ffmpeg/libavformat/tls_schannel.c

1402 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Hendrik Leppkes
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/** Based on the CURL SChannel module */
#include "libavutil/mem.h"
#include "avformat.h"
#include "internal.h"
#include "network.h"
#include "os_support.h"
#include "url.h"
#include "tls.h"
#define SECURITY_WIN32
#include <windows.h>
#include <security.h>
#include <schnlsp.h>
#include <sddl.h>
#define SCHANNEL_INITIAL_BUFFER_SIZE 4096
#define SCHANNEL_FREE_BUFFER_SIZE 1024
/* mingw does not define this symbol */
#ifndef SECBUFFER_ALERT
#define SECBUFFER_ALERT 17
#endif
/* This is the name used for the private key in the MS Keystore.
* There is as of time of writing no way to use schannel without
* persisting the private key. Which usually means the default MS
* keystore will write it to disk unencrypted, user-read/writable.
* To combat this as much as possible, the code makes sure to
* delete the private key ASAP once SChannel has gotten ahold of
* it.
* Apparently this is because SChannel neglects marshaling the
* private key alongside the certificate for the out-of-process
* tls handler.
* See this GitHub issue for the most detailed explanation out there:
* https://github.com/dotnet/runtime/issues/23749#issuecomment-485947319
*/
#define FF_NCRYPT_TEMP_KEY_NAME L"FFMPEG_TEMP_TLS_KEY"
static int der_to_pem(const char *data, size_t len, const char *header, char *buf, size_t bufsize)
{
const int line_length = 64;
AVBPrint pem;
DWORD base64len = 0;
char *base64 = NULL;
int ret = 0;
if (!CryptBinaryToStringA(data, len, CRYPT_STRING_BASE64 | CRYPT_STRING_NOCRLF, NULL, &base64len)) {
av_log(NULL, AV_LOG_ERROR, "CryptBinaryToString failed\n");
ret = AVERROR_EXTERNAL;
goto end;
}
base64 = av_malloc(base64len);
if (!CryptBinaryToStringA(data, len, CRYPT_STRING_BASE64 | CRYPT_STRING_NOCRLF, base64, &base64len)) {
av_log(NULL, AV_LOG_ERROR, "CryptBinaryToString failed\n");
ret = AVERROR_EXTERNAL;
goto end;
}
av_bprint_init_for_buffer(&pem, buf, bufsize);
av_bprintf(&pem, "-----BEGIN %s-----\n", header);
for (DWORD i = 0; i < base64len; i += line_length) {
av_bprintf(&pem, "%.*s\n", line_length, base64 + i);
}
av_bprintf(&pem, "-----END %s-----\n", header);
if (!av_bprint_is_complete(&pem)) {
ret = AVERROR(ENOSPC);
goto end;
}
end:
av_free(base64);
return ret;
}
static int pem_to_der(const char *pem, char **buf, int *out_len)
{
DWORD derlen = 0;
if (!CryptStringToBinaryA(pem, 0, CRYPT_STRING_BASE64HEADER, NULL, &derlen, NULL, NULL)) {
av_log(NULL, AV_LOG_ERROR, "CryptStringToBinaryA failed\n");
return AVERROR(EINVAL);
}
*buf = av_malloc(derlen);
if (!*buf)
return AVERROR(ENOMEM);
if (!CryptStringToBinaryA(pem, 0, CRYPT_STRING_BASE64HEADER, *buf, &derlen, NULL, NULL)) {
av_log(NULL, AV_LOG_ERROR, "CryptStringToBinaryA failed\n");
return AVERROR(EINVAL);
}
*out_len = derlen;
return 0;
}
static int der_to_fingerprint(const char *data, size_t len, char **fingerprint)
{
AVBPrint buf;
unsigned char hash[32];
DWORD hashsize = sizeof(hash);
if (!CryptHashCertificate2(BCRYPT_SHA256_ALGORITHM, 0, NULL, data, len, hash, &hashsize))
{
av_log(NULL, AV_LOG_ERROR, "CryptHashCertificate2 failed\n");
return AVERROR_EXTERNAL;
}
av_bprint_init(&buf, hashsize*3, hashsize*3);
for (int i = 0; i < hashsize - 1; i++)
av_bprintf(&buf, "%02X:", hash[i]);
av_bprintf(&buf, "%02X", hash[hashsize - 1]);
return av_bprint_finalize(&buf, fingerprint);
}
static int tls_gen_self_signed(NCRYPT_KEY_HANDLE *key, PCCERT_CONTEXT *crtctx)
{
NCRYPT_PROV_HANDLE provider = 0;
CERT_NAME_BLOB subject = { 0 };
DWORD export_props = NCRYPT_ALLOW_EXPORT_FLAG | NCRYPT_ALLOW_PLAINTEXT_EXPORT_FLAG;
DWORD usage_props = NCRYPT_ALLOW_ALL_USAGES;
LPCSTR ext_usages[] = { szOID_PKIX_KP_SERVER_AUTH };
BYTE key_usage = CERT_KEY_ENCIPHERMENT_KEY_USAGE | CERT_DIGITAL_SIGNATURE_KEY_USAGE;
CRYPT_BIT_BLOB key_usage_blob = { 0 };
CERT_ENHKEY_USAGE eku = { 0 };
CERT_BASIC_CONSTRAINTS2_INFO basic_constraints = { 0 };
CERT_ALT_NAME_ENTRY san_entry = { 0 };
CERT_ALT_NAME_INFO san_info = { 0 };
CERT_EXTENSION ext[4] = { 0 };
CERT_EXTENSIONS exts = { 0 };
CRYPT_ALGORITHM_IDENTIFIER sig_alg = { (LPSTR)szOID_ECDSA_SHA256 };
CRYPT_KEY_PROV_INFO prov_info = { 0 };
const char *subj_str = "CN=lavf";
SECURITY_STATUS sspi_ret;
int ret = 0;
*crtctx = NULL;
