mirror of
				https://git.ffmpeg.org/ffmpeg.git
				synced 2025-10-26 13:14:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			641 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			641 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Lagarith lossless decoder
 | |
|  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Lagarith lossless decoder
 | |
|  * @author Nathan Caldwell
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "mathops.h"
 | |
| #include "dsputil.h"
 | |
| #include "lagarithrac.h"
 | |
| 
 | |
| enum LagarithFrameType {
 | |
|     FRAME_RAW           = 1,    /**< uncompressed */
 | |
|     FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
 | |
|     FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
 | |
|     FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
 | |
|     FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
 | |
|     FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
 | |
|     FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
 | |
|     FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
 | |
|     FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
 | |
|     FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
 | |
|     FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
 | |
| };
 | |
| 
 | |
| typedef struct LagarithContext {
 | |
|     AVCodecContext *avctx;
 | |
|     AVFrame picture;
 | |
|     DSPContext dsp;
 | |
|     int zeros;                  /**< number of consecutive zero bytes encountered */
 | |
|     int zeros_rem;              /**< number of zero bytes remaining to output */
 | |
|     uint8_t *rgb_planes;
 | |
|     int rgb_stride;
 | |
| } LagarithContext;
 | |
| 
 | |
| /**
 | |
|  * Compute the 52bit mantissa of 1/(double)denom.
 | |
|  * This crazy format uses floats in an entropy coder and we have to match x86
 | |
|  * rounding exactly, thus ordinary floats aren't portable enough.
 | |
|  * @param denom denominator
 | |
|  * @return 52bit mantissa
 | |
|  * @see softfloat_mul
 | |
|  */
 | |
| static uint64_t softfloat_reciprocal(uint32_t denom)
 | |
| {
 | |
|     int shift = av_log2(denom - 1) + 1;
 | |
|     uint64_t ret = (1ULL << 52) / denom;
 | |
|     uint64_t err = (1ULL << 52) - ret * denom;
 | |
|     ret <<= shift;
 | |
|     err <<= shift;
 | |
|     err +=  denom / 2;
 | |
|     return ret + err / denom;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
 | |
|  * Used in combination with softfloat_reciprocal computes x/(double)denom.
 | |
|  * @param x 32bit integer factor
 | |
|  * @param mantissa mantissa of f with exponent 0
 | |
|  * @return 32bit integer value (x*f)
 | |
|  * @see softfloat_reciprocal
 | |
|  */
 | |
| static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
 | |
| {
 | |
|     uint64_t l = x * (mantissa & 0xffffffff);
 | |
|     uint64_t h = x * (mantissa >> 32);
 | |
|     h += l >> 32;
 | |
|     l &= 0xffffffff;
 | |
|     l += 1 << av_log2(h >> 21);
 | |
|     h += l >> 32;
 | |
|     return h >> 20;
 | |
| }
 | |
| 
 | |
| static uint8_t lag_calc_zero_run(int8_t x)
 | |
| {
 | |
|     return (x << 1) ^ (x >> 7);
 | |
| }
 | |
| 
 | |
| static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
 | |
| {
 | |
|     static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
 | |
|     int i;
 | |
|     int bit     = 0;
 | |
|     int bits    = 0;
 | |
|     int prevbit = 0;
 | |
|     unsigned val;
 | |
| 
 | |
|     for (i = 0; i < 7; i++) {
 | |
|         if (prevbit && bit)
 | |
|             break;
 | |
|         prevbit = bit;
 | |
|         bit = get_bits1(gb);
 | |
|         if (bit && !prevbit)
 | |
|             bits += series[i];
 | |
|     }
 | |
|     bits--;
 | |
|     if (bits < 0 || bits > 31) {
 | |
|         *value = 0;
 | |
|         return -1;
 | |
|     } else if (bits == 0) {
 | |
|         *value = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     val  = get_bits_long(gb, bits);
 | |
|     val |= 1 << bits;
 | |
| 
 | |
|     *value = val - 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
 | |
| {
 | |
|     int i, j, scale_factor;
 | |
|     unsigned prob, cumulative_target;
 | |
|     unsigned cumul_prob = 0;
 | |
|     unsigned scaled_cumul_prob = 0;
 | |
| 
 | |
|     rac->prob[0] = 0;
 | |
|     rac->prob[257] = UINT_MAX;
 | |
|     /* Read probabilities from bitstream */
