopyA;
 | 
						|
				/* nb==0 is impossible now if the comparison
 | 
						|
				 * function is consistent, but we can't assume
 | 
						|
				 * that it is.
 | 
						|
				 */
 | 
						|
				if (nb == 0)
 | 
						|
					goto Succeed;
 | 
						|
			}
 | 
						|
			*dest-- = *pa--;
 | 
						|
			--na;
 | 
						|
			if (na == 0)
 | 
						|
				goto Succeed;
 | 
						|
 		} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | 
						|
 		++min_gallop;	/* penalize it for leaving galloping mode */
 | 
						|
 		ms->min_gallop = min_gallop;
 | 
						|
 	}
 | 
						|
Succeed:
 | 
						|
	result = 0;
 | 
						|
Fail:
 | 
						|
	if (nb)
 | 
						|
		memcpy(dest-(nb-1), baseb, nb * sizeof(PyObject*));
 | 
						|
	return result;
 | 
						|
CopyA:
 | 
						|
	assert(nb == 1 && na > 0);
 | 
						|
	/* The first element of pb belongs at the front of the merge. */
 | 
						|
	dest -= na;
 | 
						|
	pa -= na;
 | 
						|
	memmove(dest+1, pa+1, na * sizeof(PyObject *));
 | 
						|
	*dest = *pb;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Merge the two runs at stack indices i and i+1.
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_at(MergeState *ms, int i)
 | 
						|
{
 | 
						|
	PyObject **pa, **pb;
 | 
						|
	int na, nb;
 | 
						|
	int k;
 | 
						|
	PyObject *compare;
 | 
						|
 | 
						|
	assert(ms != NULL);
 | 
						|
	assert(ms->n >= 2);
 | 
						|
	assert(i >= 0);
 | 
						|
	assert(i == ms->n - 2 || i == ms->n - 3);
 | 
						|
 | 
						|
	pa = ms->pending[i].base;
 | 
						|
	na = ms->pending[i].len;
 | 
						|
	pb = ms->pending[i+1].base;
 | 
						|
	nb = ms->pending[i+1].len;
 | 
						|
	assert(na > 0 && nb > 0);
 | 
						|
	assert(pa + na == pb);
 | 
						|
 | 
						|
	/* Record the length of the combined runs; if i is the 3rd-last
 | 
						|
	 * run now, also slide over the last run (which isn't involved
 | 
						|
	 * in this merge).  The current run i+1 goes away in any case.
 | 
						|
	 */
 | 
						|
	ms->pending[i].len = na + nb;
 | 
						|
	if (i == ms->n - 3)
 | 
						|
		ms->pending[i+1] = ms->pending[i+2];
 | 
						|
	--ms->n;
 | 
						|
 | 
						|
	/* Where does b start in a?  Elements in a before that can be
 | 
						|
	 * ignored (already in place).
 | 
						|
	 */
 | 
						|
	compare = ms->compare;
 | 
						|
	k = gallop_right(*pb, pa, na, 0, compare);
 | 
						|
	if (k < 0)
 | 
						|
		return -1;
 | 
						|
	pa += k;
 | 
						|
	na -= k;
 | 
						|
	if (na == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Where does a end in b?  Elements in b after that can be
 | 
						|
	 * ignored (already in place).
 | 
						|
	 */
 | 
						|
	nb = gallop_left(pa[na-1], pb, nb, nb-1, compare);
 | 
						|
	if (nb <= 0)
 | 
						|
		return nb;
 | 
						|
 | 
						|
	/* Merge what remains of the runs, using a temp array with
 | 
						|
	 * min(na, nb) elements.
 | 
						|
	 */
 | 
						|
	if (na <= nb)
 | 
						|
		return merge_lo(ms, pa, na, pb, nb);
 | 
						|
	else
 | 
						|
		return merge_hi(ms, pa, na, pb, nb);
 | 
						|
}
 | 
						|
 | 
						|
/* Examine the stack of runs waiting to be merged, merging adjacent runs
 | 
						|
 * until the stack invariants are re-established:
 | 
						|
 *
 | 
						|
 * 1. len[-3] > len[-2] + len[-1]
 | 
						|
 * 2. len[-2] > len[-1]
 | 
						|
 *
 | 
						|
 * See listsort.txt for more info.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_collapse(MergeState *ms)
 | 
						|
{
 | 
						|
	struct s_slice *p = ms->pending;
 | 
						|
 | 
						|
	assert(ms);
 | 
						|
	while (ms->n > 1) {
 | 
						|
		int n = ms->n - 2;
 | 
						|
		if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) {
 | 
						|
		    	if (p[n-1].len < p[n+1].len)
 | 
						|
		    		--n;
 | 
						|
			if (merge_at(ms, n) < 0)
 | 
						|
				return -1;
 | 
						|
		}
 | 
						|
		else if (p[n].len <= p[n+1].len) {
 | 
						|
			 if (merge_at(ms, n) < 0)
 | 
						|
			 	return -1;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Regardless of invariants, merge all runs on the stack until only one
 | 
						|
 * remains.  This is used at the end of the mergesort.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_force_collapse(MergeState *ms)
 | 
						|
{
 | 
						|
	struct s_slice *p = ms->pending;
 | 
						|
 | 
						|
	assert(ms);
 | 
						|
	while (ms->n > 1) {
 | 
						|
		int n = ms->n - 2;
 | 
						|
		if (n > 0 && p[n-1].len < p[n+1].len)
 | 
						|
			--n;
 | 
						|
		if (merge_at(ms, n) < 0)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute a good value for the minimum run length; natural runs shorter
 | 
						|
 * than this are boosted artificially via binary insertion.