sspi_ret = NCryptOpenStorageProvider(&provider, MS_KEY_STORAGE_PROVIDER, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptOpenStorageProvider failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptCreatePersistedKey(provider, key, BCRYPT_ECDSA_P256_ALGORITHM, FF_NCRYPT_TEMP_KEY_NAME, 0, NCRYPT_OVERWRITE_KEY_FLAG);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptCreatePersistedKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptSetProperty(*key, NCRYPT_EXPORT_POLICY_PROPERTY, (PBYTE)&export_props, sizeof(export_props), 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptSetProperty(NCRYPT_EXPORT_POLICY_PROPERTY) failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptSetProperty(*key, NCRYPT_KEY_USAGE_PROPERTY, (PBYTE)&usage_props, sizeof(usage_props), 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptSetProperty(NCRYPT_KEY_USAGE_PROPERTY) failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptFinalizeKey(*key, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptFinalizeKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
if (!CertStrToNameA(X509_ASN_ENCODING, subj_str, 0, NULL, NULL, &subject.cbData, NULL))
{
av_log(NULL, AV_LOG_ERROR, "Initial subj init failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
subject.pbData = av_malloc(subject.cbData);
if (!subject.pbData) {
ret = AVERROR(ENOMEM);
goto fail;
}
if (!CertStrToNameA(X509_ASN_ENCODING, subj_str, 0, NULL, subject.pbData, &subject.cbData, NULL))
{
av_log(NULL, AV_LOG_ERROR, "Subj init failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
// Extended Key Usage extension
eku.cUsageIdentifier = 1;
eku.rgpszUsageIdentifier = (LPSTR*)ext_usages;
if (!CryptEncodeObjectEx(X509_ASN_ENCODING, X509_ENHANCED_KEY_USAGE, &eku,
CRYPT_ENCODE_ALLOC_FLAG, NULL, &ext[0].Value.pbData, &ext[0].Value.cbData)) {
av_log(NULL, AV_LOG_ERROR, "CryptEncodeObjectEx for EKU failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
ext[0].pszObjId = (LPSTR)szOID_ENHANCED_KEY_USAGE;
ext[0].fCritical = TRUE;
// Key usage extension
key_usage_blob.cbData = sizeof(key_usage);
key_usage_blob.pbData = &key_usage;
if (!CryptEncodeObjectEx(X509_ASN_ENCODING, X509_BITS, &key_usage_blob,
CRYPT_ENCODE_ALLOC_FLAG, NULL, &ext[1].Value.pbData, &ext[1].Value.cbData)) {
av_log(NULL, AV_LOG_ERROR, "CryptEncodeObjectEx for KU failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
ext[1].pszObjId = (LPSTR)szOID_KEY_USAGE;
ext[1].fCritical = TRUE;
// Cert Basic Constraints
basic_constraints.fCA = FALSE;
if (!CryptEncodeObjectEx(X509_ASN_ENCODING, X509_BASIC_CONSTRAINTS2, &basic_constraints,
CRYPT_ENCODE_ALLOC_FLAG, NULL, &ext[2].Value.pbData, &ext[2].Value.cbData)) {
av_log(NULL, AV_LOG_ERROR, "CryptEncodeObjectEx for KU failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
ext[2].pszObjId = (LPSTR)szOID_BASIC_CONSTRAINTS2;
ext[2].fCritical = TRUE;
// Subject Alt Names
san_entry.dwAltNameChoice = CERT_ALT_NAME_DNS_NAME;
san_entry.pwszDNSName = (LPWSTR)L"localhost";
san_info.cAltEntry = 1;
san_info.rgAltEntry = &san_entry;
if (!CryptEncodeObjectEx(X509_ASN_ENCODING, X509_ALTERNATE_NAME, &san_info,
CRYPT_ENCODE_ALLOC_FLAG, NULL, &ext[3].Value.pbData, &ext[3].Value.cbData)) {
av_log(NULL, AV_LOG_ERROR, "CryptEncodeObjectEx for KU failed\n");
ret = AVERROR_EXTERNAL;
goto fail;
}
ext[3].pszObjId = (LPSTR)szOID_SUBJECT_ALT_NAME2;
ext[3].fCritical = TRUE;
exts.cExtension = 4;
exts.rgExtension = ext;
prov_info.pwszProvName = (LPWSTR)MS_KEY_STORAGE_PROVIDER;
prov_info.pwszContainerName = (LPWSTR)FF_NCRYPT_TEMP_KEY_NAME;
prov_info.dwFlags = CERT_SET_KEY_CONTEXT_PROP_ID;
*crtctx = CertCreateSelfSignCertificate(*key, &subject, 0, &prov_info, &sig_alg, NULL, NULL, &exts);
if (!*crtctx) {
av_log(NULL, AV_LOG_ERROR, "CertCreateSelfSignCertificate failed: %lu\n", GetLastError());
ret = AVERROR_EXTERNAL;
goto fail;
}
NCryptFreeObject(provider);
av_free(subject.pbData);
for (int i = 0; i < FF_ARRAY_ELEMS(ext); i++)
LocalFree(ext[i].Value.pbData);
return 0;
fail:
if (*crtctx)
CertFreeCertificateContext(*crtctx);
if (*key)
if (NCryptDeleteKey(*key, NCRYPT_SILENT_FLAG) != ERROR_SUCCESS)
NCryptFreeObject(*key);
if (provider)
NCryptFreeObject(provider);
if (subject.pbData)
av_free(subject.pbData);
for (int i = 0; i < FF_ARRAY_ELEMS(ext); i++)
if (ext[i].Value.pbData)
LocalFree(ext[i].Value.pbData);
*key = 0;
*crtctx = NULL;
return ret;
}
static int tls_export_key_cert(NCRYPT_KEY_HANDLE key, PCCERT_CONTEXT crtctx,
char *key_buf, size_t key_sz, char *cert_buf, size_t cert_sz, char **fingerprint)
{
DWORD keysize = 0;
char *keybuf = NULL;
SECURITY_STATUS sspi_ret;
int ret = 0;
