mirror of
				https://git.ffmpeg.org/ffmpeg.git
				synced 2025-10-31 15:50:55 +00:00 
			
		
		
		
	 e4de71677f
			
		
	
	
		e4de71677f
		
	
	
	
	
		
			
			* qatar/master: aac_latm: reconfigure decoder on audio specific config changes latmdec: fix audio specific config parsing Add avcodec_decode_audio4(). avcodec: change number of plane pointers from 4 to 8 at next major bump. Update developers documentation with coding conventions. svq1dec: avoid undefined get_bits(0) call ARM: h264dsp_neon cosmetics ARM: make some NEON macros reusable Do not memcpy raw video frames when using null muxer fate: update asf seektest vp8: flush buffers on size changes. doc: improve general documentation for MacOSX asf: use packet dts as approximation of pts asf: do not call av_read_frame rtsp: Initialize the media_type_mask in the rtp guessing demuxer Cleaned up alacenc.c Conflicts: doc/APIchanges doc/developer.texi libavcodec/8svx.c libavcodec/aacdec.c libavcodec/ac3dec.c libavcodec/avcodec.h libavcodec/nellymoserdec.c libavcodec/tta.c libavcodec/utils.c libavcodec/version.h libavcodec/wmadec.c libavformat/asfdec.c tests/ref/seek/lavf_asf Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			2403 lines
		
	
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2403 lines
		
	
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2003-2004 the ffmpeg project
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * On2 VP3 Video Decoder
 | |
|  *
 | |
|  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 | |
|  * For more information about the VP3 coding process, visit:
 | |
|  *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 | |
|  *
 | |
|  * Theora decoder by Alex Beregszaszi
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "dsputil.h"
 | |
| #include "get_bits.h"
 | |
| 
 | |
| #include "vp3data.h"
 | |
| #include "xiph.h"
 | |
| #include "thread.h"
 | |
| 
 | |
| #define FRAGMENT_PIXELS 8
 | |
| 
 | |
| static av_cold int vp3_decode_end(AVCodecContext *avctx);
 | |
| static void vp3_decode_flush(AVCodecContext *avctx);
 | |
| 
 | |
| //FIXME split things out into their own arrays
 | |
| typedef struct Vp3Fragment {
 | |
|     int16_t dc;
 | |
|     uint8_t coding_method;
 | |
|     uint8_t qpi;
 | |
| } Vp3Fragment;
 | |
| 
 | |
| #define SB_NOT_CODED        0
 | |
| #define SB_PARTIALLY_CODED  1
 | |
| #define SB_FULLY_CODED      2
 | |
| 
 | |
| // This is the maximum length of a single long bit run that can be encoded
 | |
| // for superblock coding or block qps. Theora special-cases this to read a
 | |
| // bit instead of flipping the current bit to allow for runs longer than 4129.
 | |
| #define MAXIMUM_LONG_BIT_RUN 4129
 | |
| 
 | |
| #define MODE_INTER_NO_MV      0
 | |
| #define MODE_INTRA            1
 | |
| #define MODE_INTER_PLUS_MV    2
 | |
| #define MODE_INTER_LAST_MV    3
 | |
| #define MODE_INTER_PRIOR_LAST 4
 | |
| #define MODE_USING_GOLDEN     5
 | |
| #define MODE_GOLDEN_MV        6
 | |
| #define MODE_INTER_FOURMV     7
 | |
| #define CODING_MODE_COUNT     8
 | |
| 
 | |
| /* special internal mode */
 | |
| #define MODE_COPY             8
 | |
| 
 | |
| /* There are 6 preset schemes, plus a free-form scheme */
 | |
| static const int ModeAlphabet[6][CODING_MODE_COUNT] =
 | |
| {
 | |
|     /* scheme 1: Last motion vector dominates */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 2 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 3 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|          MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 4 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|          MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 5: No motion vector dominates */
 | |
|     {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
 | |
|          MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 6 */
 | |
|     {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
 | |
|          MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTER_PLUS_MV,    MODE_INTRA,
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
| };
 | |
| 
 | |
| static const uint8_t hilbert_offset[16][2] = {
 | |
|     {0,0}, {1,0}, {1,1}, {0,1},
 | |
|     {0,2}, {0,3}, {1,3}, {1,2},
 | |
|     {2,2}, {2,3}, {3,3}, {3,2},
 | |
|     {3,1}, {2,1}, {2,0}, {3,0}
 | |
| };
 | |
| 
 | |
| #define MIN_DEQUANT_VAL 2
 | |
| 
 | |
| typedef struct Vp3DecodeContext {
 | |
|     AVCodecContext *avctx;
 | |
|     int theora, theora_tables;
 | |
|     int version;
 | |
|     int width, height;
 | |
|     int chroma_x_shift, chroma_y_shift;
 | |
|     AVFrame golden_frame;
 | |
|     AVFrame last_frame;
 | |
|     AVFrame current_frame;
 | |
|     int keyframe;
 | |
|     DSPContext dsp;
 | |
|     int flipped_image;
 | |
|     int last_slice_end;
 | |
|     int skip_loop_filter;
 | |
| 
 | |
|     int qps[3];
 | |
|     int nqps;
 | |
|     int last_qps[3];
 | |
| 
 | |
|     int superblock_count;
 | |
|     int y_superblock_width;
 | |
|     int y_superblock_height;
 | |
|     int y_superblock_count;
 | |
|     int c_superblock_width;
 | |
|     int c_superblock_height;
 | |
|     int c_superblock_count;
 | |
|     int u_superblock_start;
 | |
|     int v_superblock_start;
 | |
|     unsigned char *superblock_coding;
 | |
| 
 | |
|     int macroblock_count;
 | |
|     int macroblock_width;
 | |
|     int macroblock_height;
 | |
| 
 | |
|     int fragment_count;
 | |
|     int fragment_width[2];
 | |
|     int fragment_height[2];
 | |
| 
 | |
|     Vp3Fragment *all_fragments;
 | |
|     int fragment_start[3];
 | |
|     int data_offset[3];
 | |
| 
 | |
|     int8_t (*motion_val[2])[2];
 | |
| 
 | |
|     ScanTable scantable;
 | |
| 
 | |
|     /* tables */
 | |
|     uint16_t coded_dc_scale_factor[64];
 | |
|     uint32_t coded_ac_scale_factor[64];
 | |
|     uint8_t base_matrix[384][64];
 | |
|     uint8_t qr_count[2][3];
 | |
|     uint8_t qr_size [2][3][64];
 | |
|     uint16_t qr_base[2][3][64];
 | |
| 
 | |
|     /**
 | |
|      * This is a list of all tokens in bitstream order. Reordering takes place
 | |
|      * by pulling from each level during IDCT. As a consequence, IDCT must be
 | |
|      * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
 | |
|      * otherwise. The 32 different tokens with up to 12 bits of extradata are
 | |
|      * collapsed into 3 types, packed as follows:
 | |
|      *   (from the low to high bits)
 | |
|      *
 | |
|      * 2 bits: type (0,1,2)
 | |
|      *   0: EOB run, 14 bits for run length (12 needed)
 | |
|      *   1: zero run, 7 bits for run length
 | |
|      *                7 bits for the next coefficient (3 needed)
 | |
|      *   2: coefficient, 14 bits (11 needed)
 | |
|      *
 | |
|      * Coefficients are signed, so are packed in the highest bits for automatic
 | |
|      * sign extension.