 | 
						|
 *
 | 
						|
 * If n < 64, return n (it's too small to bother with fancy stuff).
 | 
						|
 * Else if n is an exact power of 2, return 32.
 | 
						|
 * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
 | 
						|
 * strictly less than, an exact power of 2.
 | 
						|
 *
 | 
						|
 * See listsort.txt for more info.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_compute_minrun(int n)
 | 
						|
{
 | 
						|
	int r = 0;	/* becomes 1 if any 1 bits are shifted off */
 | 
						|
 | 
						|
	assert(n >= 0);
 | 
						|
	while (n >= 64) {
 | 
						|
		r |= n & 1;
 | 
						|
		n >>= 1;
 | 
						|
	}
 | 
						|
	return n + r;
 | 
						|
}
 | 
						|
 | 
						|
/* Special wrapper to support stable sorting using the decorate-sort-undecorate
 | 
						|
   pattern.  Holds a key which is used for comparisons and the original record
 | 
						|
   which is returned during the undecorate phase.  By exposing only the key
 | 
						|
   during comparisons, the underlying sort stability characteristics are left
 | 
						|
   unchanged.  Also, if a custom comparison function is used, it will only see
 | 
						|
   the key instead of a full record. */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	PyObject_HEAD
 | 
						|
	PyObject *key;
 | 
						|
	PyObject *value;
 | 
						|
} sortwrapperobject;
 | 
						|
 | 
						|
static PyTypeObject sortwrapper_type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
sortwrapper_richcompare(sortwrapperobject *a, sortwrapperobject *b, int op)
 | 
						|
{
 | 
						|
	if (!PyObject_TypeCheck(b, &sortwrapper_type)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"expected a sortwrapperobject");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyObject_RichCompare(a->key, b->key, op);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
sortwrapper_dealloc(sortwrapperobject *so)
 | 
						|
{
 | 
						|
	Py_XDECREF(so->key);
 | 
						|
	Py_XDECREF(so->value);
 | 
						|
	PyObject_Del(so);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(sortwrapper_doc, "Object wrapper with a custom sort key.");
 | 
						|
 | 
						|
static PyTypeObject sortwrapper_type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"sortwrapper",				/* tp_name */
 | 
						|
	sizeof(sortwrapperobject),		/* tp_basicsize */
 | 
						|
	0,					/* tp_itemsize */
 | 
						|
	/* methods */
 | 
						|
	(destructor)sortwrapper_dealloc,	/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	0,					/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	0,					/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT |
 | 
						|
	Py_TPFLAGS_HAVE_RICHCOMPARE, 		/* tp_flags */
 | 
						|
	sortwrapper_doc,			/* tp_doc */
 | 
						|
	0,					/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	(richcmpfunc)sortwrapper_richcompare,	/* tp_richcompare */
 | 
						|
};
 | 
						|
 | 
						|
/* Returns a new reference to a sortwrapper.
 | 
						|
   Consumes the references to the two underlying objects. */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
build_sortwrapper(PyObject *key, PyObject *value)
 | 
						|
{
 | 
						|
	sortwrapperobject *so;
 | 
						|
 | 
						|
	so = PyObject_New(sortwrapperobject, &sortwrapper_type);
 | 
						|
	if (so == NULL)
 | 
						|
		return NULL;
 | 
						|
	so->key = key;
 | 
						|
	so->value = value;
 | 
						|
	return (PyObject *)so;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns a new reference to the value underlying the wrapper. */
 | 
						|
static PyObject *
 | 
						|
sortwrapper_getvalue(PyObject *so)
 | 
						|
{
 | 
						|
	PyObject *value;
 | 
						|
 | 
						|
	if (!PyObject_TypeCheck(so, &sortwrapper_type)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"expected a sortwrapperobject");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	value = ((sortwrapperobject *)so)->value;
 | 
						|
	Py_INCREF(value);
 | 
						|
	return value;
 | 
						|
}
 | 
						|
 | 
						|
/* Wrapper for user specified cmp functions in combination with a
 | 
						|
   specified key function.  Makes sure the cmp function is presented
 | 
						|
   with the actual key instead of the sortwrapper */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	PyObject_HEAD
 | 
						|
	PyObject *func;
 | 
						|
} cmpwrapperobject;
 | 
						|
 | 
						|
static void
 | 
						|
cmpwrapper_dealloc(cmpwrapperobject *co)
 | 
						|
{
 | 
						|
	Py_XDECREF(co->func);
 | 
						|
	PyObject_Del(co);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
cmpwrapper_call(cmpwrapperobject *co, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyObject *x, *y, *xx, *yy;
 | 
						|
 | 
						|
	if (!PyArg_UnpackTuple(args, "", 2, 2, &x, &y))
 | 
						|
		return NULL;
 | 
						|
	if (!PyObject_TypeCheck(x, &sortwrapper_type) ||
 | 
						|
	    !PyObject_TypeCheck(y, &sortwrapper_type)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"expected a sortwrapperobject");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	xx = ((sortwrapperobject *)x)->key;
 | 
						|
	yy = ((sortwrapperobject *)y)->key;
 | 
						|
	return PyObject_CallFunctionObjArgs(co->func, xx, yy, NULL);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(cmpwrapper_doc, "cmp() wrapper for sort with custom keys.");
 | 
						|
 | 
						|
static PyTypeObject cmpwrapper_type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"cmpwrapper",				/* tp_name */
 | 
						|
	sizeof(cmpwrapperobject),		/* tp_basicsize */
 | 
						|
	0,					/* tp_itemsize */
 | 
						|
	/* methods */
 | 
						|
	(destructor)cmpwrapper_dealloc,		/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	0,					/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	0,					/* tp_hash */
 | 
						|
	(ternaryfunc)cmpwrapper_call,		/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | 
						|
	cmpwrapper_doc,				/* tp_doc */
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
build_cmpwrapper(PyObject *cmpfunc)
 | 
						|
{
 | 
						|
	cmpwrapperobject *co;
 | 
						|
 | 
						|
	co = PyObject_New(cmpwrapperobject, &cmpwrapper_type);
 | 
						|
	if (co == NULL)
 | 
						|
		return NULL;
 | 
						|
	Py_INCREF(cmpfunc);
 | 
						|
	co->func = cmpfunc;
 | 
						|
	return (PyObject *)co;
 | 
						|
}
 | 
						|
 | 
						|
/* An adaptive, stable, natural mergesort.  See listsort.txt.