sspi_ret = NCryptExportKey(key, 0, NCRYPT_PKCS8_PRIVATE_KEY_BLOB, NULL, NULL, 0, &keysize, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "Initial NCryptExportKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto end;
}
keybuf = av_malloc(keysize);
if (!keybuf) {
ret = AVERROR(ENOMEM);
goto end;
}
sspi_ret = NCryptExportKey(key, 0, NCRYPT_PKCS8_PRIVATE_KEY_BLOB, NULL, keybuf, keysize, &keysize, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "Initial NCryptExportKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto end;
}
ret = der_to_pem(keybuf, keysize, "PRIVATE KEY", key_buf, key_sz);
if (ret < 0)
goto end;
ret = der_to_pem(crtctx->pbCertEncoded, crtctx->cbCertEncoded, "CERTIFICATE", cert_buf, cert_sz);
if (ret < 0)
goto end;
ret = der_to_fingerprint(crtctx->pbCertEncoded, crtctx->cbCertEncoded, fingerprint);
if (ret < 0)
goto end;
end:
av_free(keybuf);
return ret;
}
int ff_ssl_gen_key_cert(char *key_buf, size_t key_sz, char *cert_buf, size_t cert_sz, char **fingerprint)
{
NCRYPT_KEY_HANDLE key = 0;
PCCERT_CONTEXT crtctx = NULL;
int ret = tls_gen_self_signed(&key, &crtctx);
if (ret < 0)
goto end;
ret = tls_export_key_cert(key, crtctx, key_buf, key_sz, cert_buf, cert_sz, fingerprint);
if (ret < 0)
goto end;
end:
if (key)
if (NCryptDeleteKey(key, NCRYPT_SILENT_FLAG) != ERROR_SUCCESS)
NCryptFreeObject(key);
if (crtctx)
CertFreeCertificateContext(crtctx);
return ret;
}
static int tls_import_key_cert(char *key_buf, char *cert_buf, NCRYPT_KEY_HANDLE *key, PCCERT_CONTEXT *crtctx)
{
NCRYPT_PROV_HANDLE provider = 0;
DWORD export_props = NCRYPT_ALLOW_EXPORT_FLAG | NCRYPT_ALLOW_PLAINTEXT_EXPORT_FLAG;
DWORD usage_props = NCRYPT_ALLOW_ALL_USAGES;
NCryptBufferDesc buffer_desc = { 0 };
NCryptBuffer buffer = { 0 };
CRYPT_KEY_PROV_INFO prov_info = { 0 };
int key_der_len = 0, cert_der_len = 0;
char *key_der = NULL, *cert_der = NULL;
SECURITY_STATUS sspi_ret;
int ret = 0;
ret = pem_to_der(key_buf, &key_der, &key_der_len);
if (ret < 0)
goto fail;
ret = pem_to_der(cert_buf, &cert_der, &cert_der_len);
if (ret < 0)
goto fail;
sspi_ret = NCryptOpenStorageProvider(&provider, MS_KEY_STORAGE_PROVIDER, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptOpenStorageProvider failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
buffer_desc.ulVersion = NCRYPTBUFFER_VERSION;
buffer_desc.cBuffers = 1;
buffer_desc.pBuffers = &buffer;
buffer.BufferType = NCRYPTBUFFER_PKCS_KEY_NAME;
buffer.pvBuffer = (LPWSTR)FF_NCRYPT_TEMP_KEY_NAME;
buffer.cbBuffer = sizeof(FF_NCRYPT_TEMP_KEY_NAME);
sspi_ret = NCryptImportKey(provider, 0, NCRYPT_PKCS8_PRIVATE_KEY_BLOB, &buffer_desc, key, key_der, key_der_len, NCRYPT_DO_NOT_FINALIZE_FLAG | NCRYPT_OVERWRITE_KEY_FLAG);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptImportKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptSetProperty(*key, NCRYPT_EXPORT_POLICY_PROPERTY, (PBYTE)&export_props, sizeof(export_props), 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptSetProperty(NCRYPT_EXPORT_POLICY_PROPERTY) failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptSetProperty(*key, NCRYPT_KEY_USAGE_PROPERTY, (PBYTE)&usage_props, sizeof(usage_props), 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptSetProperty(NCRYPT_KEY_USAGE_PROPERTY) failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
sspi_ret = NCryptFinalizeKey(*key, 0);
if (sspi_ret != ERROR_SUCCESS) {
av_log(NULL, AV_LOG_ERROR, "NCryptFinalizeKey failed(0x%lx)\n", sspi_ret);
ret = AVERROR_EXTERNAL;
goto fail;
}
*crtctx = CertCreateCertificateContext(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, cert_der, cert_der_len);
if (!*crtctx) {
av_log(NULL, AV_LOG_ERROR, "CertCreateCertificateContext failed: %lu\n", GetLastError());
ret = AVERROR_EXTERNAL;
goto fail;
}
if (!CertSetCertificateContextProperty(*crtctx, CERT_NCRYPT_KEY_HANDLE_PROP_ID, 0, key)) {
av_log(NULL, AV_LOG_ERROR, "CertSetCertificateContextProperty(CERT_NCRYPT_KEY_HANDLE_PROP_ID) failed: %lu\n", GetLastError());
ret = AVERROR_EXTERNAL;
goto fail;
}
prov_info.pwszProvName = (LPWSTR)MS_KEY_STORAGE_PROVIDER;
prov_info.pwszContainerName = (LPWSTR)FF_NCRYPT_TEMP_KEY_NAME;
prov_info.dwFlags = CERT_SET_KEY_CONTEXT_PROP_ID;
if (!CertSetCertificateContextProperty(*crtctx, CERT_KEY_PROV_INFO_PROP_ID, 0, &prov_info)) {
av_log(NULL, AV_LOG_ERROR, "CertSetCertificateContextProperty(CERT_KEY_PROV_INFO_PROP_ID) failed: %lu\n", GetLastError());
ret = AVERROR_EXTERNAL;
goto fail;
}
goto end;
fail:
if (*key)
if (NCryptDeleteKey(*key, NCRYPT_SILENT_FLAG) != ERROR_SUCCESS)
NCryptFreeObject(*key);
if (*crtctx)
CertFreeCertificateContext(*crtctx);