 | |
|      */
 | |
|     int16_t *dct_tokens[3][64];
 | |
|     int16_t *dct_tokens_base;
 | |
| #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
 | |
| #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
 | |
| #define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
 | |
| 
 | |
|     /**
 | |
|      * number of blocks that contain DCT coefficients at the given level or higher
 | |
|      */
 | |
|     int num_coded_frags[3][64];
 | |
|     int total_num_coded_frags;
 | |
| 
 | |
|     /* this is a list of indexes into the all_fragments array indicating
 | |
|      * which of the fragments are coded */
 | |
|     int *coded_fragment_list[3];
 | |
| 
 | |
|     VLC dc_vlc[16];
 | |
|     VLC ac_vlc_1[16];
 | |
|     VLC ac_vlc_2[16];
 | |
|     VLC ac_vlc_3[16];
 | |
|     VLC ac_vlc_4[16];
 | |
| 
 | |
|     VLC superblock_run_length_vlc;
 | |
|     VLC fragment_run_length_vlc;
 | |
|     VLC mode_code_vlc;
 | |
|     VLC motion_vector_vlc;
 | |
| 
 | |
|     /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | |
|      * index into them */
 | |
|     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
 | |
| 
 | |
|     /* This table contains superblock_count * 16 entries. Each set of 16
 | |
|      * numbers corresponds to the fragment indexes 0..15 of the superblock.
 | |
|      * An entry will be -1 to indicate that no entry corresponds to that
 | |
|      * index. */
 | |
|     int *superblock_fragments;
 | |
| 
 | |
|     /* This is an array that indicates how a particular macroblock
 | |
|      * is coded. */
 | |
|     unsigned char *macroblock_coding;
 | |
| 
 | |
|     uint8_t *edge_emu_buffer;
 | |
| 
 | |
|     /* Huffman decode */
 | |
|     int hti;
 | |
|     unsigned int hbits;
 | |
|     int entries;
 | |
|     int huff_code_size;
 | |
|     uint32_t huffman_table[80][32][2];
 | |
| 
 | |
|     uint8_t filter_limit_values[64];
 | |
|     DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
 | |
| } Vp3DecodeContext;
 | |
| 
 | |
| /************************************************************************
 | |
|  * VP3 specific functions
 | |
|  ************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * This function sets up all of the various blocks mappings:
 | |
|  * superblocks <-> fragments, macroblocks <-> fragments,
 | |
|  * superblocks <-> macroblocks
 | |
|  *
 | |
|  * @return 0 is successful; returns 1 if *anything* went wrong.
 | |
|  */
 | |
| static int init_block_mapping(Vp3DecodeContext *s)
 | |
| {
 | |
|     int sb_x, sb_y, plane;
 | |
|     int x, y, i, j = 0;
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
 | |
|         int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
 | |
|         int frag_width  = s->fragment_width[!!plane];
 | |
|         int frag_height = s->fragment_height[!!plane];
 | |
| 
 | |
|         for (sb_y = 0; sb_y < sb_height; sb_y++)
 | |
|             for (sb_x = 0; sb_x < sb_width; sb_x++)
 | |
|                 for (i = 0; i < 16; i++) {
 | |
|                     x = 4*sb_x + hilbert_offset[i][0];
 | |
|                     y = 4*sb_y + hilbert_offset[i][1];
 | |
| 
 | |
|                     if (x < frag_width && y < frag_height)
 | |
|                         s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
 | |
|                     else
 | |
|                         s->superblock_fragments[j++] = -1;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     return 0;  /* successful path out */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets up the dequantization tables used for a particular
 | |
|  * frame.
 | |
|  */
 | |
| static void init_dequantizer(Vp3DecodeContext *s, int qpi)
 | |
| {
 | |
|     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
 | |
|     int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
 | |
|     int i, plane, inter, qri, bmi, bmj, qistart;
 | |
| 
 | |
|     for(inter=0; inter<2; inter++){
 | |
|         for(plane=0; plane<3; plane++){
 | |
|             int sum=0;
 | |
|             for(qri=0; qri<s->qr_count[inter][plane]; qri++){
 | |
|                 sum+= s->qr_size[inter][plane][qri];
 | |
|                 if(s->qps[qpi] <= sum)
 | |
|                     break;
 | |
|             }
 | |
|             qistart= sum - s->qr_size[inter][plane][qri];
 | |
|             bmi= s->qr_base[inter][plane][qri  ];
 | |
|             bmj= s->qr_base[inter][plane][qri+1];
 | |
|             for(i=0; i<64; i++){
 | |
|                 int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
 | |
|                             - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
 | |
|                             + s->qr_size[inter][plane][qri])
 | |
|                            / (2*s->qr_size[inter][plane][qri]);
 | |
| 
 | |
|                 int qmin= 8<<(inter + !i);
 | |
|                 int qscale= i ? ac_scale_factor : dc_scale_factor;
 | |
| 
 | |
|                 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
 | |
|             }
 | |
|             // all DC coefficients use the same quant so as not to interfere with DC prediction
 | |
|             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function initializes the loop filter boundary limits if the frame's
 | |
|  * quality index is different from the previous frame's.
 | |
|  *
 | |
|  * The filter_limit_values may not be larger than 127.
 | |
|  */
 | |
| static void init_loop_filter(Vp3DecodeContext *s)
 | |
| {
 | |
|     int *bounding_values= s->bounding_values_array+127;
 | |
|     int filter_limit;
 | |
|     int x;
 | |
|     int value;
 | |
| 
 | |
|     filter_limit = s->filter_limit_values[s->qps[0]];
 | |
| 
 | |
|     /* set up the bounding values */
 | |
|     memset(s->bounding_values_array, 0, 256 * sizeof(int));
 | |
|     for (x = 0; x < filter_limit; x++) {
 | |
|         bounding_values[-x] = -x;
 | |
|         bounding_values[x] = x;
 | |
|     }
 | |
|     for (x = value = filter_limit; x < 128 && value; x++, value--) {
 | |
|         bounding_values[ x] =  value;
 | |
|         bounding_values[-x] = -value;
 | |
|     }
 | |
|     if (value)
 | |
|         bounding_values[128] = value;
 | |
|     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all of the superblock/macroblock/fragment coding
 | |
|  * information from the bitstream.