 | 
						|
 * Returns Py_None on success, NULL on error.  Even in case of error, the
 | 
						|
 * list will be some permutation of its input state (nothing is lost or
 | 
						|
 * duplicated).
 | 
						|
 */
 | 
						|
static PyObject *
 | 
						|
listsort(PyListObject *self, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	MergeState ms;
 | 
						|
	PyObject **lo, **hi;
 | 
						|
	int nremaining;
 | 
						|
	int minrun;
 | 
						|
	int saved_ob_size, saved_allocated;
 | 
						|
	PyObject **saved_ob_item;
 | 
						|
	PyObject **final_ob_item;
 | 
						|
	PyObject *compare = NULL;
 | 
						|
	PyObject *result = NULL;	/* guilty until proved innocent */
 | 
						|
	int reverse = 0;
 | 
						|
	PyObject *keyfunc = NULL;
 | 
						|
	int i;
 | 
						|
	PyObject *key, *value, *kvpair;
 | 
						|
	static const char *kwlist[] = {"cmp", "key", "reverse", 0};
 | 
						|
 | 
						|
	assert(self != NULL);
 | 
						|
	assert (PyList_Check(self));
 | 
						|
	if (args != NULL) {
 | 
						|
		if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi:sort",
 | 
						|
			kwlist, &compare, &keyfunc, &reverse))
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	if (compare == Py_None)
 | 
						|
		compare = NULL;
 | 
						|
	if (keyfunc == Py_None)
 | 
						|
		keyfunc = NULL;
 | 
						|
	if (compare != NULL && keyfunc != NULL) {
 | 
						|
		compare = build_cmpwrapper(compare);
 | 
						|
		if (compare == NULL)
 | 
						|
			return NULL;
 | 
						|
	} else
 | 
						|
		Py_XINCREF(compare);
 | 
						|
 | 
						|
	/* The list is temporarily made empty, so that mutations performed
 | 
						|
	 * by comparison functions can't affect the slice of memory we're
 | 
						|
	 * sorting (allowing mutations during sorting is a core-dump
 | 
						|
	 * factory, since ob_item may change).
 | 
						|
	 */
 | 
						|
	saved_ob_size = self->ob_size;
 | 
						|
	saved_ob_item = self->ob_item;
 | 
						|
	saved_allocated = self->allocated;
 | 
						|
	self->ob_size = 0;
 | 
						|
	self->ob_item = NULL;
 | 
						|
	self->allocated = -1; /* any operation will reset it to >= 0 */
 | 
						|
 | 
						|
	if (keyfunc != NULL) {
 | 
						|
		for (i=0 ; i < saved_ob_size ; i++) {
 | 
						|
			value = saved_ob_item[i];
 | 
						|
			key = PyObject_CallFunctionObjArgs(keyfunc, value,
 | 
						|
							   NULL);
 | 
						|
			if (key == NULL) {
 | 
						|
				for (i=i-1 ; i>=0 ; i--) {
 | 
						|
					kvpair = saved_ob_item[i];
 | 
						|
					value = sortwrapper_getvalue(kvpair);
 | 
						|
					saved_ob_item[i] = value;
 | 
						|
					Py_DECREF(kvpair);
 | 
						|
				}
 | 
						|
				goto dsu_fail;
 | 
						|
			}
 | 
						|
			kvpair = build_sortwrapper(key, value);
 | 
						|
			if (kvpair == NULL)
 | 
						|
				goto dsu_fail;
 | 
						|
			saved_ob_item[i] = kvpair;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Reverse sort stability achieved by initially reversing the list,
 | 
						|
	applying a stable forward sort, then reversing the final result. */
 | 
						|
	if (reverse && saved_ob_size > 1)
 | 
						|
		reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
 | 
						|
 | 
						|
	merge_init(&ms, compare);
 | 
						|
 | 
						|
	nremaining = saved_ob_size;
 | 
						|
	if (nremaining < 2)
 | 
						|
		goto succeed;
 | 
						|
 | 
						|
	/* March over the array once, left to right, finding natural runs,
 | 
						|
	 * and extending short natural runs to minrun elements.
 | 
						|
	 */
 | 
						|
	lo = saved_ob_item;
 | 
						|
	hi = lo + nremaining;
 | 
						|
	minrun = merge_compute_minrun(nremaining);
 | 
						|
	do {
 | 
						|
		int descending;
 | 
						|
		int n;
 | 
						|
 | 
						|
		/* Identify next run. */
 | 
						|
		n = count_run(lo, hi, compare, &descending);
 | 
						|
		if (n < 0)
 | 
						|
			goto fail;
 | 
						|
		if (descending)
 | 
						|
			reverse_slice(lo, lo + n);
 | 
						|
		/* If short, extend to min(minrun, nremaining). */
 | 
						|
		if (n < minrun) {
 | 
						|
			const int force = nremaining <= minrun ?