*key = 0;
*crtctx = NULL;
end:
if (key_der)
av_free(key_der);
if (cert_der)
av_free(cert_der);
if (provider)
NCryptFreeObject(provider);
return ret;
}
static int tls_load_key_cert(char *key_url, char *cert_url, NCRYPT_KEY_HANDLE *key, PCCERT_CONTEXT *crtctx)
{
AVBPrint key_bp, cert_bp;
int ret = 0;
av_bprint_init(&key_bp, 1, MAX_CERTIFICATE_SIZE);
av_bprint_init(&cert_bp, 1, MAX_CERTIFICATE_SIZE);
/* Read key file. */
ret = ff_url_read_all(key_url, &key_bp);
if (ret < 0) {
av_log(NULL, AV_LOG_ERROR, "Failed to open key file %s\n", key_url);
goto end;
}
ret = ff_url_read_all(cert_url, &cert_bp);
if (ret < 0) {
av_log(NULL, AV_LOG_ERROR, "Failed to open cert file %s\n", cert_url);
goto end;
}
ret = tls_import_key_cert(key_bp.str, cert_bp.str, key, crtctx);
if (ret < 0)
goto end;
end:
av_bprint_finalize(&key_bp, NULL);
av_bprint_finalize(&cert_bp, NULL);
return ret;
}
int ff_ssl_read_key_cert(char *key_url, char *cert_url, char *key_buf, size_t key_sz, char *cert_buf, size_t cert_sz, char **fingerprint)
{
NCRYPT_KEY_HANDLE key = 0;
PCCERT_CONTEXT crtctx = NULL;
int ret = tls_load_key_cert(key_url, cert_url, &key, &crtctx);
if (ret < 0)
goto end;
ret = tls_export_key_cert(key, crtctx, key_buf, key_sz, cert_buf, cert_sz, fingerprint);
if (ret < 0)
goto end;
end:
if (key)
if (NCryptDeleteKey(key, NCRYPT_SILENT_FLAG) != ERROR_SUCCESS)
NCryptFreeObject(key);
if (crtctx)
CertFreeCertificateContext(crtctx);
return ret;
}
typedef struct TLSContext {
const AVClass *class;
TLSShared tls_shared;
CredHandle cred_handle;
TimeStamp cred_timestamp;
CtxtHandle ctxt_handle;
int have_context;
TimeStamp ctxt_timestamp;
ULONG request_flags;
ULONG context_flags;
uint8_t *enc_buf;
int enc_buf_size;
int enc_buf_offset;
uint8_t *dec_buf;
int dec_buf_size;
int dec_buf_offset;
SecPkgContext_StreamSizes sizes;
int connected;
int connection_closed;
int sspi_close_notify;
} TLSContext;
int ff_tls_set_external_socket(URLContext *h, URLContext *sock)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
if (s->is_dtls)
c->tls_shared.udp = sock;
else
c->tls_shared.tcp = sock;
return 0;
}
int ff_dtls_export_materials(URLContext *h, char *dtls_srtp_materials, size_t materials_sz)
{
TLSContext *c = h->priv_data;
SecPkgContext_KeyingMaterialInfo keying_info = { 0 };
SecPkgContext_KeyingMaterial keying_material = { 0 };
const char* dst = "EXTRACTOR-dtls_srtp";
SECURITY_STATUS sspi_ret;
if (!c->have_context)
return AVERROR(EINVAL);
keying_info.cbLabel = strlen(dst) + 1;
keying_info.pszLabel = (LPSTR)dst;
keying_info.cbContextValue = 0;
keying_info.pbContextValue = NULL;
keying_info.cbKeyingMaterial = materials_sz;
sspi_ret = SetContextAttributes(&c->ctxt_handle, SECPKG_ATTR_KEYING_MATERIAL_INFO, &keying_info, sizeof(keying_info));
if (sspi_ret != SEC_E_OK) {
av_log(h, AV_LOG_ERROR, "Setting keying material info failed: %lx\n", sspi_ret);
return AVERROR_EXTERNAL;
}
sspi_ret = QueryContextAttributes(&c->ctxt_handle, SECPKG_ATTR_KEYING_MATERIAL, &keying_material);
if (sspi_ret != SEC_E_OK) {
av_log(h, AV_LOG_ERROR, "Querying keying material failed: %lx\n", sspi_ret);
return AVERROR_EXTERNAL;
}
memcpy(dtls_srtp_materials, keying_material.pbKeyingMaterial, FFMIN(materials_sz, keying_material.cbKeyingMaterial));
FreeContextBuffer(keying_material.pbKeyingMaterial);
if (keying_material.cbKeyingMaterial > materials_sz) {
av_log(h, AV_LOG_WARNING, "Keying material size mismatch: %ld > %zu\n", keying_material.cbKeyingMaterial, materials_sz);
return AVERROR(ENOSPC);
}
return 0;
}
int ff_dtls_state(URLContext *h)
{
TLSContext *c = h->priv_data;
return c->tls_shared.state;
}
static void init_sec_buffer(SecBuffer *buffer, unsigned long type,
void *data, unsigned long size)
{
buffer->cbBuffer = size;
buffer->BufferType = type;
buffer->pvBuffer = data;
}
static void init_sec_buffer_desc(SecBufferDesc *desc, SecBuffer *buffers,
unsigned long buffer_count)
{
desc->ulVersion = SECBUFFER_VERSION;
desc->pBuffers = buffers;
desc->cBuffers = buffer_count;
}
static int tls_shutdown_client(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
URLContext *uc = s->is_dtls ? s->udp : s->tcp;
int ret;
if (c->connected) {
SecBufferDesc BuffDesc;
SecBuffer Buffer;
SECURITY_STATUS sspi_ret;
SecBuffer outbuf;
SecBufferDesc outbuf_desc;
DWORD dwshut = SCHANNEL_SHUTDOWN;
init_sec_buffer(&Buffer, SECBUFFER_TOKEN, &dwshut, sizeof(dwshut));
init_sec_buffer_desc(&BuffDesc, &Buffer, 1);
sspi_ret = ApplyControlToken(&c->ctxt_handle, &BuffDesc);
if (sspi_ret != SEC_E_OK)