 | |
|  */
 | |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
 | |
|     int bit = 0;
 | |
|     int current_superblock = 0;
 | |
|     int current_run = 0;
 | |
|     int num_partial_superblocks = 0;
 | |
| 
 | |
|     int i, j;
 | |
|     int current_fragment;
 | |
|     int plane;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         /* unpack the list of partially-coded superblocks */
 | |
|         bit = get_bits1(gb) ^ 1;
 | |
|         current_run = 0;
 | |
| 
 | |
|         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
 | |
|             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|                 current_run = get_vlc2(gb,
 | |
|                     s->superblock_run_length_vlc.table, 6, 2) + 1;
 | |
|                 if (current_run == 34)
 | |
|                     current_run += get_bits(gb, 12);
 | |
| 
 | |
|             if (current_superblock + current_run > s->superblock_count) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             memset(s->superblock_coding + current_superblock, bit, current_run);
 | |
| 
 | |
|             current_superblock += current_run;
 | |
|             if (bit)
 | |
|                 num_partial_superblocks += current_run;
 | |
|         }
 | |
| 
 | |
|         /* unpack the list of fully coded superblocks if any of the blocks were
 | |
|          * not marked as partially coded in the previous step */
 | |
|         if (num_partial_superblocks < s->superblock_count) {
 | |
|             int superblocks_decoded = 0;
 | |
| 
 | |
|             current_superblock = 0;
 | |
|             bit = get_bits1(gb) ^ 1;
 | |
|             current_run = 0;
 | |
| 
 | |
|             while (superblocks_decoded < s->superblock_count - num_partial_superblocks
 | |
|                    && get_bits_left(gb) > 0) {
 | |
| 
 | |
|                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                     bit = get_bits1(gb);
 | |
|                 else
 | |
|                     bit ^= 1;
 | |
| 
 | |
|                         current_run = get_vlc2(gb,
 | |
|                             s->superblock_run_length_vlc.table, 6, 2) + 1;
 | |
|                         if (current_run == 34)
 | |
|                             current_run += get_bits(gb, 12);
 | |
| 
 | |
|                 for (j = 0; j < current_run; current_superblock++) {
 | |
|                     if (current_superblock >= s->superblock_count) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
 | |
|                         return -1;
 | |
|                     }
 | |
| 
 | |
|                 /* skip any superblocks already marked as partially coded */
 | |
|                 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | |
|                     s->superblock_coding[current_superblock] = 2*bit;
 | |
|                     j++;
 | |
|                 }
 | |
|                 }
 | |
|                 superblocks_decoded += current_run;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* if there were partial blocks, initialize bitstream for
 | |
|          * unpacking fragment codings */
 | |
|         if (num_partial_superblocks) {
 | |
| 
 | |
|             current_run = 0;
 | |
|             bit = get_bits1(gb);
 | |
|             /* toggle the bit because as soon as the first run length is
 | |
|              * fetched the bit will be toggled again */
 | |
|             bit ^= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* figure out which fragments are coded; iterate through each
 | |
|      * superblock (all planes) */
 | |
|     s->total_num_coded_frags = 0;
 | |
|     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         int sb_start = superblock_starts[plane];
 | |
|         int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
 | |
|         int num_coded_frags = 0;
 | |
| 
 | |
|     for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
 | |
| 
 | |
|         /* iterate through all 16 fragments in a superblock */
 | |
|         for (j = 0; j < 16; j++) {
 | |
| 
 | |
|             /* if the fragment is in bounds, check its coding status */
 | |
|             current_fragment = s->superblock_fragments[i * 16 + j];
 | |
|             if (current_fragment != -1) {
 | |
|                 int coded = s->superblock_coding[i];
 | |
| 
 | |
|                 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
 | |
| 
 | |
|                     /* fragment may or may not be coded; this is the case
 | |
|                      * that cares about the fragment coding runs */
 | |
|                     if (current_run-- == 0) {
 | |
|                         bit ^= 1;
 | |
|                         current_run = get_vlc2(gb,
 | |
|                             s->fragment_run_length_vlc.table, 5, 2);
 | |
|                     }
 | |
|                     coded = bit;
 | |
|                 }
 | |
| 
 | |
|                     if (coded) {
 | |
|                         /* default mode; actual mode will be decoded in
 | |
|                          * the next phase */
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             MODE_INTER_NO_MV;
 | |
|                         s->coded_fragment_list[plane][num_coded_frags++] =
 | |
|                             current_fragment;
 | |
|                     } else {
 | |
|                         /* not coded; copy this fragment from the prior frame */
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             MODE_COPY;
 | |
|                     }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|         s->total_num_coded_frags += num_coded_frags;
 | |
|         for (i = 0; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] = num_coded_frags;
 | |
|         if (plane < 2)
 | |
|             s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the coding mode data for individual macroblocks
 | |
|  * from the bitstream.
 | |
|  */
 | |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i, j, k, sb_x, sb_y;
 | |
|     int scheme;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int coding_mode;
 | |
|     int custom_mode_alphabet[CODING_MODE_COUNT];
 | |
|     const int *alphabet;
 | |
|     Vp3Fragment *frag;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         for (i = 0; i < s->fragment_count; i++)
 | |
|             s->all_fragments[i].coding_method = MODE_INTRA;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         /* fetch the mode coding scheme for this frame */
 | |
|         scheme = get_bits(gb, 3);
 | |
| 
 | |
|         /* is it a custom coding scheme? */
 | |
|         if (scheme == 0) {
 | |
|             for (i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
 | |
|             for (i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[get_bits(gb, 3)] = i;
 | |
|             alphabet = custom_mode_alphabet;
 | |
|         } else
 | |
|             alphabet = ModeAlphabet[scheme-1];
 | |
| 
 | |
|         /* iterate through all of the macroblocks that contain 1 or more
 | |
|          * coded fragments */
 | |
|         for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|             for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|                 if (get_bits_left(gb) <= 0)
 | |
|                     return -1;
 | |
| 
 | |
|             for (j = 0; j < 4; j++) {
 | |
|                 int mb_x = 2*sb_x +   (j>>1);
 | |
|                 int mb_y = 2*sb_y + (((j>>1)+j)&1);
 | |
|                 current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|                 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
 | |
|                     continue;
 | |
| 
 | |
| #define BLOCK_X (2*mb_x + (k&1))
 | |
| #define BLOCK_Y (2*mb_y + (k>>1))
 | |
|                 /* coding modes are only stored if the macroblock has at least one
 | |
|                  * luma block coded, otherwise it must be INTER_NO_MV */
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
 | |
|                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
 | |
|                         break;
 | |
|                 }
 | |
|                 if (k == 4) {
 | |
|                     s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 /* mode 7 means get 3 bits for each coding mode */
 | |
|                 if (scheme == 7)
 | |
|                     coding_mode = get_bits(gb, 3);
 | |
|                 else
 | |
|                     coding_mode = alphabet
 | |
|                         [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
 | |
| 
 | |
|                 s->macroblock_coding[current_macroblock] = coding_mode;
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
 | |
|                     if (frag->coding_method != MODE_COPY)
 | |
|                         frag->coding_method = coding_mode;
 | |
|                 }
 | |
| 
 | |
| #define SET_CHROMA_MODES \
 | |
|     if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
 | |
|         frag[s->fragment_start[1]].coding_method = coding_mode;\
 | |
|     if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
 | |
|         frag[s->fragment_start[2]].coding_method = coding_mode;
 | |
| 
 | |
|                 if (s->chroma_y_shift) {
 | |
|                     frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
 | |
|                     SET_CHROMA_MODES
 | |
|                 } else if (s->chroma_x_shift) {
 | |
|                     frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
 | |
|                     for (k = 0; k < 2; k++) {
 | |
|                         SET_CHROMA_MODES
 | |
|                         frag += s->fragment_width[1];
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
 | |
|                         SET_CHROMA_MODES
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the motion vectors for the individual
 | |
|  * macroblocks from the bitstream.