 | 
						|
	 			  	  nremaining : minrun;
 | 
						|
			if (binarysort(lo, lo + force, lo + n, compare) < 0)
 | 
						|
				goto fail;
 | 
						|
			n = force;
 | 
						|
		}
 | 
						|
		/* Push run onto pending-runs stack, and maybe merge. */
 | 
						|
		assert(ms.n < MAX_MERGE_PENDING);
 | 
						|
		ms.pending[ms.n].base = lo;
 | 
						|
		ms.pending[ms.n].len = n;
 | 
						|
		++ms.n;
 | 
						|
		if (merge_collapse(&ms) < 0)
 | 
						|
			goto fail;
 | 
						|
		/* Advance to find next run. */
 | 
						|
		lo += n;
 | 
						|
		nremaining -= n;
 | 
						|
	} while (nremaining);
 | 
						|
	assert(lo == hi);
 | 
						|
 | 
						|
	if (merge_force_collapse(&ms) < 0)
 | 
						|
		goto fail;
 | 
						|
	assert(ms.n == 1);
 | 
						|
	assert(ms.pending[0].base == saved_ob_item);
 | 
						|
	assert(ms.pending[0].len == saved_ob_size);
 | 
						|
 | 
						|
succeed:
 | 
						|
	result = Py_None;
 | 
						|
fail:
 | 
						|
	if (keyfunc != NULL) {
 | 
						|
		for (i=0 ; i < saved_ob_size ; i++) {
 | 
						|
			kvpair = saved_ob_item[i];
 | 
						|
			value = sortwrapper_getvalue(kvpair);
 | 
						|
			saved_ob_item[i] = value;
 | 
						|
			Py_DECREF(kvpair);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (self->allocated != -1 && result != NULL) {
 | 
						|
		/* The user mucked with the list during the sort,
 | 
						|
		 * and we don't already have another error to report.
 | 
						|
		 */
 | 
						|
		PyErr_SetString(PyExc_ValueError, "list modified during sort");
 | 
						|
		result = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (reverse && saved_ob_size > 1)
 | 
						|
		reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
 | 
						|
 | 
						|
	merge_freemem(&ms);
 | 
						|
 | 
						|
dsu_fail:
 | 
						|
	final_ob_item = self->ob_item;
 | 
						|
	i = self->ob_size;
 | 
						|
	self->ob_size = saved_ob_size;
 | 
						|
	self->ob_item = saved_ob_item;
 | 
						|
	self->allocated = saved_allocated;
 | 
						|
	if (final_ob_item != NULL) {
 | 
						|
		/* we cannot use list_clear() for this because it does not
 | 
						|
		   guarantee that the list is really empty when it returns */
 | 
						|
		while (--i >= 0) {
 | 
						|
			Py_XDECREF(final_ob_item[i]);
 | 
						|
		}
 | 
						|
		PyMem_FREE(final_ob_item);
 | 
						|
	}
 | 
						|
	Py_XDECREF(compare);
 | 
						|
	Py_XINCREF(result);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
#undef IFLT
 | 
						|
#undef ISLT
 | 
						|
 | 
						|
int
 | 
						|
PyList_Sort(PyObject *v)
 | 
						|
{
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL);
 | 
						|
	if (v == NULL)
 | 
						|
		return -1;
 | 
						|
	Py_DECREF(v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreverse(PyListObject *self)
 | 
						|
{
 | 
						|
	if (self->ob_size > 1)
 | 
						|
		reverse_slice(self->ob_item, self->ob_item + self->ob_size);
 | 
						|
	Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Reverse(PyObject *v)
 | 
						|
{
 | 
						|
	PyListObject *self = (PyListObject *)v;
 | 
						|
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (self->ob_size > 1)
 | 
						|
		reverse_slice(self->ob_item, self->ob_item + self->ob_size);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_AsTuple(PyObject *v)
 | 
						|
{
 | 
						|
	PyObject *w;
 | 
						|
	PyObject **p;
 | 
						|
	int n;
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	n = ((PyListObject *)v)->ob_size;
 | 
						|
	w = PyTuple_New(n);
 | 
						|
	if (w == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = ((PyTupleObject *)w)->ob_item;
 | 
						|
	memcpy((void *)p,
 | 
						|
	       (void *)((PyListObject *)v)->ob_item,
 | 
						|
	       n*sizeof(PyObject *));
 | 
						|
	while (--n >= 0) {
 | 
						|
		Py_INCREF(*p);
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	return w;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listindex(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int i, start=0, stop=self->ob_size;
 | 
						|
	PyObject *v;
 | 
						|
 | 
						|
	if (!PyArg_ParseTuple(args, "O|O&O&:index", &v,
 | 
						|
	                            _PyEval_SliceIndex, &start,
 | 
						|
	                            _PyEval_SliceIndex, &stop))
 | 
						|
		return NULL;
 | 
						|
	if (start < 0) {
 | 
						|
		start += self->ob_size;
 | 
						|
		if (start < 0)
 | 
						|
			start = 0;
 | 
						|
	}
 | 
						|
	if (stop < 0) {
 | 
						|
		stop += self->ob_size;
 | 
						|
		if (stop < 0)
 | 
						|
			stop = 0;
 | 
						|
	}
 | 
						|
	for (i = start; i < stop && i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0)
 | 
						|
			return PyInt_FromLong((long)i);
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listcount(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int count = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0)
 | 
						|
			count++;
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	return PyInt_FromLong((long)count);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listremove(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0) {
 | 
						|
			if (list_ass_slice(self, i, i+1,
 | 
						|
					   (PyObject *)NULL) == 0)
 | 
						|
				Py_RETURN_NONE;