av_log(h, AV_LOG_ERROR, "ApplyControlToken failed\n");
init_sec_buffer(&outbuf, SECBUFFER_TOKEN, NULL, 0);
init_sec_buffer_desc(&outbuf_desc, &outbuf, 1);
do {
if (s->listen)
sspi_ret = AcceptSecurityContext(&c->cred_handle, &c->ctxt_handle, NULL, c->request_flags, 0,
&c->ctxt_handle, &outbuf_desc, &c->context_flags,
&c->ctxt_timestamp);
else
sspi_ret = InitializeSecurityContext(&c->cred_handle, &c->ctxt_handle, s->host,
c->request_flags, 0, 0, NULL, 0, &c->ctxt_handle,
&outbuf_desc, &c->context_flags, &c->ctxt_timestamp);
if (outbuf.pvBuffer) {
if (outbuf.cbBuffer > 0) {
uc->flags &= ~AVIO_FLAG_NONBLOCK;
ret = ffurl_write(uc, outbuf.pvBuffer, outbuf.cbBuffer);
if (ret < 0 || ret != outbuf.cbBuffer)
av_log(h, AV_LOG_ERROR, "Failed to send close message\n");
}
FreeContextBuffer(outbuf.pvBuffer);
}
} while(sspi_ret == SEC_I_MESSAGE_FRAGMENT || sspi_ret == SEC_I_CONTINUE_NEEDED);
av_log(h, AV_LOG_DEBUG, "Close session result: 0x%lx\n", sspi_ret);
c->connected = 0;
}
return 0;
}
static int tls_close(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
tls_shutdown_client(h);
DeleteSecurityContext(&c->ctxt_handle);
FreeCredentialsHandle(&c->cred_handle);
av_freep(&c->enc_buf);
c->enc_buf_size = c->enc_buf_offset = 0;
av_freep(&c->dec_buf);
c->dec_buf_size = c->dec_buf_offset = 0;
if (s->is_dtls) {
if (!s->external_sock)
ffurl_closep(&c->tls_shared.udp);
} else {
ffurl_closep(&c->tls_shared.tcp);
}
return 0;
}
static int tls_handshake_loop(URLContext *h, int initial)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
URLContext *uc = s->is_dtls ? s->udp : s->tcp;
SECURITY_STATUS sspi_ret;
SecBuffer outbuf[3] = { 0 };
SecBufferDesc outbuf_desc;
SecBuffer inbuf[3];
SecBufferDesc inbuf_desc;
struct sockaddr_storage recv_addr = { 0 };
socklen_t recv_addr_len = 0;
int i, ret = 0, read_data = initial;
if (c->enc_buf == NULL) {
c->enc_buf_offset = 0;
ret = av_reallocp(&c->enc_buf, SCHANNEL_INITIAL_BUFFER_SIZE);
if (ret < 0)
goto fail;
c->enc_buf_size = SCHANNEL_INITIAL_BUFFER_SIZE;
}
if (c->dec_buf == NULL) {
c->dec_buf_offset = 0;
ret = av_reallocp(&c->dec_buf, SCHANNEL_INITIAL_BUFFER_SIZE);
if (ret < 0)
goto fail;
c->dec_buf_size = SCHANNEL_INITIAL_BUFFER_SIZE;
}
uc->flags &= ~AVIO_FLAG_NONBLOCK;
while (1) {
if (c->enc_buf_size - c->enc_buf_offset < SCHANNEL_FREE_BUFFER_SIZE) {
c->enc_buf_size = c->enc_buf_offset + SCHANNEL_FREE_BUFFER_SIZE;
ret = av_reallocp(&c->enc_buf, c->enc_buf_size);
if (ret < 0) {
c->enc_buf_size = c->enc_buf_offset = 0;
goto fail;
}
}
if (read_data) {
ret = ffurl_read(uc, c->enc_buf + c->enc_buf_offset, c->enc_buf_size - c->enc_buf_offset);
if (ret < 0) {
av_log(h, AV_LOG_ERROR, "Failed to read handshake response\n");
goto fail;
}
c->enc_buf_offset += ret;
if (s->is_dtls && !recv_addr_len) {
ff_udp_get_last_recv_addr(uc, &recv_addr, &recv_addr_len);
if (s->listen) {
ret = ff_udp_set_remote_addr(uc, (struct sockaddr *)&recv_addr, recv_addr_len, 1);
if (ret < 0) {
av_log(h, AV_LOG_ERROR, "Failed connecting udp context\n");
goto fail;
}
av_log(h, AV_LOG_TRACE, "Set UDP remote addr on UDP socket, now 'connected'\n");
}
}
}
/* input buffers */
init_sec_buffer(&inbuf[0], SECBUFFER_TOKEN, av_malloc(c->enc_buf_offset), c->enc_buf_offset);
init_sec_buffer(&inbuf[1], SECBUFFER_EMPTY, NULL, 0);
if (s->listen && s->is_dtls) {
init_sec_buffer(&inbuf[2], SECBUFFER_EXTRA, &recv_addr, recv_addr_len);
init_sec_buffer_desc(&inbuf_desc, inbuf, 3);
} else {
init_sec_buffer_desc(&inbuf_desc, inbuf, 2);
}
if (inbuf[0].pvBuffer == NULL) {
av_log(h, AV_LOG_ERROR, "Failed to allocate input buffer\n");
ret = AVERROR(ENOMEM);
goto fail;
}
memcpy(inbuf[0].pvBuffer, c->enc_buf, c->enc_buf_offset);
/* output buffers */
init_sec_buffer(&outbuf[0], SECBUFFER_TOKEN, NULL, 0);
init_sec_buffer(&outbuf[1], SECBUFFER_ALERT, NULL, 0);
init_sec_buffer(&outbuf[2], SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer_desc(&outbuf_desc, outbuf, 3);
if (s->listen)
sspi_ret = AcceptSecurityContext(&c->cred_handle, c->have_context ? &c->ctxt_handle : NULL, &inbuf_desc,
c->request_flags, 0, &c->ctxt_handle, &outbuf_desc,
&c->context_flags, &c->ctxt_timestamp);
else
sspi_ret = InitializeSecurityContext(&c->cred_handle, c->have_context ? &c->ctxt_handle : NULL,
s->host, c->request_flags, 0, 0, &inbuf_desc, 0, &c->ctxt_handle,
&outbuf_desc, &c->context_flags, &c->ctxt_timestamp);
av_freep(&inbuf[0].pvBuffer);
av_log(h, AV_LOG_TRACE, "Handshake res with %d bytes of data: 0x%lx\n", c->enc_buf_offset, sspi_ret);
if (sspi_ret == SEC_E_INCOMPLETE_MESSAGE) {