 | |
|  */
 | |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int j, k, sb_x, sb_y;
 | |
|     int coding_mode;
 | |
|     int motion_x[4];
 | |
|     int motion_y[4];
 | |
|     int last_motion_x = 0;
 | |
|     int last_motion_y = 0;
 | |
|     int prior_last_motion_x = 0;
 | |
|     int prior_last_motion_y = 0;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int frag;
 | |
| 
 | |
|     if (s->keyframe)
 | |
|         return 0;
 | |
| 
 | |
|     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
 | |
|     coding_mode = get_bits1(gb);
 | |
| 
 | |
|     /* iterate through all of the macroblocks that contain 1 or more
 | |
|      * coded fragments */
 | |
|     for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|         for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|             if (get_bits_left(gb) <= 0)
 | |
|                 return -1;
 | |
| 
 | |
|         for (j = 0; j < 4; j++) {
 | |
|             int mb_x = 2*sb_x +   (j>>1);
 | |
|             int mb_y = 2*sb_y + (((j>>1)+j)&1);
 | |
|             current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|             if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
 | |
|                 (s->macroblock_coding[current_macroblock] == MODE_COPY))
 | |
|                 continue;
 | |
| 
 | |
|             switch (s->macroblock_coding[current_macroblock]) {
 | |
| 
 | |
|             case MODE_INTER_PLUS_MV:
 | |
|             case MODE_GOLDEN_MV:
 | |
|                 /* all 6 fragments use the same motion vector */
 | |
|                 if (coding_mode == 0) {
 | |
|                     motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                     motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                 } else {
 | |
|                     motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                     motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                 }
 | |
| 
 | |
|                 /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | |
|                 if (s->macroblock_coding[current_macroblock] ==
 | |
|                     MODE_INTER_PLUS_MV) {
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
|                     last_motion_x = motion_x[0];
 | |
|                     last_motion_y = motion_y[0];
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|             case MODE_INTER_FOURMV:
 | |
|                 /* vector maintenance */
 | |
|                 prior_last_motion_x = last_motion_x;
 | |
|                 prior_last_motion_y = last_motion_y;
 | |
| 
 | |
|                 /* fetch 4 vectors from the bitstream, one for each
 | |
|                  * Y fragment, then average for the C fragment vectors */
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
 | |
|                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
 | |
|                         if (coding_mode == 0) {
 | |
|                             motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                             motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                         } else {
 | |
|                             motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                             motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                         }
 | |
|                         last_motion_x = motion_x[k];
 | |
|                         last_motion_y = motion_y[k];
 | |
|                     } else {
 | |
|                         motion_x[k] = 0;
 | |
|                         motion_y[k] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|             case MODE_INTER_LAST_MV:
 | |
|                 /* all 6 fragments use the last motion vector */
 | |
|                 motion_x[0] = last_motion_x;
 | |
|                 motion_y[0] = last_motion_y;
 | |
| 
 | |
|                 /* no vector maintenance (last vector remains the
 | |
|                  * last vector) */
 | |
|                 break;
 | |
| 
 | |
|             case MODE_INTER_PRIOR_LAST:
 | |
|                 /* all 6 fragments use the motion vector prior to the
 | |
|                  * last motion vector */
 | |
|                 motion_x[0] = prior_last_motion_x;
 | |
|                 motion_y[0] = prior_last_motion_y;
 | |
| 
 | |
|                 /* vector maintenance */
 | |
|                 prior_last_motion_x = last_motion_x;
 | |
|                 prior_last_motion_y = last_motion_y;
 | |
|                 last_motion_x = motion_x[0];
 | |
|                 last_motion_y = motion_y[0];
 | |
|                 break;
 | |
| 
 | |
|             default:
 | |
|                 /* covers intra, inter without MV, golden without MV */
 | |
|                 motion_x[0] = 0;
 | |
|                 motion_y[0] = 0;
 | |
| 
 | |
|                 /* no vector maintenance */
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* assign the motion vectors to the correct fragments */
 | |
|             for (k = 0; k < 4; k++) {
 | |
|                 current_fragment =
 | |
|                     BLOCK_Y*s->fragment_width[0] + BLOCK_X;
 | |
|                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                     s->motion_val[0][current_fragment][0] = motion_x[k];
 | |
|                     s->motion_val[0][current_fragment][1] = motion_y[k];
 | |
|                 } else {
 | |
|                     s->motion_val[0][current_fragment][0] = motion_x[0];
 | |
|                     s->motion_val[0][current_fragment][1] = motion_y[0];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (s->chroma_y_shift) {
 | |
|                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
 | |
|                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
 | |
|                 }
 | |
|                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
 | |
|                 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
 | |
|                 frag = mb_y*s->fragment_width[1] + mb_x;
 | |
|                 s->motion_val[1][frag][0] = motion_x[0];
 | |
|                 s->motion_val[1][frag][1] = motion_y[0];
 | |
|             } else if (s->chroma_x_shift) {
 | |
|                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
 | |
|                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
 | |
|                     motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
 | |
|                     motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
 | |
|                 } else {
 | |
|                     motion_x[1] = motion_x[0];
 | |
|                     motion_y[1] = motion_y[0];
 | |
|                 }
 | |
|                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
 | |
|                 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
 | |
| 
 | |
|                 frag = 2*mb_y*s->fragment_width[1] + mb_x;
 | |
|                 for (k = 0; k < 2; k++) {
 | |
|                     s->motion_val[1][frag][0] = motion_x[k];
 | |
|                     s->motion_val[1][frag][1] = motion_y[k];
 | |
|                     frag += s->fragment_width[1];
 | |
|                 }
 | |
|             } else {
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         s->motion_val[1][frag][0] = motion_x[k];
 | |
|                         s->motion_val[1][frag][1] = motion_y[k];
 | |
|                     } else {
 | |
|                         s->motion_val[1][frag][0] = motion_x[0];
 | |
|                         s->motion_val[1][frag][1] = motion_y[0];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
 | |
|     int num_blocks = s->total_num_coded_frags;
 | |
| 
 | |
|     for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
 | |
|         i = blocks_decoded = num_blocks_at_qpi = 0;
 | |
| 
 | |
|         bit = get_bits1(gb) ^ 1;
 | |
|         run_length = 0;
 | |
| 
 | |
|         do {
 | |
|             if (run_length == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|             run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
 | |
|             if (run_length == 34)
 | |
|                 run_length += get_bits(gb, 12);
 | |
|             blocks_decoded += run_length;
 | |
| 
 | |
|             if (!bit)
 | |
|                 num_blocks_at_qpi += run_length;
 | |
| 
 | |
|             for (j = 0; j < run_length; i++) {
 | |
|                 if (i >= s->total_num_coded_frags)
 | |
|                     return -1;
 | |
| 
 | |
|                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
 | |
|                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
 | |
|                     j++;
 | |
|                 }
 | |
|             }
 | |
|         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
 | |
| 
 | |
|         num_blocks -= num_blocks_at_qpi;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | |
|  * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | |
|  * data. This function unpacks all the VLCs for either the Y plane or both
 | |
|  * C planes, and is called for DC coefficients or different AC coefficient
 | |
|  * levels (since different coefficient types require different VLC tables.