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_traverse(PyListObject *o, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
	int i, err;
 | 
						|
	PyObject *x;
 | 
						|
 | 
						|
	for (i = o->ob_size; --i >= 0; ) {
 | 
						|
		x = o->ob_item[i];
 | 
						|
		if (x != NULL) {
 | 
						|
			err = visit(x, arg);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
	PyListObject *vl, *wl;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!PyList_Check(v) || !PyList_Check(w)) {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	vl = (PyListObject *)v;
 | 
						|
	wl = (PyListObject *)w;
 | 
						|
 | 
						|
	if (vl->ob_size != wl->ob_size && (op == Py_EQ || op == Py_NE)) {
 | 
						|
		/* Shortcut: if the lengths differ, the lists differ */
 | 
						|
		PyObject *res;
 | 
						|
		if (op == Py_EQ)
 | 
						|
			res = Py_False;
 | 
						|
		else
 | 
						|
			res = Py_True;
 | 
						|
		Py_INCREF(res);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Search for the first index where items are different */
 | 
						|
	for (i = 0; i < vl->ob_size && i < wl->ob_size; i++) {
 | 
						|
		int k = PyObject_RichCompareBool(vl->ob_item[i],
 | 
						|
						 wl->ob_item[i], Py_EQ);
 | 
						|
		if (k < 0)
 | 
						|
			return NULL;
 | 
						|
		if (!k)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i >= vl->ob_size || i >= wl->ob_size) {
 | 
						|
		/* No more items to compare -- compare sizes */
 | 
						|
		int vs = vl->ob_size;
 | 
						|
		int ws = wl->ob_size;
 | 
						|
		int cmp;
 | 
						|
		PyObject *res;
 | 
						|
		switch (op) {
 | 
						|
		case Py_LT: cmp = vs <  ws; break;
 | 
						|
		case Py_LE: cmp = vs <= ws; break;
 | 
						|
		case Py_EQ: cmp = vs == ws; break;
 | 
						|
		case Py_NE: cmp = vs != ws; break;
 | 
						|
		case Py_GT: cmp = vs >  ws; break;
 | 
						|
		case Py_GE: cmp = vs >= ws; break;
 | 
						|
		default: return NULL; /* cannot happen */
 | 
						|
		}
 | 
						|
		if (cmp)
 | 
						|
			res = Py_True;
 | 
						|
		else
 | 
						|
			res = Py_False;
 | 
						|
		Py_INCREF(res);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We have an item that differs -- shortcuts for EQ/NE */
 | 
						|
	if (op == Py_EQ) {
 | 
						|
		Py_INCREF(Py_False);
 | 
						|
		return Py_False;
 | 
						|
	}
 | 
						|
	if (op == Py_NE) {
 | 
						|
		Py_INCREF(Py_True);
 | 
						|
		return Py_True;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compare the final item again using the proper operator */
 | 
						|
	return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_init(PyListObject *self, PyObject *args, PyObject *kw)
 | 
						|
{
 | 
						|
	PyObject *arg = NULL;
 | 
						|
	static const char *kwlist[] = {"sequence", 0};
 | 
						|
 | 
						|
	if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* Verify list invariants established by PyType_GenericAlloc() */
 | 
						|
	assert(0 <= self->ob_size);
 | 
						|
	assert(self->ob_size <= self->allocated || self->allocated == -1);
 | 
						|
	assert(self->ob_item != NULL ||
 | 
						|
	       self->allocated == 0 || self->allocated == -1);
 | 
						|
 | 
						|
	/* Empty previous contents */
 | 
						|
	if (self->ob_item != NULL) {
 | 
						|
		(void)list_clear(self);
 | 
						|
	}
 | 
						|
	if (arg != NULL) {
 | 
						|
		PyObject *rv = listextend(self, arg);
 | 
						|
		if (rv == NULL)
 | 
						|
			return -1;
 | 
						|
		Py_DECREF(rv);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
list_nohash(PyObject *self)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError, "list objects are unhashable");
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *list_iter(PyObject *seq);
 | 
						|
static PyObject *list_reversed(PyListObject* seq, PyObject* unused);
 | 
						|
 | 
						|
PyDoc_STRVAR(getitem_doc,
 | 
						|
"x.__getitem__(y) <==> x[y]");
 | 
						|
PyDoc_STRVAR(reversed_doc,
 | 
						|
"L.__reversed__() -- return a reverse iterator over the list");
 | 
						|
PyDoc_STRVAR(append_doc,
 | 
						|
"L.append(object) -- append object to end");
 | 
						|
PyDoc_STRVAR(extend_doc,
 | 
						|
"L.extend(iterable) -- extend list by appending elements from the iterable");
 | 
						|
PyDoc_STRVAR(insert_doc,
 | 
						|
"L.insert(index, object) -- insert object before index");
 | 
						|
PyDoc_STRVAR(pop_doc,
 | 
						|
"L.pop([index]) -> item -- remove and return item at index (default last)");
 | 
						|
PyDoc_STRVAR(remove_doc,
 | 
						|
"L.remove(value) -- remove first occurrence of value");
 | 
						|
PyDoc_STRVAR(index_doc,
 | 
						|
"L.index(value, [start, [stop]]) -> integer -- return first index of value");
 | 
						|
PyDoc_STRVAR(count_doc,
 | 
						|
"L.count(value) -> integer -- return number of occurrences of value");
 | 
						|
PyDoc_STRVAR(reverse_doc,
 | 
						|
"L.reverse() -- reverse *IN PLACE*");
 | 
						|
PyDoc_STRVAR(sort_doc,
 | 
						|
"L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;\n\
 | 
						|
cmp(x, y) -> -1, 0, 1");
 | 
						|
 | 
						|
static PyObject *list_subscript(PyListObject*, PyObject*);
 | 
						|
 | 
						|
static PyMethodDef list_methods[] = {
 | 
						|
	{"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc},
