mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			426 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			426 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Complex math module */
 | |
| 
 | |
| /* much code borrowed from mathmodule.c */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #ifndef M_PI
 | |
| #define M_PI (3.141592653589793239)
 | |
| #endif
 | |
| 
 | |
| /* First, the C functions that do the real work */
 | |
| 
 | |
| /* constants */
 | |
| static Py_complex c_one = {1., 0.};
 | |
| static Py_complex c_half = {0.5, 0.};
 | |
| static Py_complex c_i = {0., 1.};
 | |
| static Py_complex c_halfi = {0., 0.5};
 | |
| 
 | |
| /* forward declarations */
 | |
| static Py_complex c_log(Py_complex);
 | |
| static Py_complex c_prodi(Py_complex);
 | |
| static Py_complex c_sqrt(Py_complex);
 | |
| static PyObject * math_error(void);
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_acos(Py_complex x)
 | |
| {
 | |
| 	return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
 | |
| 		    c_sqrt(c_diff(c_one,c_prod(x,x))))))));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_acos_doc,
 | |
| "acos(x)\n"
 | |
| "\n"
 | |
| "Return the arc cosine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_acosh(Py_complex x)
 | |
| {
 | |
| 	Py_complex z;
 | |
| 	z = c_sqrt(c_half);
 | |
| 	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
 | |
| 				  c_sqrt(c_diff(x,c_one)))));
 | |
| 	return c_sum(z, z);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_acosh_doc,
 | |
| "acosh(x)\n"
 | |
| "\n"
 | |
| "Return the hyperbolic arccosine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_asin(Py_complex x)
 | |
| {
 | |
| 	/* -i * log[(sqrt(1-x**2) + i*x] */
 | |
| 	const Py_complex squared = c_prod(x, x);
 | |
| 	const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
 | |
|         return c_neg(c_prodi(c_log(
 | |
|         		c_sum(sqrt_1_minus_x_sq, c_prodi(x))
 | |
| 		    )       )     );
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_asin_doc,
 | |
| "asin(x)\n"
 | |
| "\n"
 | |
| "Return the arc sine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_asinh(Py_complex x)
 | |
| {
 | |
| 	Py_complex z;
 | |
| 	z = c_sqrt(c_half);
 | |
| 	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
 | |
| 				  c_sqrt(c_diff(x, c_i)))));
 | |
| 	return c_sum(z, z);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_asinh_doc,
 | |
| "asinh(x)\n"
 | |
| "\n"
 | |
| "Return the hyperbolic arc sine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_atan(Py_complex x)
 | |
| {
 | |
| 	return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_atan_doc,
 | |
| "atan(x)\n"
 | |
| "\n"
 | |
| "Return the arc tangent of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_atanh(Py_complex x)
 | |
| {
 | |
| 	return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_atanh_doc,
 | |
| "atanh(x)\n"
 | |
| "\n"
 | |
| "Return the hyperbolic arc tangent of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_cos(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.real)*cosh(x.imag);
 | |
| 	r.imag = -sin(x.real)*sinh(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_cos_doc,
 | |
| "cos(x)\n"
 | |
| "n"
 | |
| "Return the cosine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_cosh(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.imag)*cosh(x.real);
 | |
| 	r.imag = sin(x.imag)*sinh(x.real);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_cosh_doc,
 | |
| "cosh(x)\n"
 | |
| "n"
 | |
| "Return the hyperbolic cosine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_exp(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = exp(x.real);
 | |
| 	r.real = l*cos(x.imag);
 | |
| 	r.imag = l*sin(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_exp_doc,
 | |
| "exp(x)\n"
 | |
| "\n"
 | |
| "Return the exponential value e**x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_log(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = hypot(x.real,x.imag);
 | |
| 	r.imag = atan2(x.imag, x.real);
 | |
| 	r.real = log(l);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_log10(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = hypot(x.real,x.imag);
 | |
| 	r.imag = atan2(x.imag, x.real)/log(10.);
 | |
| 	r.real = log10(l);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_log10_doc,
 | |
| "log10(x)\n"
 | |
| "\n"
 | |
| "Return the base-10 logarithm of x.");
 | |
| 
 | |
| 
 | |
| /* internal function not available from Python */
 | |
| static Py_complex
 | |
| c_prodi(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = -x.imag;
 | |
| 	r.imag = x.real;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_sin(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = sin(x.real) * cosh(x.imag);
 | |
| 	r.imag = cos(x.real) * sinh(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_sin_doc,
 | |
| "sin(x)\n"
 | |
| "\n"
 | |
| "Return the sine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_sinh(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.imag) * sinh(x.real);
 | |
| 	r.imag = sin(x.imag) * cosh(x.real);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_sinh_doc,
 | |
| "sinh(x)\n"
 | |
| "\n"
 | |
| "Return the hyperbolic sine of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_sqrt(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double s,d;
 | |
| 	if (x.real == 0. && x.imag == 0.)