 | |
|  *
 | |
|  * This function returns a residual eob run. E.g, if a particular token gave
 | |
|  * instructions to EOB the next 5 fragments and there were only 2 fragments
 | |
|  * left in the current fragment range, 3 would be returned so that it could
 | |
|  * be passed into the next call to this same function.
 | |
|  */
 | |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | |
|                         VLC *table, int coeff_index,
 | |
|                         int plane,
 | |
|                         int eob_run)
 | |
| {
 | |
|     int i, j = 0;
 | |
|     int token;
 | |
|     int zero_run = 0;
 | |
|     DCTELEM coeff = 0;
 | |
|     int bits_to_get;
 | |
|     int blocks_ended;
 | |
|     int coeff_i = 0;
 | |
|     int num_coeffs = s->num_coded_frags[plane][coeff_index];
 | |
|     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
 | |
| 
 | |
|     /* local references to structure members to avoid repeated deferences */
 | |
|     int *coded_fragment_list = s->coded_fragment_list[plane];
 | |
|     Vp3Fragment *all_fragments = s->all_fragments;
 | |
|     VLC_TYPE (*vlc_table)[2] = table->table;
 | |
| 
 | |
|     if (num_coeffs < 0)
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
 | |
| 
 | |
|     if (eob_run > num_coeffs) {
 | |
|         coeff_i = blocks_ended = num_coeffs;
 | |
|         eob_run -= num_coeffs;
 | |
|     } else {
 | |
|         coeff_i = blocks_ended = eob_run;
 | |
|         eob_run = 0;
 | |
|     }
 | |
| 
 | |
|     // insert fake EOB token to cover the split between planes or zzi
 | |
|     if (blocks_ended)
 | |
|         dct_tokens[j++] = blocks_ended << 2;
 | |
| 
 | |
|     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
 | |
|             /* decode a VLC into a token */
 | |
|             token = get_vlc2(gb, vlc_table, 11, 3);
 | |
|             /* use the token to get a zero run, a coefficient, and an eob run */
 | |
|             if ((unsigned) token <= 6U) {
 | |
|                 eob_run = eob_run_base[token];
 | |
|                 if (eob_run_get_bits[token])
 | |
|                     eob_run += get_bits(gb, eob_run_get_bits[token]);
 | |
| 
 | |
|                 // record only the number of blocks ended in this plane,
 | |
|                 // any spill will be recorded in the next plane.
 | |
|                 if (eob_run > num_coeffs - coeff_i) {
 | |
|                     dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
 | |
|                     blocks_ended   += num_coeffs - coeff_i;
 | |
|                     eob_run        -= num_coeffs - coeff_i;
 | |
|                     coeff_i         = num_coeffs;
 | |
|                 } else {
 | |
|                     dct_tokens[j++] = TOKEN_EOB(eob_run);
 | |
|                     blocks_ended   += eob_run;
 | |
|                     coeff_i        += eob_run;
 | |
|                     eob_run = 0;
 | |
|                 }
 | |
|             } else if (token >= 0) {
 | |
|                 bits_to_get = coeff_get_bits[token];
 | |
|                 if (bits_to_get)
 | |
|                     bits_to_get = get_bits(gb, bits_to_get);
 | |
|                 coeff = coeff_tables[token][bits_to_get];
 | |
| 
 | |
|                 zero_run = zero_run_base[token];
 | |
|                 if (zero_run_get_bits[token])
 | |
|                     zero_run += get_bits(gb, zero_run_get_bits[token]);
 | |
| 
 | |
|                 if (zero_run) {
 | |
|                     dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
 | |
|                 } else {
 | |
|                     // Save DC into the fragment structure. DC prediction is
 | |
|                     // done in raster order, so the actual DC can't be in with
 | |
|                     // other tokens. We still need the token in dct_tokens[]
 | |
|                     // however, or else the structure collapses on itself.
 | |
|                     if (!coeff_index)
 | |
|                         all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
 | |
| 
 | |
|                     dct_tokens[j++] = TOKEN_COEFF(coeff);
 | |
|                 }
 | |
| 
 | |
|                 if (coeff_index + zero_run > 64) {
 | |
|                     av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
 | |
|                            " %d coeffs left\n", zero_run, 64-coeff_index);
 | |
|                     zero_run = 64 - coeff_index;
 | |
|                 }
 | |
| 
 | |
|                 // zero runs code multiple coefficients,
 | |
|                 // so don't try to decode coeffs for those higher levels
 | |
|                 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
 | |
|                     s->num_coded_frags[plane][i]--;
 | |
|                 coeff_i++;
 | |
|             } else {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid token %d\n", token);
 | |
|                 return -1;
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
 | |
| 
 | |
|     // decrement the number of blocks that have higher coeffecients for each
 | |
|     // EOB run at this level
 | |
|     if (blocks_ended)
 | |
|         for (i = coeff_index+1; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] -= blocks_ended;
 | |
| 
 | |
|     // setup the next buffer
 | |
|     if (plane < 2)
 | |
|         s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
 | |
|     else if (coeff_index < 63)
 | |
|         s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
 | |
| 
 | |
|     return eob_run;
 | |
| }
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height);
 | |
| /*
 | |
|  * This function unpacks all of the DCT coefficient data from the
 | |
|  * bitstream.
 | |
|  */
 | |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i;
 | |
|     int dc_y_table;
 | |
|     int dc_c_table;
 | |
|     int ac_y_table;
 | |
|     int ac_c_table;
 | |
|     int residual_eob_run = 0;
 | |
|     VLC *y_tables[64];
 | |
|     VLC *c_tables[64];
 | |
| 
 | |
|     s->dct_tokens[0][0] = s->dct_tokens_base;
 | |
| 
 | |
|     /* fetch the DC table indexes */
 | |
|     dc_y_table = get_bits(gb, 4);
 | |
|     dc_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* unpack the Y plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
 | |
|         0, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
| 
 | |
|     /* reverse prediction of the Y-plane DC coefficients */
 | |
|     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
 | |
| 
 | |
|     /* unpack the C plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | |
|         1, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | |
|         2, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
| 
 | |
|     /* reverse prediction of the C-plane DC coefficients */
 | |
|     if (!(s->avctx->flags & CODEC_FLAG_GRAY))
 | |
|     {
 | |
|         reverse_dc_prediction(s, s->fragment_start[1],
 | |
|             s->fragment_width[1], s->fragment_height[1]);
 | |
|         reverse_dc_prediction(s, s->fragment_start[2],
 | |
|             s->fragment_width[1], s->fragment_height[1]);
 | |
|     }
 | |
| 
 | |
|     /* fetch the AC table indexes */
 | |
|     ac_y_table = get_bits(gb, 4);
 | |
|     ac_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* build tables of AC VLC tables */
 | |
|     for (i = 1; i <= 5; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_1[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_1[ac_c_table];
 | |
|     }
 | |
|     for (i = 6; i <= 14; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_2[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_2[ac_c_table];
 | |
|     }
 | |
|     for (i = 15; i <= 27; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_3[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_3[ac_c_table];
 | |
|     }
 | |
|     for (i = 28; i <= 63; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_4[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_4[ac_c_table];
 | |
|     }
 | |
| 
 | |
|     /* decode all AC coefficents */
 | |
|     for (i = 1; i <= 63; i++) {
 | |
|             residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
 | |
|                 0, residual_eob_run);
 | |
|             if (residual_eob_run < 0)
 | |
|                 return residual_eob_run;
 | |
| 
 | |
|             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                 1, residual_eob_run);
 | |
|             if (residual_eob_run < 0)
 | |
|                 return residual_eob_run;
 | |
|             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                 2, residual_eob_run);
 | |
|             if (residual_eob_run < 0)
 | |
|                 return residual_eob_run;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function reverses the DC prediction for each coded fragment in
 | |
|  * the frame. Much of this function is adapted directly from the original
 | |
|  * VP3 source code.