 | 
						|
	{"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc},
 | 
						|
	{"append",	(PyCFunction)listappend,  METH_O, append_doc},
 | 
						|
	{"insert",	(PyCFunction)listinsert,  METH_VARARGS, insert_doc},
 | 
						|
	{"extend",      (PyCFunction)listextend,  METH_O, extend_doc},
 | 
						|
	{"pop",		(PyCFunction)listpop, 	  METH_VARARGS, pop_doc},
 | 
						|
	{"remove",	(PyCFunction)listremove,  METH_O, remove_doc},
 | 
						|
	{"index",	(PyCFunction)listindex,   METH_VARARGS, index_doc},
 | 
						|
	{"count",	(PyCFunction)listcount,   METH_O, count_doc},
 | 
						|
	{"reverse",	(PyCFunction)listreverse, METH_NOARGS, reverse_doc},
 | 
						|
	{"sort",	(PyCFunction)listsort, 	  METH_VARARGS | METH_KEYWORDS, sort_doc},
 | 
						|
 	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PySequenceMethods list_as_sequence = {
 | 
						|
	(inquiry)list_length,			/* sq_length */
 | 
						|
	(binaryfunc)list_concat,		/* sq_concat */
 | 
						|
	(intargfunc)list_repeat,		/* sq_repeat */
 | 
						|
	(intargfunc)list_item,			/* sq_item */
 | 
						|
	(intintargfunc)list_slice,		/* sq_slice */
 | 
						|
	(intobjargproc)list_ass_item,		/* sq_ass_item */
 | 
						|
	(intintobjargproc)list_ass_slice,	/* sq_ass_slice */
 | 
						|
	(objobjproc)list_contains,		/* sq_contains */
 | 
						|
	(binaryfunc)list_inplace_concat,	/* sq_inplace_concat */
 | 
						|
	(intargfunc)list_inplace_repeat,	/* sq_inplace_repeat */
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(list_doc,
 | 
						|
"list() -> new list\n"
 | 
						|
"list(sequence) -> new list initialized from sequence's items");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_subscript(PyListObject* self, PyObject* item)
 | 
						|
{
 | 
						|
	if (PyInt_Check(item)) {
 | 
						|
		long i = PyInt_AS_LONG(item);
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_item(self, i);
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(item)) {
 | 
						|
		long i = PyLong_AsLong(item);
 | 
						|
		if (i == -1 && PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_item(self, i);
 | 
						|
	}
 | 
						|
	else if (PySlice_Check(item)) {
 | 
						|
		int start, stop, step, slicelength, cur, i;
 | 
						|
		PyObject* result;
 | 
						|
		PyObject* it;
 | 
						|
		PyObject **src, **dest;
 | 
						|
 | 
						|
		if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
 | 
						|
				 &start, &stop, &step, &slicelength) < 0) {
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (slicelength <= 0) {
 | 
						|
			return PyList_New(0);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			result = PyList_New(slicelength);
 | 
						|
			if (!result) return NULL;
 | 
						|
 | 
						|
			src = self->ob_item;
 | 
						|
			dest = ((PyListObject *)result)->ob_item;
 | 
						|
			for (cur = start, i = 0; i < slicelength;
 | 
						|
			     cur += step, i++) {
 | 
						|
				it = src[cur];
 | 
						|
				Py_INCREF(it);
 | 
						|
				dest[i] = it;
 | 
						|
			}
 | 
						|
 | 
						|
			return result;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"list indices must be integers");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
 | 
						|
{
 | 
						|
	if (PyInt_Check(item)) {
 | 
						|
		long i = PyInt_AS_LONG(item);
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_ass_item(self, i, value);
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(item)) {
 | 
						|
		long i = PyLong_AsLong(item);
 | 
						|
		if (i == -1 && PyErr_Occurred())
 | 
						|
			return -1;
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_ass_item(self, i, value);
 | 
						|
	}
 | 
						|
	else if (PySlice_Check(item)) {
 | 
						|
		int start, stop, step, slicelength;
 | 
						|
 | 
						|
		if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
 | 
						|
				 &start, &stop, &step, &slicelength) < 0) {
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* treat L[slice(a,b)] = v _exactly_ like L[a:b] = v */
 | 
						|
		if (step == 1 && ((PySliceObject*)item)->step == Py_None)
 | 
						|
			return list_ass_slice(self, start, stop, value);
 | 
						|
 | 
						|
		if (value == NULL) {
 | 
						|
			/* delete slice */
 | 
						|
			PyObject **garbage;
 | 
						|
			int cur, i;
 | 
						|
 | 
						|
			if (slicelength <= 0)
 | 
						|
				return 0;
 | 
						|
 | 
						|
			if (step < 0) {
 | 
						|
				stop = start + 1;
 | 
						|
				start = stop + step*(slicelength - 1) - 1;
 | 
						|
				step = -step;
 | 
						|
			}
 | 
						|
 | 
						|
			garbage = (PyObject**)
 | 
						|
				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | 
						|
 | 
						|
			/* drawing pictures might help
 | 
						|
			   understand these for loops */
 | 
						|
			for (cur = start, i = 0;
 | 
						|
			     cur < stop;
 | 
						|
			     cur += step, i++) {
 | 
						|
				int lim = step;
 | 
						|
 | 
						|
				garbage[i] = PyList_GET_ITEM(self, cur);
 | 
						|
 | 
						|
				if (cur + step >= self->ob_size) {
 | 
						|
					lim = self->ob_size - cur - 1;
 | 
						|
				}
 | 
						|
 | 
						|
				memmove(self->ob_item + cur - i,
 | 
						|
					self->ob_item + cur + 1,
 | 
						|
					lim * sizeof(PyObject *));
 | 
						|
			}
