mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			376 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			376 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Math module -- standard C math library functions, pi and e */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "longintrepr.h" /* just for SHIFT */
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
| #ifndef __STDC__
 | |
| extern double fmod (double, double);
 | |
| extern double frexp (double, int *);
 | |
| extern double ldexp (double, int);
 | |
| extern double modf (double, double *);
 | |
| #endif /* __STDC__ */
 | |
| #endif /* _MSC_VER */
 | |
| 
 | |
| /* Call is_error when errno != 0, and where x is the result libm
 | |
|  * returned.  is_error will usually set up an exception and return
 | |
|  * true (1), but may return false (0) without setting up an exception.
 | |
|  */
 | |
| static int
 | |
| is_error(double x)
 | |
| {
 | |
| 	int result = 1;	/* presumption of guilt */
 | |
| 	assert(errno);	/* non-zero errno is a precondition for calling */
 | |
| 	if (errno == EDOM)
 | |
| 		PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
| 
 | |
| 	else if (errno == ERANGE) {
 | |
| 		/* ANSI C generally requires libm functions to set ERANGE
 | |
| 		 * on overflow, but also generally *allows* them to set
 | |
| 		 * ERANGE on underflow too.  There's no consistency about
 | |
| 		 * the latter across platforms.
 | |
| 		 * Alas, C99 never requires that errno be set.
 | |
| 		 * Here we suppress the underflow errors (libm functions
 | |
| 		 * should return a zero on underflow, and +- HUGE_VAL on
 | |
| 		 * overflow, so testing the result for zero suffices to
 | |
| 		 * distinguish the cases).
 | |
| 		 */
 | |
| 		if (x)
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 					"math range error");
 | |
| 		else
 | |
| 			result = 0;
 | |
| 	}
 | |
| 	else
 | |
|                 /* Unexpected math error */
 | |
| 		PyErr_SetFromErrno(PyExc_ValueError);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_1(PyObject *args, double (*func) (double), char *argsfmt)
 | |
| {
 | |
| 	double x;
 | |
| 	if (!  PyArg_ParseTuple(args, argsfmt, &x))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_1", return 0)
 | |
| 	x = (*func)(x);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	Py_SET_ERRNO_ON_MATH_ERROR(x);
 | |
| 	if (errno && is_error(x))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_2(PyObject *args, double (*func) (double, double), char *argsfmt)
 | |
| {
 | |
| 	double x, y;
 | |
| 	if (! PyArg_ParseTuple(args, argsfmt, &x, &y))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_2", return 0)
 | |
| 	x = (*func)(x, y);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	Py_SET_ERRNO_ON_MATH_ERROR(x);
 | |
| 	if (errno && is_error(x))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(x);
 | |
| }
 | |
| 
 | |
| #define FUNC1(funcname, func, docstring) \
 | |
| 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
| 		return math_1(args, func, "d:" #funcname); \
 | |
| 	}\
 | |
|         PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| #define FUNC2(funcname, func, docstring) \
 | |
| 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
| 		return math_2(args, func, "dd:" #funcname); \
 | |
| 	}\
 | |
|         PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| FUNC1(acos, acos,
 | |
|       "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
 | |
| FUNC1(asin, asin,
 | |
|       "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
 | |
| FUNC1(atan, atan,
 | |
|       "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
 | |
| FUNC2(atan2, atan2,
 | |
|       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
 | |
|       "Unlike atan(y/x), the signs of both x and y are considered.")
 | |
| FUNC1(ceil, ceil,
 | |
|       "ceil(x)\n\nReturn the ceiling of x as a float.\n"
 | |
|       "This is the smallest integral value >= x.")
 | |
| FUNC1(cos, cos,
 | |
|       "cos(x)\n\nReturn the cosine of x (measured in radians).")
 | |
| FUNC1(cosh, cosh,
 | |
|       "cosh(x)\n\nReturn the hyperbolic cosine of x.")
 | |
| FUNC1(exp, exp,
 | |
|       "exp(x)\n\nReturn e raised to the power of x.")
 | |
| FUNC1(fabs, fabs,
 | |
|       "fabs(x)\n\nReturn the absolute value of the float x.")
 | |
| FUNC1(floor, floor,
 | |
|       "floor(x)\n\nReturn the floor of x as a float.\n"
 | |
|       "This is the largest integral value <= x.")
 | |
| FUNC2(fmod, fmod,
 | |
|       "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
 | |
|       "  x % y may differ.")
 | |
| FUNC2(hypot, hypot,
 | |
|       "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).")
 | |
| FUNC2(pow, pow,
 | |
|       "pow(x,y)\n\nReturn x**y (x to the power of y).")
 | |
| FUNC1(sin, sin,
 | |
|       "sin(x)\n\nReturn the sine of x (measured in radians).")