 | |
|  */
 | |
| #define COMPATIBLE_FRAME(x) \
 | |
|   (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | |
| #define DC_COEFF(u) s->all_fragments[u].dc
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height)
 | |
| {
 | |
| 
 | |
| #define PUL 8
 | |
| #define PU 4
 | |
| #define PUR 2
 | |
| #define PL 1
 | |
| 
 | |
|     int x, y;
 | |
|     int i = first_fragment;
 | |
| 
 | |
|     int predicted_dc;
 | |
| 
 | |
|     /* DC values for the left, up-left, up, and up-right fragments */
 | |
|     int vl, vul, vu, vur;
 | |
| 
 | |
|     /* indexes for the left, up-left, up, and up-right fragments */
 | |
|     int l, ul, u, ur;
 | |
| 
 | |
|     /*
 | |
|      * The 6 fields mean:
 | |
|      *   0: up-left multiplier
 | |
|      *   1: up multiplier
 | |
|      *   2: up-right multiplier
 | |
|      *   3: left multiplier
 | |
|      */
 | |
|     static const int predictor_transform[16][4] = {
 | |
|         {  0,  0,  0,  0},
 | |
|         {  0,  0,  0,128},        // PL
 | |
|         {  0,  0,128,  0},        // PUR
 | |
|         {  0,  0, 53, 75},        // PUR|PL
 | |
|         {  0,128,  0,  0},        // PU
 | |
|         {  0, 64,  0, 64},        // PU|PL
 | |
|         {  0,128,  0,  0},        // PU|PUR
 | |
|         {  0,  0, 53, 75},        // PU|PUR|PL
 | |
|         {128,  0,  0,  0},        // PUL
 | |
|         {  0,  0,  0,128},        // PUL|PL
 | |
|         { 64,  0, 64,  0},        // PUL|PUR
 | |
|         {  0,  0, 53, 75},        // PUL|PUR|PL
 | |
|         {  0,128,  0,  0},        // PUL|PU
 | |
|        {-104,116,  0,116},        // PUL|PU|PL
 | |
|         { 24, 80, 24,  0},        // PUL|PU|PUR
 | |
|        {-104,116,  0,116}         // PUL|PU|PUR|PL
 | |
|     };
 | |
| 
 | |
|     /* This table shows which types of blocks can use other blocks for
 | |
|      * prediction. For example, INTRA is the only mode in this table to
 | |
|      * have a frame number of 0. That means INTRA blocks can only predict
 | |
|      * from other INTRA blocks. There are 2 golden frame coding types;
 | |
|      * blocks encoding in these modes can only predict from other blocks
 | |
|      * that were encoded with these 1 of these 2 modes. */
 | |
|     static const unsigned char compatible_frame[9] = {
 | |
|         1,    /* MODE_INTER_NO_MV */
 | |
|         0,    /* MODE_INTRA */
 | |
|         1,    /* MODE_INTER_PLUS_MV */
 | |
|         1,    /* MODE_INTER_LAST_MV */
 | |
|         1,    /* MODE_INTER_PRIOR_MV */
 | |
|         2,    /* MODE_USING_GOLDEN */
 | |
|         2,    /* MODE_GOLDEN_MV */
 | |
|         1,    /* MODE_INTER_FOUR_MV */
 | |
|         3     /* MODE_COPY */
 | |
|     };
 | |
|     int current_frame_type;
 | |
| 
 | |
|     /* there is a last DC predictor for each of the 3 frame types */
 | |
|     short last_dc[3];
 | |
| 
 | |
|     int transform = 0;
 | |
| 
 | |
|     vul = vu = vur = vl = 0;
 | |
|     last_dc[0] = last_dc[1] = last_dc[2] = 0;
 | |
| 
 | |
|     /* for each fragment row... */
 | |
|     for (y = 0; y < fragment_height; y++) {
 | |
| 
 | |
|         /* for each fragment in a row... */
 | |
|         for (x = 0; x < fragment_width; x++, i++) {
 | |
| 
 | |
|             /* reverse prediction if this block was coded */
 | |
|             if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
| 
 | |
|                 current_frame_type =
 | |
|                     compatible_frame[s->all_fragments[i].coding_method];
 | |
| 
 | |
|                 transform= 0;
 | |
|                 if(x){
 | |
|                     l= i-1;
 | |
|                     vl = DC_COEFF(l);
 | |
|                     if(COMPATIBLE_FRAME(l))
 | |
|                         transform |= PL;
 | |
|                 }
 | |
|                 if(y){
 | |
|                     u= i-fragment_width;
 | |
|                     vu = DC_COEFF(u);
 | |
|                     if(COMPATIBLE_FRAME(u))
 | |
|                         transform |= PU;
 | |
|                     if(x){
 | |
|                         ul= i-fragment_width-1;
 | |
|                         vul = DC_COEFF(ul);
 | |
|                         if(COMPATIBLE_FRAME(ul))
 | |
|                             transform |= PUL;
 | |
|                     }
 | |
|                     if(x + 1 < fragment_width){
 | |
|                         ur= i-fragment_width+1;
 | |
|                         vur = DC_COEFF(ur);
 | |
|                         if(COMPATIBLE_FRAME(ur))
 | |
|                             transform |= PUR;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (transform == 0) {
 | |
| 
 | |
|                     /* if there were no fragments to predict from, use last
 | |
|                      * DC saved */
 | |
|                     predicted_dc = last_dc[current_frame_type];
 | |
|                 } else {
 | |
| 
 | |
|                     /* apply the appropriate predictor transform */
 | |
|                     predicted_dc =
 | |
|                         (predictor_transform[transform][0] * vul) +
 | |
|                         (predictor_transform[transform][1] * vu) +
 | |
|                         (predictor_transform[transform][2] * vur) +
 | |
|                         (predictor_transform[transform][3] * vl);
 | |
| 
 | |
|                     predicted_dc /= 128;
 | |
| 
 | |
|                     /* check for outranging on the [ul u l] and
 | |
|                      * [ul u ur l] predictors */
 | |
|                     if ((transform == 15) || (transform == 13)) {
 | |
|                         if (FFABS(predicted_dc - vu) > 128)
 | |
|                             predicted_dc = vu;
 | |
|                         else if (FFABS(predicted_dc - vl) > 128)
 | |
|                             predicted_dc = vl;
 | |
|                         else if (FFABS(predicted_dc - vul) > 128)
 | |
|                             predicted_dc = vul;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* at long last, apply the predictor */
 | |
|                 DC_COEFF(i) += predicted_dc;
 | |
|                 /* save the DC */
 | |
|                 last_dc[current_frame_type] = DC_COEFF(i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
 | |
| {
 | |
|     int x, y;
 | |
|     int *bounding_values= s->bounding_values_array+127;
 | |
| 
 | |
|     int width           = s->fragment_width[!!plane];
 | |
|     int height          = s->fragment_height[!!plane];
 | |
|     int fragment        = s->fragment_start        [plane] + ystart * width;
 | |
|     int stride          = s->current_frame.linesize[plane];
 | |
|     uint8_t *plane_data = s->current_frame.data    [plane];
 | |
|     if (!s->flipped_image) stride = -stride;
 | |
|     plane_data += s->data_offset[plane] + 8*ystart*stride;
 | |
| 
 | |
|     for (y = ystart; y < yend; y++) {
 | |
| 
 | |
|         for (x = 0; x < width; x++) {
 | |
|             /* This code basically just deblocks on the edges of coded blocks.