av_log(h, AV_LOG_TRACE, "Received incomplete handshake, need more data\n");
read_data = 1;
continue;
}
c->have_context = 1;
/* remote requests a client certificate - attempt to continue without one anyway */
if (sspi_ret == SEC_I_INCOMPLETE_CREDENTIALS &&
!(c->request_flags & ISC_REQ_USE_SUPPLIED_CREDS)) {
av_log(h, AV_LOG_VERBOSE, "Client certificate has been requested, ignoring\n");
c->request_flags |= ISC_REQ_USE_SUPPLIED_CREDS;
read_data = 0;
continue;
}
/* continue handshake */
if (sspi_ret == SEC_I_CONTINUE_NEEDED || sspi_ret == SEC_I_MESSAGE_FRAGMENT || sspi_ret == SEC_E_OK) {
for (i = 0; i < 3; i++) {
if (outbuf[i].BufferType == SECBUFFER_TOKEN && outbuf[i].cbBuffer > 0) {
ret = ffurl_write(uc, outbuf[i].pvBuffer, outbuf[i].cbBuffer);
if (ret < 0 || ret != outbuf[i].cbBuffer) {
av_log(h, AV_LOG_VERBOSE, "Failed to send handshake data\n");
ret = AVERROR(EIO);
goto fail;
}
}
if (outbuf[i].pvBuffer != NULL) {
FreeContextBuffer(outbuf[i].pvBuffer);
outbuf[i].pvBuffer = NULL;
}
}
} else {
if (sspi_ret == SEC_E_WRONG_PRINCIPAL)
av_log(h, AV_LOG_ERROR, "SNI or certificate check failed\n");
else
av_log(h, AV_LOG_ERROR, "Creating security context failed (0x%lx)\n", sspi_ret);
ret = AVERROR_UNKNOWN;
goto fail;
}
if (sspi_ret == SEC_I_MESSAGE_FRAGMENT) {
av_log(h, AV_LOG_TRACE, "Writing fragmented output message part\n");
read_data = 0;
continue;
}
if (inbuf[1].BufferType == SECBUFFER_EXTRA && inbuf[1].cbBuffer > 0) {
if (c->enc_buf_offset > inbuf[1].cbBuffer) {
memmove(c->enc_buf, (c->enc_buf + c->enc_buf_offset) - inbuf[1].cbBuffer,
inbuf[1].cbBuffer);
c->enc_buf_offset = inbuf[1].cbBuffer;
if (sspi_ret == SEC_I_CONTINUE_NEEDED) {
av_log(h, AV_LOG_TRACE, "Sent reply, handshake continues. %d extra bytes\n", (int)inbuf[1].cbBuffer);
read_data = 0;
continue;
}
}
} else {
c->enc_buf_offset = 0;
}
if (sspi_ret == SEC_I_CONTINUE_NEEDED) {
av_log(h, AV_LOG_TRACE, "Handshake continues\n");
read_data = 1;
continue;
}
break;
}
av_log(h, AV_LOG_TRACE, "Handshake completed\n");
return 0;
fail:
/* free any remaining output data */
for (i = 0; i < 3; i++) {
if (outbuf[i].pvBuffer != NULL) {
FreeContextBuffer(outbuf[i].pvBuffer);
outbuf[i].pvBuffer = NULL;
}
}
av_log(h, AV_LOG_TRACE, "Handshake failed\n");
return ret;
}
static int tls_client_handshake(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
URLContext *uc = s->is_dtls ? s->udp : s->tcp;
SecBuffer outbuf;
SecBufferDesc outbuf_desc;
SECURITY_STATUS sspi_ret;
int ret;
init_sec_buffer(&outbuf, SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer_desc(&outbuf_desc, &outbuf, 1);
c->request_flags = ISC_REQ_SEQUENCE_DETECT | ISC_REQ_REPLAY_DETECT |
ISC_REQ_CONFIDENTIALITY | ISC_REQ_ALLOCATE_MEMORY;
if (s->is_dtls)
c->request_flags |= ISC_REQ_DATAGRAM;
else
c->request_flags |= ISC_REQ_STREAM;
sspi_ret = InitializeSecurityContext(&c->cred_handle, NULL, s->host, c->request_flags, 0, 0,
NULL, 0, &c->ctxt_handle, &outbuf_desc, &c->context_flags,
&c->ctxt_timestamp);
if (sspi_ret != SEC_I_CONTINUE_NEEDED) {
av_log(h, AV_LOG_ERROR, "Unable to create initial security context (0x%lx)\n", sspi_ret);
ret = AVERROR_UNKNOWN;
goto fail;
}
c->have_context = 1;
uc->flags &= ~AVIO_FLAG_NONBLOCK;
ret = ffurl_write(uc, outbuf.pvBuffer, outbuf.cbBuffer);
FreeContextBuffer(outbuf.pvBuffer);
if (ret < 0 || ret != outbuf.cbBuffer) {
av_log(h, AV_LOG_ERROR, "Failed to send initial handshake data\n");
ret = AVERROR(EIO);
goto fail;
}
return tls_handshake_loop(h, 1);
fail:
DeleteSecurityContext(&c->ctxt_handle);
return ret;
}
static int tls_server_handshake(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
c->request_flags = ASC_REQ_SEQUENCE_DETECT | ASC_REQ_REPLAY_DETECT |
ASC_REQ_CONFIDENTIALITY | ASC_REQ_ALLOCATE_MEMORY;
if (s->is_dtls)
c->request_flags |= ASC_REQ_DATAGRAM;
else
c->request_flags |= ASC_REQ_STREAM;
c->have_context = 0;
return tls_handshake_loop(h, 1);
}
static int tls_handshake(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
SECURITY_STATUS sspi_ret;
int ret = 0;
if (s->listen)
ret = tls_server_handshake(h);
else
ret = tls_client_handshake(h);
if (ret < 0)
goto fail;
if (s->is_dtls && s->mtu > 0) {
ULONG mtu = s->mtu;
sspi_ret = SetContextAttributes(&c->ctxt_handle, SECPKG_ATTR_DTLS_MTU, &mtu, sizeof(mtu));
if (sspi_ret != SEC_E_OK) {
av_log(h, AV_LOG_ERROR, "Failed setting DTLS MTU to %d.\n", s->mtu);
ret = AVERROR(EINVAL);
goto fail;
}
av_log(h, AV_LOG_VERBOSE, "Set DTLS MTU to %d\n", s->mtu);
}
c->connected = 1;
s->state = DTLS_STATE_FINISHED;
fail:
return ret;