 | 
						|
 | 
						|
			for (cur = start + slicelength*step + 1;
 | 
						|
			     cur < self->ob_size; cur++) {
 | 
						|
				PyList_SET_ITEM(self, cur - slicelength,
 | 
						|
						PyList_GET_ITEM(self, cur));
 | 
						|
			}
 | 
						|
 | 
						|
			self->ob_size -= slicelength;
 | 
						|
			list_resize(self, self->ob_size);
 | 
						|
 | 
						|
			for (i = 0; i < slicelength; i++) {
 | 
						|
				Py_DECREF(garbage[i]);
 | 
						|
			}
 | 
						|
			PyMem_FREE(garbage);
 | 
						|
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* assign slice */
 | 
						|
			PyObject **garbage, *ins, *seq, **seqitems, **selfitems;
 | 
						|
			int cur, i;
 | 
						|
 | 
						|
			/* protect against a[::-1] = a */
 | 
						|
			if (self == (PyListObject*)value) {
 | 
						|
				seq = list_slice((PyListObject*)value, 0,
 | 
						|
						   PyList_GET_SIZE(value));
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				seq = PySequence_Fast(value,
 | 
						|
					"must assign iterable to extended slice");
 | 
						|
				if (!seq)
 | 
						|
					return -1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
 | 
						|
				PyErr_Format(PyExc_ValueError,
 | 
						|
            "attempt to assign sequence of size %d to extended slice of size %d",
 | 
						|
					     PySequence_Fast_GET_SIZE(seq),
 | 
						|
					     slicelength);
 | 
						|
				Py_DECREF(seq);
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!slicelength) {
 | 
						|
				Py_DECREF(seq);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
 | 
						|
			garbage = (PyObject**)
 | 
						|
				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | 
						|
 | 
						|
			selfitems = self->ob_item;
 | 
						|
			seqitems = PySequence_Fast_ITEMS(seq);
 | 
						|
			for (cur = start, i = 0; i < slicelength;
 | 
						|
			     cur += step, i++) {
 | 
						|
				garbage[i] = selfitems[cur];
 | 
						|
				ins = seqitems[i];
 | 
						|
				Py_INCREF(ins);
 | 
						|
				selfitems[cur] = ins;
 | 
						|
			}
 | 
						|
 | 
						|
			for (i = 0; i < slicelength; i++) {
 | 
						|
				Py_DECREF(garbage[i]);
 | 
						|
			}
 | 
						|
 | 
						|
			PyMem_FREE(garbage);
 | 
						|
			Py_DECREF(seq);
 | 
						|
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"list indices must be integers");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static PyMappingMethods list_as_mapping = {
 | 
						|
	(inquiry)list_length,
 | 
						|
	(binaryfunc)list_subscript,
 | 
						|
	(objobjargproc)list_ass_subscript
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyList_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"list",
 | 
						|
	sizeof(PyListObject),
 | 
						|
	0,
 | 
						|
	(destructor)list_dealloc,		/* tp_dealloc */
 | 
						|
	(printfunc)list_print,			/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	(reprfunc)list_repr,			/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	&list_as_sequence,			/* tp_as_sequence */
 | 
						|
	&list_as_mapping,			/* tp_as_mapping */
 | 
						|
	list_nohash,				/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
 | 
						|
		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | 
						|
 	list_doc,				/* tp_doc */
 | 
						|
 	(traverseproc)list_traverse,		/* tp_traverse */
 | 
						|
 	(inquiry)list_clear,			/* tp_clear */
 | 
						|
	list_richcompare,			/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	list_iter,				/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	list_methods,				/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_dictoffset */
 | 
						|
	(initproc)list_init,			/* tp_init */
 | 
						|
	PyType_GenericAlloc,			/* tp_alloc */
 | 
						|
	PyType_GenericNew,			/* tp_new */
 | 
						|
	PyObject_GC_Del,			/* tp_free */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*********************** List Iterator **************************/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	PyObject_HEAD
 | 
						|
	long it_index;
 | 
						|
	PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | 
						|
} listiterobject;
 | 
						|
 | 
						|
PyTypeObject PyListIter_Type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_iter(PyObject *seq)
 | 
						|
{
 | 
						|
	listiterobject *it;
 | 
						|
 | 
						|
	if (!PyList_Check(seq)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	it = PyObject_GC_New(listiterobject, &PyListIter_Type);
 | 
						|
	if (it == NULL)
 | 
						|
		return NULL;
 | 
						|
	it->it_index = 0;
 | 
						|
	Py_INCREF(seq);
 | 
						|
	it->it_seq = (PyListObject *)seq;
 | 
						|
	_PyObject_GC_TRACK(it);
 | 
						|
	return (PyObject *)it;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
listiter_dealloc(listiterobject *it)
 | 
						|
{
 | 
						|
	_PyObject_GC_UNTRACK(it);
 | 
						|
	Py_XDECREF(it->it_seq);
 | 
						|
	PyObject_GC_Del(it);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listiter_traverse(listiterobject *it, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
	if (it->it_seq == NULL)
 | 
						|
		return 0;
 | 
						|
	return visit((PyObject *)it->it_seq, arg);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_next(listiterobject *it)
 | 
						|
{
 | 
						|
	PyListObject *seq;