 | |
|              * However, it has to be much more complicated because of the
 | |
|              * braindamaged deblock ordering used in VP3/Theora. Order matters
 | |
|              * because some pixels get filtered twice. */
 | |
|             if( s->all_fragments[fragment].coding_method != MODE_COPY )
 | |
|             {
 | |
|                 /* do not perform left edge filter for left columns frags */
 | |
|                 if (x > 0) {
 | |
|                     s->dsp.vp3_h_loop_filter(
 | |
|                         plane_data + 8*x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform top edge filter for top row fragments */
 | |
|                 if (y > 0) {
 | |
|                     s->dsp.vp3_v_loop_filter(
 | |
|                         plane_data + 8*x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform right edge filter for right column
 | |
|                  * fragments or if right fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in next iteration) */
 | |
|                 if ((x < width - 1) &&
 | |
|                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
 | |
|                     s->dsp.vp3_h_loop_filter(
 | |
|                         plane_data + 8*x + 8,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform bottom edge filter for bottom row
 | |
|                  * fragments or if bottom fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in the next row) */
 | |
|                 if ((y < height - 1) &&
 | |
|                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
 | |
|                     s->dsp.vp3_v_loop_filter(
 | |
|                         plane_data + 8*x + 8*stride,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fragment++;
 | |
|         }
 | |
|         plane_data += 8*stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
 | |
|  * for the next block in coding order
 | |
|  */
 | |
| static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
 | |
|                               int plane, int inter, DCTELEM block[64])
 | |
| {
 | |
|     int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
 | |
|     uint8_t *perm = s->scantable.permutated;
 | |
|     int i = 0;
 | |
| 
 | |
|     do {
 | |
|         int token = *s->dct_tokens[plane][i];
 | |
|         switch (token & 3) {
 | |
|         case 0: // EOB
 | |
|             if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
 | |
|                 s->dct_tokens[plane][i]++;
 | |
|             else
 | |
|                 *s->dct_tokens[plane][i] = token & ~3;
 | |
|             goto end;
 | |
|         case 1: // zero run
 | |
|             s->dct_tokens[plane][i]++;
 | |
|             i += (token >> 2) & 0x7f;
 | |
|             if(i>63){
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
 | |
|             i++;
 | |
|             break;
 | |
|         case 2: // coeff
 | |
|             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
 | |
|             s->dct_tokens[plane][i++]++;
 | |
|             break;
 | |
|         default: // shouldn't happen
 | |
|             return i;
 | |
|         }
 | |
|     } while (i < 64);
 | |
| end:
 | |
|     // the actual DC+prediction is in the fragment structure
 | |
|     block[0] = frag->dc * s->qmat[0][inter][plane][0];
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * called when all pixels up to row y are complete
 | |
|  */
 | |
| static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
 | |
| {
 | |
|     int h, cy, i;
 | |
|     int offset[AV_NUM_DATA_POINTERS];
 | |
| 
 | |
|     if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
 | |
|         int y_flipped = s->flipped_image ? s->avctx->height-y : y;
 | |
| 
 | |
|         // At the end of the frame, report INT_MAX instead of the height of the frame.
 | |
|         // This makes the other threads' ff_thread_await_progress() calls cheaper, because
 | |
|         // they don't have to clip their values.
 | |
|         ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
 | |
|     }
 | |
| 
 | |
|     if(s->avctx->draw_horiz_band==NULL)
 | |
|         return;
 | |
| 
 | |
|     h= y - s->last_slice_end;
 | |
|     s->last_slice_end= y;
 | |
|     y -= h;
 | |
| 
 | |
|     if (!s->flipped_image) {
 | |
|         y = s->avctx->height - y - h;
 | |
|     }
 | |
| 
 | |
|     cy = y >> s->chroma_y_shift;
 | |
|     offset[0] = s->current_frame.linesize[0]*y;
 | |
|     offset[1] = s->current_frame.linesize[1]*cy;
 | |
|     offset[2] = s->current_frame.linesize[2]*cy;
 | |
|     for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
 | |
|         offset[i] = 0;
 | |
| 
 | |
|     emms_c();
 | |
|     s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Wait for the reference frame of the current fragment.
 | |
|  * The progress value is in luma pixel rows.
 | |
|  */
 | |
| static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
 | |
| {
 | |
|     AVFrame *ref_frame;
 | |
|     int ref_row;
 | |
|     int border = motion_y&1;
 | |
| 
 | |
|     if (fragment->coding_method == MODE_USING_GOLDEN ||
 | |
|         fragment->coding_method == MODE_GOLDEN_MV)
 | |
|         ref_frame = &s->golden_frame;
 | |
|     else
 | |
|         ref_frame = &s->last_frame;
 | |
| 
 | |
|     ref_row = y + (motion_y>>1);
 | |
|     ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
 | |
| 
 | |
|     ff_thread_await_progress(ref_frame, ref_row, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the final rendering for a particular slice of data.
 | |
|  * The slice number ranges from 0..(c_superblock_height - 1).