}
static int tls_open(URLContext *h, const char *uri, int flags, AVDictionary **options)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
SECURITY_STATUS sspi_ret;
SCHANNEL_CRED schannel_cred = { 0 };
PCCERT_CONTEXT crtctx = NULL;
NCRYPT_KEY_HANDLE key = 0;
int ret = 0;
if (!s->external_sock) {
if ((ret = ff_tls_open_underlying(s, h, uri, options)) < 0)
goto fail;
}
/* SChannel Options */
schannel_cred.dwVersion = SCHANNEL_CRED_VERSION;
if (s->listen) {
if (s->key_buf && s->cert_buf) {
ret = tls_import_key_cert(s->key_buf, s->cert_buf, &key, &crtctx);
if (ret < 0)
goto fail;
} else if (s->key_file && s->cert_file) {
ret = tls_load_key_cert(s->key_file, s->cert_file, &key, &crtctx);
if (ret < 0)
goto fail;
} else {
av_log(h, AV_LOG_VERBOSE, "No server certificate provided, using self-signed\n");
ret = tls_gen_self_signed(&key, &crtctx);
if (ret < 0)
goto fail;
}
schannel_cred.cCreds = 1;
schannel_cred.paCred = &crtctx;
schannel_cred.dwFlags = SCH_CRED_NO_SYSTEM_MAPPER | SCH_CRED_MANUAL_CRED_VALIDATION;
if (s->is_dtls)
schannel_cred.grbitEnabledProtocols = SP_PROT_DTLS1_X_SERVER;
} else {
if (s->verify)
schannel_cred.dwFlags = SCH_CRED_AUTO_CRED_VALIDATION |
SCH_CRED_REVOCATION_CHECK_CHAIN;
else
schannel_cred.dwFlags = SCH_CRED_MANUAL_CRED_VALIDATION |
SCH_CRED_IGNORE_NO_REVOCATION_CHECK |
SCH_CRED_IGNORE_REVOCATION_OFFLINE;
if (s->is_dtls)
schannel_cred.grbitEnabledProtocols = SP_PROT_DTLS1_X_CLIENT;
}
/* Get credential handle */
sspi_ret = AcquireCredentialsHandle(NULL, (TCHAR *)UNISP_NAME,
s->listen ? SECPKG_CRED_INBOUND : SECPKG_CRED_OUTBOUND,
NULL, &schannel_cred, NULL, NULL, &c->cred_handle,
&c->cred_timestamp);
if (sspi_ret != SEC_E_OK) {
av_log(h, AV_LOG_ERROR, "Unable to acquire security credentials (0x%lx)\n", sspi_ret);
ret = AVERROR_UNKNOWN;
goto fail;
}
if (!s->external_sock) {
ret = tls_handshake(h);
if (ret < 0)
goto fail;
}
goto end;
fail:
tls_close(h);
end:
if (crtctx)
CertFreeCertificateContext(crtctx);
if (key)
if (NCryptDeleteKey(key, NCRYPT_SILENT_FLAG) != ERROR_SUCCESS)
NCryptFreeObject(key);
return ret;
}
static int dtls_open(URLContext *h, const char *uri, int flags, AVDictionary **options)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
s->is_dtls = 1;
return tls_open(h, uri, flags, options);
}
static int tls_read(URLContext *h, uint8_t *buf, int len)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
URLContext *uc = s->is_dtls ? s->udp : s->tcp;
SECURITY_STATUS sspi_ret = SEC_E_OK;
SecBuffer inbuf[4];
SecBufferDesc inbuf_desc;
int size, ret = 0;
int min_enc_buf_size = len + SCHANNEL_FREE_BUFFER_SIZE;
/* If we have some left-over data from previous network activity,
* return it first in case it is enough. It may contain
* data that is required to know whether this connection
* is still required or not, esp. in case of HTTP keep-alive
* connections. */
if (c->dec_buf_offset > 0)
goto cleanup;
if (c->sspi_close_notify)
goto cleanup;
if (!c->connection_closed) {
size = c->enc_buf_size - c->enc_buf_offset;
if (size < SCHANNEL_FREE_BUFFER_SIZE || c->enc_buf_size < min_enc_buf_size) {
c->enc_buf_size = c->enc_buf_offset + SCHANNEL_FREE_BUFFER_SIZE;
if (c->enc_buf_size < min_enc_buf_size)
c->enc_buf_size = min_enc_buf_size;
ret = av_reallocp(&c->enc_buf, c->enc_buf_size);
if (ret < 0) {
c->enc_buf_size = c->enc_buf_offset = 0;
return ret;
}
}
uc->flags &= ~AVIO_FLAG_NONBLOCK;
uc->flags |= h->flags & AVIO_FLAG_NONBLOCK;
ret = ffurl_read(uc, c->enc_buf + c->enc_buf_offset,
c->enc_buf_size - c->enc_buf_offset);
if (ret == AVERROR_EOF) {
c->connection_closed = 1;
ret = 0;
} else if (ret == AVERROR(EAGAIN)) {
ret = 0;
} else if (ret < 0) {
av_log(h, AV_LOG_ERROR, "Unable to read from socket\n");
return ret;
}
c->enc_buf_offset += ret;
}
while (c->enc_buf_offset > 0 && sspi_ret == SEC_E_OK) {
/* input buffer */
init_sec_buffer(&inbuf[0], SECBUFFER_DATA, c->enc_buf, c->enc_buf_offset);
/* additional buffers for possible output */
init_sec_buffer(&inbuf[1], SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer(&inbuf[2], SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer(&inbuf[3], SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer_desc(&inbuf_desc, inbuf, 4);
sspi_ret = DecryptMessage(&c->ctxt_handle, &inbuf_desc, 0, NULL);
if (sspi_ret == SEC_E_OK || sspi_ret == SEC_I_RENEGOTIATE ||
sspi_ret == SEC_I_CONTEXT_EXPIRED) {
/* handle decrypted data */
if (inbuf[1].BufferType == SECBUFFER_DATA) {
/* grow buffer if needed */
size = inbuf[1].cbBuffer > SCHANNEL_FREE_BUFFER_SIZE ?