 | 
						|
	PyObject *item;
 | 
						|
 | 
						|
	assert(it != NULL);
 | 
						|
	seq = it->it_seq;
 | 
						|
	if (seq == NULL)
 | 
						|
		return NULL;
 | 
						|
	assert(PyList_Check(seq));
 | 
						|
 | 
						|
	if (it->it_index < PyList_GET_SIZE(seq)) {
 | 
						|
		item = PyList_GET_ITEM(seq, it->it_index);
 | 
						|
		++it->it_index;
 | 
						|
		Py_INCREF(item);
 | 
						|
		return item;
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(seq);
 | 
						|
	it->it_seq = NULL;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_len(listiterobject *it)
 | 
						|
{
 | 
						|
	int len;
 | 
						|
	if (it->it_seq) {
 | 
						|
		len = PyList_GET_SIZE(it->it_seq) - it->it_index;
 | 
						|
		if (len >= 0)
 | 
						|
			return PyInt_FromLong((long)len);
 | 
						|
	}
 | 
						|
	return PyInt_FromLong(0);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(length_cue_doc, "Private method returning an estimate of len(list(it)).");
 | 
						|
 | 
						|
static PyMethodDef listiter_methods[] = {
 | 
						|
	{"_length_cue", (PyCFunction)listiter_len, METH_NOARGS, length_cue_doc},
 | 
						|
 	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyListIter_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"listiterator",				/* tp_name */
 | 
						|
	sizeof(listiterobject),			/* tp_basicsize */
 | 
						|
	0,					/* tp_itemsize */
 | 
						|
	/* methods */
 | 
						|
	(destructor)listiter_dealloc,		/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	0,					/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	0,					/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
	0,					/* tp_doc */
 | 
						|
	(traverseproc)listiter_traverse,	/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	0,					/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	PyObject_SelfIter,			/* tp_iter */
 | 
						|
	(iternextfunc)listiter_next,		/* tp_iternext */
 | 
						|
	listiter_methods,			/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
};
 | 
						|
 | 
						|
/*********************** List Reverse Iterator **************************/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	PyObject_HEAD
 | 
						|
	long it_index;
 | 
						|
	PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | 
						|
} listreviterobject;
 | 
						|
 | 
						|
PyTypeObject PyListRevIter_Type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_reversed(PyListObject *seq, PyObject *unused)
 | 
						|
{
 | 
						|
	listreviterobject *it;
 | 
						|
 | 
						|
	it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
 | 
						|
	if (it == NULL)
 | 
						|
		return NULL;
 | 
						|
	assert(PyList_Check(seq));
 | 
						|
	it->it_index = PyList_GET_SIZE(seq) - 1;
 | 
						|
	Py_INCREF(seq);
 | 
						|
	it->it_seq = seq;
 | 
						|
	PyObject_GC_Track(it);
 | 
						|
	return (PyObject *)it;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
listreviter_dealloc(listreviterobject *it)
 | 
						|
{
 | 
						|
	PyObject_GC_UnTrack(it);
 | 
						|
	Py_XDECREF(it->it_seq);
 | 
						|
	PyObject_GC_Del(it);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listreviter_traverse(listreviterobject *it, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
	if (it->it_seq == NULL)
 | 
						|
		return 0;
 | 
						|
	return visit((PyObject *)it->it_seq, arg);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreviter_next(listreviterobject *it)
 | 
						|
{
 | 
						|
	PyObject *item;
 | 
						|
	long index = it->it_index;
 | 
						|
	PyListObject *seq = it->it_seq;
 | 
						|
 | 
						|
	if (index>=0 && index < PyList_GET_SIZE(seq)) {
 | 
						|
		item = PyList_GET_ITEM(seq, index);
 | 
						|
		it->it_index--;
 | 
						|
		Py_INCREF(item);
 | 
						|
		return item;
 | 
						|
	}
 | 
						|
	it->it_index = -1;
 | 
						|
	if (seq != NULL) {
 | 
						|
		it->it_seq = NULL;
 | 
						|
		Py_DECREF(seq);
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listreviter_len(listreviterobject *it)
 | 
						|
{
 | 
						|
	int len = it->it_index + 1;
 | 
						|
	if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
 | 
						|
		return 0;
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static PySequenceMethods listreviter_as_sequence = {
 | 
						|
	(inquiry)listreviter_len,	/* sq_length */
 | 
						|
	0,				/* sq_concat */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyListRevIter_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"listreverseiterator",			/* tp_name */
 | 
						|
	sizeof(listreviterobject),		/* tp_basicsize */
 | 
						|
	0,					/* tp_itemsize */
 | 
						|
	/* methods */
 | 
						|
	(destructor)listreviter_dealloc,	/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	0,					/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	&listreviter_as_sequence,		/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	0,					/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
	0,					/* tp_doc */
 | 
						|
	(traverseproc)listreviter_traverse,	/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	0,					/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	PyObject_SelfIter,			/* tp_iter */
 | 
						|
	(iternextfunc)listreviter_next,		/* tp_iternext */
 | 
						|
	0,
 | 
						|
};
 |