 | |
| 		r = x;
 | |
| 	else {
 | |
| 		s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
 | |
| 		d = 0.5*x.imag/s;
 | |
| 		if (x.real > 0.) {
 | |
| 			r.real = s;
 | |
| 			r.imag = d;
 | |
| 		}
 | |
| 		else if (x.imag >= 0.) {
 | |
| 			r.real = d;
 | |
| 			r.imag = s;
 | |
| 		}
 | |
| 		else {
 | |
| 			r.real = -d;
 | |
| 			r.imag = -s;
 | |
| 		}
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_sqrt_doc,
 | |
| "sqrt(x)\n"
 | |
| "\n"
 | |
| "Return the square root of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_tan(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double sr,cr,shi,chi;
 | |
| 	double rs,is,rc,ic;
 | |
| 	double d;
 | |
| 	sr = sin(x.real);
 | |
| 	cr = cos(x.real);
 | |
| 	shi = sinh(x.imag);
 | |
| 	chi = cosh(x.imag);
 | |
| 	rs = sr * chi;
 | |
| 	is = cr * shi;
 | |
| 	rc = cr * chi;
 | |
| 	ic = -sr * shi;
 | |
| 	d = rc*rc + ic * ic;
 | |
| 	r.real = (rs*rc + is*ic) / d;
 | |
| 	r.imag = (is*rc - rs*ic) / d;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_tan_doc,
 | |
| "tan(x)\n"
 | |
| "\n"
 | |
| "Return the tangent of x.");
 | |
| 
 | |
| 
 | |
| static Py_complex
 | |
| c_tanh(Py_complex x)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double si,ci,shr,chr;
 | |
| 	double rs,is,rc,ic;
 | |
| 	double d;
 | |
| 	si = sin(x.imag);
 | |
| 	ci = cos(x.imag);
 | |
| 	shr = sinh(x.real);
 | |
| 	chr = cosh(x.real);
 | |
| 	rs = ci * shr;
 | |
| 	is = si * chr;
 | |
| 	rc = ci * chr;
 | |
| 	ic = si * shr;
 | |
| 	d = rc*rc + ic*ic;
 | |
| 	r.real = (rs*rc + is*ic) / d;
 | |
| 	r.imag = (is*rc - rs*ic) / d;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(c_tanh_doc,
 | |
| "tanh(x)\n"
 | |
| "\n"
 | |
| "Return the hyperbolic tangent of x.");
 | |
| 
 | |
| static PyObject *
 | |
| cmath_log(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	Py_complex x;
 | |
| 	Py_complex y;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "D|D", &x, &y))
 | |
| 		return NULL;
 | |
| 
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("complex function", return 0)
 | |
| 	x = c_log(x);
 | |
| 	if (PyTuple_GET_SIZE(args) == 2)
 | |
| 		x = c_quot(x, c_log(y));
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	if (errno != 0)
 | |
| 		return math_error();
 | |
| 	Py_ADJUST_ERANGE2(x.real, x.imag);
 | |
| 	return PyComplex_FromCComplex(x);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_log_doc,
 | |
| "log(x[, base]) -> the logarithm of x to the given base.\n\
 | |
| If the base not specified, returns the natural logarithm (base e) of x.");
 | |
| 
 | |
| 
 | |
| /* And now the glue to make them available from Python: */
 | |
| 
 | |
| static PyObject *
 | |
| math_error(void)
 | |
| {
 | |
| 	if (errno == EDOM)
 | |
| 		PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
| 	else if (errno == ERANGE)
 | |
| 		PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
| 	else    /* Unexpected math error */
 | |
| 		PyErr_SetFromErrno(PyExc_ValueError);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_1(PyObject *args, Py_complex (*func)(Py_complex))
 | |
| {
 | |
| 	Py_complex x;
 | |
| 	if (!PyArg_ParseTuple(args, "D", &x))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("complex function", return 0)
 | |
| 	x = (*func)(x);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	Py_ADJUST_ERANGE2(x.real, x.imag);
 | |
| 	if (errno != 0)
 | |
| 		return math_error();
 | |
| 	else
 | |
| 		return PyComplex_FromCComplex(x);
 | |
| }
 | |
| 
 | |
| #define FUNC1(stubname, func) \
 | |
| 	static PyObject * stubname(PyObject *self, PyObject *args) { \
 | |
| 		return math_1(args, func); \
 | |
| 	}
 | |
| 
 | |
| FUNC1(cmath_acos, c_acos)
 | |
| FUNC1(cmath_acosh, c_acosh)
 | |
| FUNC1(cmath_asin, c_asin)
 | |
| FUNC1(cmath_asinh, c_asinh)
 | |
| FUNC1(cmath_atan, c_atan)
 | |
| FUNC1(cmath_atanh, c_atanh)
 | |
| FUNC1(cmath_cos, c_cos)
 | |
| FUNC1(cmath_cosh, c_cosh)
 | |
| FUNC1(cmath_exp, c_exp)
 | |
| FUNC1(cmath_log10, c_log10)
 | |
| FUNC1(cmath_sin, c_sin)
 | |
| FUNC1(cmath_sinh, c_sinh)
 | |
| FUNC1(cmath_sqrt, c_sqrt)
 | |
| FUNC1(cmath_tan, c_tan)
 | |
| FUNC1(cmath_tanh, c_tanh)
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "This module is always available. It provides access to mathematical\n"
 | |
| "functions for complex numbers.");
 | |
| 
 | |
| static PyMethodDef cmath_methods[] = {
 | |
| 	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
 | |
| 	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
 | |
| 	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
 | |
| 	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
 | |
| 	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
 | |
| 	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
 | |
| 	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
 | |
| 	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
 | |
| 	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
 | |
| 	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
 | |
| 	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
 | |
| 	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
 | |
| 	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
 | |
| 	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
 | |
| 	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
 | |
| 	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| initcmath(void)
 | |
| {
 | |
| 	PyObject *m;
 | |
| 
 | |
| 	m = Py_InitModule3("cmath", cmath_methods, module_doc);
 | |
| 	if (m == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	PyModule_AddObject(m, "pi",
 | |
|                            PyFloat_FromDouble(atan(1.0) * 4.0));
 | |
| 	PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
 | |
| }
 | 