 | |
|     for (i = 1; i < 257; i++) {
 | |
|         if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
 | |
|             av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
 | |
|             return -1;
 | |
|         }
 | |
|         if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
 | |
|             av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
 | |
|             return -1;
 | |
|         }
 | |
|         cumul_prob += rac->prob[i];
 | |
|         if (!rac->prob[i]) {
 | |
|             if (lag_decode_prob(gb, &prob)) {
 | |
|                 av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             if (prob > 257 - i)
 | |
|                 prob = 257 - i;
 | |
|             for (j = 0; j < prob; j++)
 | |
|                 rac->prob[++i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!cumul_prob) {
 | |
|         av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Scale probabilities so cumulative probability is an even power of 2. */
 | |
|     scale_factor = av_log2(cumul_prob);
 | |
| 
 | |
|     if (cumul_prob & (cumul_prob - 1)) {
 | |
|         uint64_t mul = softfloat_reciprocal(cumul_prob);
 | |
|         for (i = 1; i < 257; i++) {
 | |
|             rac->prob[i] = softfloat_mul(rac->prob[i], mul);
 | |
|             scaled_cumul_prob += rac->prob[i];
 | |
|         }
 | |
| 
 | |
|         scale_factor++;
 | |
|         cumulative_target = 1 << scale_factor;
 | |
| 
 | |
|         if (scaled_cumul_prob > cumulative_target) {
 | |
|             av_log(rac->avctx, AV_LOG_ERROR,
 | |
|                    "Scaled probabilities are larger than target!\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
 | |
| 
 | |
|         for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
 | |
|             if (rac->prob[i]) {
 | |
|                 rac->prob[i]++;
 | |
|                 scaled_cumul_prob--;
 | |
|             }
 | |
|             /* Comment from reference source:
 | |
|              * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
 | |
|              *                          // since the compression change is negligable and fixing it
 | |
|              *                          // breaks backwards compatibilty
 | |
|              *      b =- (signed int)b;
 | |
|              *      b &= 0xFF;
 | |
|              * } else {
 | |
|              *      b++;
 | |
|              *      b &= 0x7f;
 | |
|              * }
 | |
|              */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rac->scale = scale_factor;
 | |
| 
 | |
|     /* Fill probability array with cumulative probability for each symbol. */
 | |
|     for (i = 1; i < 257; i++)
 | |
|         rac->prob[i] += rac->prob[i - 1];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
 | |
|                                       uint8_t *diff, int w, int *left,
 | |
|                                       int *left_top)
 | |
| {
 | |
|     /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
 | |
|      * However the &0xFF on the gradient predictor yealds incorrect output
 | |
|      * for lagarith.
 | |
|      */
 | |
|     int i;
 | |
|     uint8_t l, lt;
 | |
| 
 | |
|     l  = *left;
 | |
|     lt = *left_top;
 | |
| 
 | |
|     for (i = 0; i < w; i++) {
 | |
|         l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
 | |
|         lt = src1[i];
 | |
|         dst[i] = l;
 | |
|     }
 | |
| 
 | |
|     *left     = l;
 | |
|     *left_top = lt;
 | |
| }
 | |
| 
 | |
| static void lag_pred_line(LagarithContext *l, uint8_t *buf,
 | |
|                           int width, int stride, int line)
 | |
| {
 | |
|     int L, TL;
 | |
| 
 | |
|     if (!line) {
 | |
|         /* Left prediction only for first line */
 | |
|         L = l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1,
 | |
|                                             width - 1, buf[0]);
 | |
|     } else {
 | |
|         /* Left pixel is actually prev_row[width] */
 | |
|         L = buf[width - stride - 1];
 | |
| 
 | |
|         if (line == 1) {
 | |
|             /* Second line, left predict first pixel, the rest of the line is median predicted
 | |
|              * NOTE: In the case of RGB this pixel is top predicted */
 | |
|             TL = l->avctx->pix_fmt == PIX_FMT_YUV420P ? buf[-stride] : L;
 | |
|         } else {
 | |