 | |
| FUNC1(sinh, sinh,
 | |
|       "sinh(x)\n\nReturn the hyperbolic sine of x.")
 | |
| FUNC1(sqrt, sqrt,
 | |
|       "sqrt(x)\n\nReturn the square root of x.")
 | |
| FUNC1(tan, tan,
 | |
|       "tan(x)\n\nReturn the tangent of x (measured in radians).")
 | |
| FUNC1(tanh, tanh,
 | |
|       "tanh(x)\n\nReturn the hyperbolic tangent of x.")
 | |
| 
 | |
| static PyObject *
 | |
| math_frexp(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x;
 | |
| 	int i;
 | |
| 	if (! PyArg_ParseTuple(args, "d:frexp", &x))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	x = frexp(x, &i);
 | |
| 	Py_SET_ERRNO_ON_MATH_ERROR(x);
 | |
| 	if (errno && is_error(x))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return Py_BuildValue("(di)", x, i);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_frexp_doc,
 | |
| "frexp(x)\n"
 | |
| "\n"
 | |
| "Return the mantissa and exponent of x, as pair (m, e).\n"
 | |
| "m is a float and e is an int, such that x = m * 2.**e.\n"
 | |
| "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
 | |
| 
 | |
| static PyObject *
 | |
| math_ldexp(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x;
 | |
| 	int exp;
 | |
| 	if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("ldexp", return 0)
 | |
| 	x = ldexp(x, exp);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	Py_SET_ERRNO_ON_MATH_ERROR(x);
 | |
| 	if (errno && is_error(x))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(x);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_ldexp_doc,
 | |
| "ldexp(x, i) -> x * (2**i)");
 | |
| 
 | |
| static PyObject *
 | |
| math_modf(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x, y;
 | |
| 	if (! PyArg_ParseTuple(args, "d:modf", &x))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	x = modf(x, &y);
 | |
| 	Py_SET_ERRNO_ON_MATH_ERROR(x);
 | |
| 	if (errno && is_error(x))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return Py_BuildValue("(dd)", x, y);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_modf_doc,
 | |
| "modf(x)\n"
 | |
| "\n"
 | |
| "Return the fractional and integer parts of x.  Both results carry the sign\n"
 | |
| "of x.  The integer part is returned as a real.");
 | |
| 
 | |
| /* A decent logarithm is easy to compute even for huge longs, but libm can't
 | |
|    do that by itself -- loghelper can.  func is log or log10, and name is
 | |
|    "log" or "log10".  Note that overflow isn't possible:  a long can contain
 | |
|    no more than INT_MAX * SHIFT bits, so has value certainly less than
 | |
|    2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | |
|    small enough to fit in an IEEE single.  log and log10 are even smaller.
 | |
| */
 | |
| 
 | |
| static PyObject*
 | |
| loghelper(PyObject* args, double (*func)(double), char *format, PyObject *arg)
 | |
| {
 | |
| 	/* If it is long, do it ourselves. */
 | |
| 	if (PyLong_Check(arg)) {
 | |
| 		double x;
 | |
| 		int e;
 | |
| 		x = _PyLong_AsScaledDouble(arg, &e);
 | |
| 		if (x <= 0.0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"math domain error");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/* Value is ~= x * 2**(e*SHIFT), so the log ~=
 | |
| 		   log(x) + log(2) * e * SHIFT.
 | |
| 		   CAUTION:  e*SHIFT may overflow using int arithmetic,
 | |
| 		   so force use of double. */
 | |
| 		x = func(x) + (e * (double)SHIFT) * func(2.0);
 | |
| 		return PyFloat_FromDouble(x);
 | |
| 	}
 | |
| 
 | |
| 	/* Else let libm handle it by itself. */
 | |
| 	return math_1(args, func, format);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_log(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *arg;
 | |
| 	PyObject *base = NULL;
 | |
| 	PyObject *num, *den;
 | |
| 	PyObject *ans;
 | |
| 	PyObject *newargs;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
 | |
| 		return NULL;
 | |
| 	if (base == NULL)
 | |
| 		return loghelper(args, log, "d:log", arg);
 | |
| 
 | |
| 	newargs = PyTuple_Pack(1, arg);
 | |
| 	if (newargs == NULL)
 | |
| 		return NULL;
 | |
| 	num = loghelper(newargs, log, "d:log", arg);
 | |
| 	Py_DECREF(newargs);
 | |
| 	if (num == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	newargs = PyTuple_Pack(1, base);
 | |
| 	if (newargs == NULL) {