inbuf[1].cbBuffer : SCHANNEL_FREE_BUFFER_SIZE;
if (c->dec_buf_size - c->dec_buf_offset < size || c->dec_buf_size < len) {
c->dec_buf_size = c->dec_buf_offset + size;
if (c->dec_buf_size < len)
c->dec_buf_size = len;
ret = av_reallocp(&c->dec_buf, c->dec_buf_size);
if (ret < 0) {
c->dec_buf_size = c->dec_buf_offset = 0;
return ret;
}
}
/* copy decrypted data to buffer */
size = inbuf[1].cbBuffer;
if (size) {
memcpy(c->dec_buf + c->dec_buf_offset, inbuf[1].pvBuffer, size);
c->dec_buf_offset += size;
}
}
if (inbuf[3].BufferType == SECBUFFER_EXTRA && inbuf[3].cbBuffer > 0) {
if (c->enc_buf_offset > inbuf[3].cbBuffer) {
memmove(c->enc_buf, (c->enc_buf + c->enc_buf_offset) - inbuf[3].cbBuffer,
inbuf[3].cbBuffer);
c->enc_buf_offset = inbuf[3].cbBuffer;
}
} else
c->enc_buf_offset = 0;
if (sspi_ret == SEC_I_RENEGOTIATE) {
if (c->enc_buf_offset) {
av_log(h, AV_LOG_ERROR, "Cannot renegotiate, encrypted data buffer not empty\n");
ret = AVERROR_UNKNOWN;
goto cleanup;
}
av_log(h, AV_LOG_VERBOSE, "Re-negotiating security context\n");
ret = tls_handshake_loop(h, 0);
if (ret < 0) {
goto cleanup;
}
sspi_ret = SEC_E_OK;
continue;
} else if (sspi_ret == SEC_I_CONTEXT_EXPIRED) {
c->sspi_close_notify = 1;
if (!c->connection_closed) {
c->connection_closed = 1;
av_log(h, AV_LOG_VERBOSE, "Server closed the connection\n");
}
ret = 0;
goto cleanup;
}
} else if (sspi_ret == SEC_E_INCOMPLETE_MESSAGE) {
ret = AVERROR(EAGAIN);
goto cleanup;
} else {
av_log(h, AV_LOG_ERROR, "Unable to decrypt message (error 0x%x)\n", (unsigned)sspi_ret);
ret = AVERROR(EIO);
goto cleanup;
}
}
ret = 0;
cleanup:
size = FFMIN(len, c->dec_buf_offset);
if (size) {
memcpy(buf, c->dec_buf, size);
memmove(c->dec_buf, c->dec_buf + size, c->dec_buf_offset - size);
c->dec_buf_offset -= size;
return size;
}
if (ret == 0 && !c->connection_closed)
ret = AVERROR(EAGAIN);
return ret < 0 ? ret : AVERROR_EOF;
}
static int tls_write(URLContext *h, const uint8_t *buf, int len)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
URLContext *uc = s->is_dtls ? s->udp : s->tcp;
SECURITY_STATUS sspi_ret;
int ret = 0, data_size;
uint8_t *data = NULL;
SecBuffer outbuf[4];
SecBufferDesc outbuf_desc;
if (c->sizes.cbMaximumMessage == 0) {
sspi_ret = QueryContextAttributes(&c->ctxt_handle, SECPKG_ATTR_STREAM_SIZES, &c->sizes);
if (sspi_ret != SEC_E_OK)
return AVERROR_UNKNOWN;
}
/* limit how much data we can consume */
len = FFMIN(len, c->sizes.cbMaximumMessage - c->sizes.cbHeader - c->sizes.cbTrailer);
data_size = c->sizes.cbHeader + len + c->sizes.cbTrailer;
data = av_malloc(data_size);
if (data == NULL)
return AVERROR(ENOMEM);
init_sec_buffer(&outbuf[0], SECBUFFER_STREAM_HEADER,
data, c->sizes.cbHeader);
init_sec_buffer(&outbuf[1], SECBUFFER_DATA,
data + c->sizes.cbHeader, len);
init_sec_buffer(&outbuf[2], SECBUFFER_STREAM_TRAILER,
data + c->sizes.cbHeader + len,
c->sizes.cbTrailer);
init_sec_buffer(&outbuf[3], SECBUFFER_EMPTY, NULL, 0);
init_sec_buffer_desc(&outbuf_desc, outbuf, 4);
memcpy(outbuf[1].pvBuffer, buf, len);
sspi_ret = EncryptMessage(&c->ctxt_handle, 0, &outbuf_desc, 0);
if (sspi_ret == SEC_E_OK) {
len = outbuf[0].cbBuffer + outbuf[1].cbBuffer + outbuf[2].cbBuffer;
uc->flags &= ~AVIO_FLAG_NONBLOCK;
uc->flags |= h->flags & AVIO_FLAG_NONBLOCK;
ret = ffurl_write(uc, data, len);
if (ret == AVERROR(EAGAIN)) {
goto done;
} else if (ret < 0 || ret != len) {
ret = AVERROR(EIO);
av_log(h, AV_LOG_ERROR, "Writing encrypted data to socket failed\n");
goto done;
}
} else {
av_log(h, AV_LOG_ERROR, "Encrypting data failed\n");
if (sspi_ret == SEC_E_INSUFFICIENT_MEMORY)
ret = AVERROR(ENOMEM);
else
ret = AVERROR(EIO);
goto done;
}
done:
av_freep(&data);
return ret < 0 ? ret : outbuf[1].cbBuffer;
}
static int tls_get_file_handle(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
return ffurl_get_file_handle(s->is_dtls ? s->udp : s->tcp);
}
static int tls_get_short_seek(URLContext *h)
{
TLSContext *c = h->priv_data;
TLSShared *s = &c->tls_shared;
return ffurl_get_short_seek(s->is_dtls ? s->udp : s->tcp);
}
static const AVOption options[] = {
TLS_COMMON_OPTIONS(TLSContext, tls_shared),
{ NULL }
};
static const AVClass tls_class = {
.class_name = "tls",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const URLProtocol ff_tls_protocol = {
.name = "tls",
.url_open2 = tls_open,
.url_read = tls_read,
.url_write = tls_write,
.url_close = tls_close,
.url_get_file_handle = tls_get_file_handle,
.url_get_short_seek = tls_get_short_seek,
.priv_data_size = sizeof(TLSContext),
.flags = URL_PROTOCOL_FLAG_NETWORK,
.priv_data_class = &tls_class,
};
static const AVClass dtls_class = {
.class_name = "dtls",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const URLProtocol ff_dtls_protocol = {
.name = "dtls",
.url_open2 = dtls_open,
.url_handshake = tls_handshake,
.url_close = tls_close,
.url_read = tls_read,
.url_write = tls_write,
.url_get_file_handle = tls_get_file_handle,
.url_get_short_seek = tls_get_short_seek,
.priv_data_size = sizeof(TLSContext),
.flags = URL_PROTOCOL_FLAG_NETWORK,
.priv_data_class = &dtls_class,
};