|             /* Top left is 2 rows back, last pixel */
 | |
|             TL = buf[width - (2 * stride) - 1];
 | |
|         }
 | |
| 
 | |
|         add_lag_median_prediction(buf, buf - stride, buf,
 | |
|                                   width, &L, &TL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int lag_decode_line(LagarithContext *l, lag_rac *rac,
 | |
|                            uint8_t *dst, int width, int stride,
 | |
|                            int esc_count)
 | |
| {
 | |
|     int i = 0;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!esc_count)
 | |
|         esc_count = -1;
 | |
| 
 | |
|     /* Output any zeros remaining from the previous run */
 | |
| handle_zeros:
 | |
|     if (l->zeros_rem) {
 | |
|         int count = FFMIN(l->zeros_rem, width - i);
 | |
|         memset(dst + i, 0, count);
 | |
|         i += count;
 | |
|         l->zeros_rem -= count;
 | |
|     }
 | |
| 
 | |
|     while (i < width) {
 | |
|         dst[i] = lag_get_rac(rac);
 | |
|         ret++;
 | |
| 
 | |
|         if (dst[i])
 | |
|             l->zeros = 0;
 | |
|         else
 | |
|             l->zeros++;
 | |
| 
 | |
|         i++;
 | |
|         if (l->zeros == esc_count) {
 | |
|             int index = lag_get_rac(rac);
 | |
|             ret++;
 | |
| 
 | |
|             l->zeros = 0;
 | |
| 
 | |
|             l->zeros_rem = lag_calc_zero_run(index);
 | |
|             goto handle_zeros;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
 | |
|                                     const uint8_t *src, const uint8_t *src_end,
 | |
|                                     int width, int esc_count)
 | |
| {
 | |
|     int i = 0;
 | |
|     int count;
 | |
|     uint8_t zero_run = 0;
 | |
|     const uint8_t *src_start = src;
 | |
|     uint8_t mask1 = -(esc_count < 2);
 | |
|     uint8_t mask2 = -(esc_count < 3);
 | |
|     uint8_t *end = dst + (width - 2);
 | |
| 
 | |
| output_zeros:
 | |
|     if (l->zeros_rem) {
 | |
|         count = FFMIN(l->zeros_rem, width - i);
 | |
|         if(end - dst < count) {
 | |
|             av_log(l->avctx, AV_LOG_ERROR, "too many zeros remaining\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         memset(dst, 0, count);
 | |
|         l->zeros_rem -= count;
 | |
|         dst += count;
 | |
|     }
 | |
| 
 | |
|     while (dst < end) {
 | |
|         i = 0;
 | |
|         while (!zero_run && dst + i < end) {
 | |
|             i++;
 | |
|             if (i+2 >= src_end - src)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             zero_run =
 | |
|                 !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
 | |
|         }
 | |
|         if (zero_run) {
 | |
|             zero_run = 0;
 | |
|             i += esc_count;
 | |
|             memcpy(dst, src, i);
 | |
|             dst += i;
 | |
|             l->zeros_rem = lag_calc_zero_run(src[i]);
 | |
| 
 | |
|             src += i + 1;
 | |
|             goto output_zeros;
 | |
|         } else {
 | |
|             memcpy(dst, src, i);
 | |
|             src += i;
 | |
|             dst += i;
 | |
|         }
 | |
|     }
 | |
|     return  src - src_start;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
 | |
|                                   int width, int height, int stride,
 | |
|                                   const uint8_t *src, int src_size)
 | |
| {
 | |
|     int i = 0;
 | |
|     int read = 0;
 | |
|     uint32_t length;
 | |
|     uint32_t offset = 1;
 | |
|     int esc_count;
 | |
|     GetBitContext gb;
 | |
|     lag_rac rac;
 | |
|     const uint8_t *src_end = src + src_size;
 | |
| 
 | |
|     rac.avctx = l->avctx;
 | |
|     l->zeros = 0;
 | |
| 
 | |
|     if(src_size < 2)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     esc_count = src[0];
 | |
|     if (esc_count < 4) {
 | |
|         length = width * height;
 | |
|         if(src_size < 5)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         if (esc_count && AV_RL32(src + 1) < length) {
 | |
|             length = AV_RL32(src + 1);
 | |
|             offset += 4;
 | |
|         }
 | |
| 
 | |
|         init_get_bits(&gb, src + offset, src_size * 8);
 | |
| 
 | |
|         if (lag_read_prob_header(&rac, &gb) < 0)
 | |
|             return -1;
 | |
| 
 | |
|         ff_lag_rac_init(&rac, &gb, length - stride);
 | |
| 
 | |