 | |
| 		Py_DECREF(num);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	den = loghelper(newargs, log, "d:log", base);
 | |
| 	Py_DECREF(newargs);
 | |
| 	if (den == NULL) {
 | |
| 		Py_DECREF(num);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ans = PyNumber_Divide(num, den);
 | |
| 	Py_DECREF(num);
 | |
| 	Py_DECREF(den);
 | |
| 	return ans;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log_doc,
 | |
| "log(x[, base]) -> the logarithm of x to the given base.\n\
 | |
| If the base not specified, returns the natural logarithm (base e) of x.");
 | |
| 
 | |
| static PyObject *
 | |
| math_log10(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *arg;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "log10", 1, 1, &arg))
 | |
| 		return NULL;
 | |
| 	return loghelper(args, log10, "d:log10", arg);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log10_doc,
 | |
| "log10(x) -> the base 10 logarithm of x.");
 | |
| 
 | |
| static const double degToRad = 3.141592653589793238462643383 / 180.0;
 | |
| 
 | |
| static PyObject *
 | |
| math_degrees(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x;
 | |
| 	if (! PyArg_ParseTuple(args, "d:degrees", &x))
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(x / degToRad);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_degrees_doc,
 | |
| "degrees(x) -> converts angle x from radians to degrees");
 | |
| 
 | |
| static PyObject *
 | |
| math_radians(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x;
 | |
| 	if (! PyArg_ParseTuple(args, "d:radians", &x))
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(x * degToRad);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_radians_doc,
 | |
| "radians(x) -> converts angle x from degrees to radians");
 | |
| 
 | |
| static PyMethodDef math_methods[] = {
 | |
| 	{"acos",	math_acos,	METH_VARARGS,	math_acos_doc},
 | |
| 	{"asin",	math_asin,	METH_VARARGS,	math_asin_doc},
 | |
| 	{"atan",	math_atan,	METH_VARARGS,	math_atan_doc},
 | |
| 	{"atan2",	math_atan2,	METH_VARARGS,	math_atan2_doc},
 | |
| 	{"ceil",	math_ceil,	METH_VARARGS,	math_ceil_doc},
 | |
| 	{"cos",		math_cos,	METH_VARARGS,	math_cos_doc},
 | |
| 	{"cosh",	math_cosh,	METH_VARARGS,	math_cosh_doc},
 | |
| 	{"degrees",	math_degrees,	METH_VARARGS,	math_degrees_doc},
 | |
| 	{"exp",		math_exp,	METH_VARARGS,	math_exp_doc},
 | |
| 	{"fabs",	math_fabs,	METH_VARARGS,	math_fabs_doc},
 | |
| 	{"floor",	math_floor,	METH_VARARGS,	math_floor_doc},
 | |
| 	{"fmod",	math_fmod,	METH_VARARGS,	math_fmod_doc},
 | |
| 	{"frexp",	math_frexp,	METH_VARARGS,	math_frexp_doc},
 | |
| 	{"hypot",	math_hypot,	METH_VARARGS,	math_hypot_doc},
 | |
| 	{"ldexp",	math_ldexp,	METH_VARARGS,	math_ldexp_doc},
 | |
| 	{"log",		math_log,	METH_VARARGS,	math_log_doc},
 | |
| 	{"log10",	math_log10,	METH_VARARGS,	math_log10_doc},
 | |
| 	{"modf",	math_modf,	METH_VARARGS,	math_modf_doc},
 | |
| 	{"pow",		math_pow,	METH_VARARGS,	math_pow_doc},
 | |
| 	{"radians",	math_radians,	METH_VARARGS,	math_radians_doc},
 | |
| 	{"sin",		math_sin,	METH_VARARGS,	math_sin_doc},
 | |
| 	{"sinh",	math_sinh,	METH_VARARGS,	math_sinh_doc},
 | |
| 	{"sqrt",	math_sqrt,	METH_VARARGS,	math_sqrt_doc},
 | |
| 	{"tan",		math_tan,	METH_VARARGS,	math_tan_doc},
 | |
| 	{"tanh",	math_tanh,	METH_VARARGS,	math_tanh_doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "This module is always available.  It provides access to the\n"
 | |
| "mathematical functions defined by the C standard.");
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| initmath(void)
 | |
| {
 | |
| 	PyObject *m, *d, *v;
 | |
| 
 | |
| 	m = Py_InitModule3("math", math_methods, module_doc);
 | |
| 	if (m == NULL)
 | |
| 		goto finally;
 | |
| 	d = PyModule_GetDict(m);
 | |
| 
 | |
|         if (!(v = PyFloat_FromDouble(atan(1.0) * 4.0)))
 | |
|                 goto finally;
 | |
| 	if (PyDict_SetItemString(d, "pi", v) < 0)
 | |
|                 goto finally;
 | |
| 	Py_DECREF(v);
 | |
| 
 | |
|         if (!(v = PyFloat_FromDouble(exp(1.0))))
 | |
|                 goto finally;
 | |
| 	if (PyDict_SetItemString(d, "e", v) < 0)
 | |
|                 goto finally;
 | |
| 	Py_DECREF(v);
 | |
| 
 | |
|   finally:
 | |
| 	return;
 | |
| }
 | 