|         for (i = 0; i < height; i++)
 | |
|             read += lag_decode_line(l, &rac, dst + (i * stride), width,
 | |
|                                     stride, esc_count);
 | |
| 
 | |
|         if (read > length)
 | |
|             av_log(l->avctx, AV_LOG_WARNING,
 | |
|                    "Output more bytes than length (%d of %d)\n", read,
 | |
|                    length);
 | |
|     } else if (esc_count < 8) {
 | |
|         esc_count -= 4;
 | |
|         if (esc_count > 0) {
 | |
|             /* Zero run coding only, no range coding. */
 | |
|             for (i = 0; i < height; i++) {
 | |
|                 int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
 | |
|                                                    src_end, width, esc_count);
 | |
|                 if (res < 0)
 | |
|                     return res;
 | |
|                 src += res;
 | |
|             }
 | |
|         } else {
 | |
|             if (src_size < width * height)
 | |
|                 return AVERROR_INVALIDDATA; // buffer not big enough
 | |
|             /* Plane is stored uncompressed */
 | |
|             for (i = 0; i < height; i++) {
 | |
|                 memcpy(dst + (i * stride), src, width);
 | |
|                 src += width;
 | |
|             }
 | |
|         }
 | |
|     } else if (esc_count == 0xff) {
 | |
|         /* Plane is a solid run of given value */
 | |
|         for (i = 0; i < height; i++)
 | |
|             memset(dst + i * stride, src[1], width);
 | |
|         /* Do not apply prediction.
 | |
|            Note: memset to 0 above, setting first value to src[1]
 | |
|            and applying prediction gives the same result. */
 | |
|         return 0;
 | |
|     } else {
 | |
|         av_log(l->avctx, AV_LOG_ERROR,
 | |
|                "Invalid zero run escape code! (%#x)\n", esc_count);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < height; i++) {
 | |
|         lag_pred_line(l, dst, width, stride, i);
 | |
|         dst += stride;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a frame.
 | |
|  * @param avctx codec context
 | |
|  * @param data output AVFrame
 | |
|  * @param data_size size of output data or 0 if no picture is returned
 | |
|  * @param avpkt input packet
 | |
|  * @return number of consumed bytes on success or negative if decode fails
 | |
|  */
 | |
| static int lag_decode_frame(AVCodecContext *avctx,
 | |
|                             void *data, int *data_size, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     unsigned int buf_size = avpkt->size;
 | |
|     LagarithContext *l = avctx->priv_data;
 | |
|     AVFrame *const p = &l->picture;
 | |
|     uint8_t frametype = 0;
 | |
|     uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
 | |
|     int offs[4];
 | |
|     uint8_t *srcs[4], *dst;
 | |
|     int i, j, planes = 3;
 | |
| 
 | |
|     AVFrame *picture = data;
 | |
| 
 | |
|     if (p->data[0])
 | |
|         avctx->release_buffer(avctx, p);
 | |
| 
 | |
|     p->reference = 0;
 | |
|     p->key_frame = 1;
 | |
| 
 | |
|     frametype = buf[0];
 | |
| 
 | |
|     offset_gu = AV_RL32(buf + 1);
 | |
|     offset_bv = AV_RL32(buf + 5);
 | |
| 
 | |
|     switch (frametype) {
 | |
|     case FRAME_SOLID_RGBA:
 | |
|         avctx->pix_fmt = PIX_FMT_RGB32;
 | |
| 
 | |
|         if (avctx->get_buffer(avctx, p) < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         dst = p->data[0];
 | |
|         for (j = 0; j < avctx->height; j++) {
 | |
|             for (i = 0; i < avctx->width; i++)
 | |
|                 AV_WN32(dst + i * 4, offset_gu);
 | |
|             dst += p->linesize[0];
 | |
|         }
 | |
|         break;
 | |
|     case FRAME_ARITH_RGBA:
 | |
|         avctx->pix_fmt = PIX_FMT_RGB32;
 | |
|         planes = 4;
 | |
|         offset_ry += 4;
 | |
|         offs[3] = AV_RL32(buf + 9);
 | |
|     case FRAME_ARITH_RGB24:
 | |
|     case FRAME_U_RGB24:
 | |
|         if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
 | |
|             avctx->pix_fmt = PIX_FMT_RGB24;
 | |
| 
 | |
|         if (avctx->get_buffer(avctx, p) < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         offs[0] = offset_bv;
 | |
|         offs[1] = offset_gu;
 | |
|         offs[2] = offset_ry;
 | |
| 
 | |
|         if (!l->rgb_planes) {
 | |
|             l->rgb_stride = FFALIGN(avctx->width, 16);
 | |
|             l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * planes + 16);
 | |
|             if (!l->rgb_planes) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
 | |
|                 return AVERROR(ENOMEM);
 | |
|             }
 | |
|         }
 | |
|         for (i = 0; i < planes; i++)
 | |
|             srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
 | |
|         for (i = 0; i < planes; i++)
 | |
|             if (buf_size <= offs[i]) {
 | |
|                 av_log(avctx, AV_LOG_ERROR,
 | |
|                         "Invalid frame offsets\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|         for (i = 0; i < planes; i++)
 | |
|             lag_decode_arith_plane(l, srcs[i],
 | |
|                                    avctx->width, avctx->height,
 | |
|                                    -l->rgb_stride, buf + offs[i],
 | |
|                                    buf_size - offs[i]);
 | |
|         dst = p->data[0];
 | |
|         for (i = 0; i < planes; i++)
 | |
|             srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
 | |
|         for (j = 0; j < avctx->height; j++) {
 | |
|             for (i = 0; i < avctx->width; i++) {
 | |
|                 uint8_t r, g, b, a;
 | |
|                 r = srcs[0][i];
 | |
|                 g = srcs[1][i];
 | |
|                 b = srcs[2][i];
 | |
|                 r += g;
 | |
|                 b += g;
 | |
|                 if (frametype == FRAME_ARITH_RGBA) {
 | |
|                     a = srcs[3][i];
 | |
|                     AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
 | |
|                 } else {
 | |
|                     dst[i * 3 + 0] = r;
 | |
|                     dst[i * 3 + 1] = g;
 | |
|                     dst[i * 3 + 2] = b;
 | |
|                 }
 | |
|             }
 | |
|             dst += p->linesize[0];
 | |
|             for (i = 0; i < planes; i++)
 | |
|                 srcs[i] += l->rgb_stride;
 | |
|         }
 | |
|         break;
 | |
|     case FRAME_ARITH_YV12:
 | |
|         avctx->pix_fmt = PIX_FMT_YUV420P;
 | |
| 
 | |
|         if (avctx->get_buffer(avctx, p) < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|             return -1;
 | |
|         }
 | |
|         if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (offset_ry >= buf_size ||
 | |
|             offset_gu >= buf_size ||
 | |
|             offset_bv >= buf_size) {
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "Invalid frame offsets\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
 | |
|                                p->linesize[0], buf + offset_ry,
 | |
|                                buf_size - offset_ry);
 | |
|         lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
 | |
|                                avctx->height / 2, p->linesize[2],
 | |
|                                buf + offset_gu, buf_size - offset_gu);
 | |
|         lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
 | |
|                                avctx->height / 2, p->linesize[1],
 | |
|                                buf + offset_bv, buf_size - offset_bv);
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Unsupported Lagarith frame type: %#x\n", frametype);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *picture = *p;
 | |
|     *data_size = sizeof(AVFrame);
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| static av_cold int lag_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     LagarithContext *l = avctx->priv_data;
 | |
|     l->avctx = avctx;
 | |
| 
 | |
|     ff_dsputil_init(&l->dsp, avctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int lag_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     LagarithContext *l = avctx->priv_data;
 | |
| 
 | |
|     if (l->picture.data[0])
 | |
|         avctx->release_buffer(avctx, &l->picture);
 | |
|     av_freep(&l->rgb_planes);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_lagarith_decoder = {
 | |
|     .name           = "lagarith",
 | |
|     .type           = AVMEDIA_TYPE_VIDEO,
 | |
|     .id             = CODEC_ID_LAGARITH,
 | |
|     .priv_data_size = sizeof(LagarithContext),
 | |
|     .init           = lag_decode_init,
 | |
|     .close          = lag_decode_end,
 | |
|     .decode         = lag_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
 | |
| };
 | 