 | |
|  */
 | |
| static void render_slice(Vp3DecodeContext *s, int slice)
 | |
| {
 | |
|     int x, y, i, j, fragment;
 | |
|     LOCAL_ALIGNED_16(DCTELEM, block, [64]);
 | |
|     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | |
|     int motion_halfpel_index;
 | |
|     uint8_t *motion_source;
 | |
|     int plane, first_pixel;
 | |
| 
 | |
|     if (slice >= s->c_superblock_height)
 | |
|         return;
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
 | |
|         uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
 | |
|         uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
 | |
|         int stride            = s->current_frame.linesize[plane];
 | |
|         int plane_width       = s->width  >> (plane && s->chroma_x_shift);
 | |
|         int plane_height      = s->height >> (plane && s->chroma_y_shift);
 | |
|         int8_t (*motion_val)[2] = s->motion_val[!!plane];
 | |
| 
 | |
|         int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
 | |
|         int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
 | |
|         int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
 | |
| 
 | |
|         int fragment_width    = s->fragment_width[!!plane];
 | |
|         int fragment_height   = s->fragment_height[!!plane];
 | |
|         int fragment_start    = s->fragment_start[plane];
 | |
|         int do_await          = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
 | |
| 
 | |
|         if (!s->flipped_image) stride = -stride;
 | |
|         if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
 | |
|             continue;
 | |
| 
 | |
|         /* for each superblock row in the slice (both of them)... */
 | |
|         for (; sb_y < slice_height; sb_y++) {
 | |
| 
 | |
|             /* for each superblock in a row... */
 | |
|             for (sb_x = 0; sb_x < slice_width; sb_x++) {
 | |
| 
 | |
|                 /* for each block in a superblock... */
 | |
|                 for (j = 0; j < 16; j++) {
 | |
|                     x = 4*sb_x + hilbert_offset[j][0];
 | |
|                     y = 4*sb_y + hilbert_offset[j][1];
 | |
|                     fragment = y*fragment_width + x;
 | |
| 
 | |
|                     i = fragment_start + fragment;
 | |
| 
 | |
|                     // bounds check
 | |
|                     if (x >= fragment_width || y >= fragment_height)
 | |
|                         continue;
 | |
| 
 | |
|                 first_pixel = 8*y*stride + 8*x;
 | |
| 
 | |
|                 if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
 | |
|                     await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
 | |
| 
 | |
|                 /* transform if this block was coded */
 | |
|                 if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
|                     if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | |
|                         (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | |
|                         motion_source= golden_plane;
 | |
|                     else
 | |
|                         motion_source= last_plane;
 | |
| 
 | |
|                     motion_source += first_pixel;
 | |
|                     motion_halfpel_index = 0;
 | |
| 
 | |
|                     /* sort out the motion vector if this fragment is coded
 | |
|                      * using a motion vector method */
 | |
|                     if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | |
|                         (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | |
|                         int src_x, src_y;
 | |
|                         motion_x = motion_val[fragment][0];
 | |
|                         motion_y = motion_val[fragment][1];
 | |
| 
 | |
|                         src_x= (motion_x>>1) + 8*x;
 | |
|                         src_y= (motion_y>>1) + 8*y;
 | |
| 
 | |
|                         motion_halfpel_index = motion_x & 0x01;
 | |
|                         motion_source += (motion_x >> 1);
 | |
| 
 | |
|                         motion_halfpel_index |= (motion_y & 0x01) << 1;
 | |
|                         motion_source += ((motion_y >> 1) * stride);
 | |
| 
 | |
|                         if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
 | |
|                             uint8_t *temp= s->edge_emu_buffer;
 | |
|                             if(stride<0) temp -= 8*stride;
 | |
| 
 | |
|                             s->dsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
 | |
|                             motion_source= temp;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
| 
 | |
|                     /* first, take care of copying a block from either the
 | |
|                      * previous or the golden frame */
 | |
|                     if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | |
|                         /* Note, it is possible to implement all MC cases with
 | |
|                            put_no_rnd_pixels_l2 which would look more like the
 | |
|                            VP3 source but this would be slower as
 | |
|                            put_no_rnd_pixels_tab is better optimzed */
 | |
|                         if(motion_halfpel_index != 3){
 | |
|                             s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | |
|                                 output_plane + first_pixel,
 | |
|                                 motion_source, stride, 8);
 | |
|                         }else{
 | |
|                             int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
 | |
|                             s->dsp.put_no_rnd_pixels_l2[1](
 | |
|                                 output_plane + first_pixel,
 | |
|                                 motion_source - d,
 | |
|                                 motion_source + stride + 1 + d,
 | |
|                                 stride, 8);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                         s->dsp.clear_block(block);
 | |
| 
 | |
|                     /* invert DCT and place (or add) in final output */
 | |
| 
 | |
|                     if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | |
|                         vp3_dequant(s, s->all_fragments + i, plane, 0, block);
 | |
|                         if(s->avctx->idct_algo!=FF_IDCT_VP3)
 | |
|                             block[0] += 128<<3;
 | |
|                         s->dsp.idct_put(
 | |
|                             output_plane + first_pixel,
 | |
|                             stride,
 | |
|                             block);
 | |
|                     } else {
 | |
|                         if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
 | |
|                         s->dsp.idct_add(
 | |
|                             output_plane + first_pixel,
 | |
|                             stride,
 | |
|                             block);
 | |
|                         } else {
 | |
|                             s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
| 
 | |
|                     /* copy directly from the previous frame */
 | |
|                     s->dsp.put_pixels_tab[1][0](
 | |
|                         output_plane + first_pixel,
 | |
|                         last_plane + first_pixel,
 | |
|                         stride, 8);
 | |
| 
 | |
|                 }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Filter up to the last row in the superblock row
 | |
|             if (!s->skip_loop_filter)
 | |
|                 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|      /* this looks like a good place for slice dispatch... */
 | |
|      /* algorithm:
 | |
|       *   if (slice == s->macroblock_height - 1)
 | |
|       *     dispatch (both last slice & 2nd-to-last slice);
 | |
|       *   else if (slice > 0)
 | |
|       *     dispatch (slice - 1);
 | |
|       */
 | |
| 
 | |
|     vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
 | |
| }
 | |
| 
 | |
| /// Allocate tables for per-frame data in Vp3DecodeContext
 | |
| static av_cold int allocate_tables(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | |
| 
 | |
|     s->superblock_coding = av_malloc(s->superblock_count);
 | |
|     s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
 | |
|     s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
 | |
|     s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
 | |
|     s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
 | |
|     s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
 | |
| 
 | |
|     /* work out the block mapping tables */
 | |
|     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
 | |
|     s->macroblock_coding = av_malloc(s->macroblock_count + 1);
 | |
| 
 | |
|     if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
 | |
|         !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
 | |
|         !s->motion_val[0] || !s->motion_val[1]) {
 | |
|         vp3_decode_end(avctx);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     init_block_mapping(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i, inter, plane;
 | |
|     int c_width;
 | |
|     int c_height;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     if (avctx->codec_tag == MKTAG('V','P','3','0'))
 | |
|         s->version = 0;
 | |
|     else
 | |
|         s->version = 1;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     s->width = FFALIGN(avctx->width, 16);
 | |
|     s->height = FFALIGN(avctx->height, 16);
 | |
|     if (avctx->pix_fmt == PIX_FMT_NONE)
 | |
|         avctx->pix_fmt = PIX_FMT_YUV420P;
 | |
|     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
 | |
|     if(avctx->idct_algo==FF_IDCT_AUTO)
 | |
|         avctx->idct_algo=FF_IDCT_VP3;
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
| 
 | |
|     ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
 | |
| 
 | |
|     /* initialize to an impossible value which will force a recalculation
 | |
|      * in the first frame decode */
 | |
|     for (i = 0; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
 | |
| 
 | |
|     s->y_superblock_width = (s->width + 31) / 32;
 | |
|     s->y_superblock_height = (s->height + 31) / 32;
 | |
|     s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
 | |
| 
 | |
|     /* work out the dimensions for the C planes */
 | |
|     c_width = s->width >> s->chroma_x_shift;
 | |
|     c_height = s->height >> s->chroma_y_shift;
 | |
|     s->c_superblock_width = (c_width + 31) / 32;
 | |
|     s->c_superblock_height = (c_height + 31) / 32;
 | |
|     s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
 | |
| 
 | |
|     s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
 | |
|     s->u_superblock_start = s->y_superblock_count;
 | |
|     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
 | |
| 
 | |
|     s->macroblock_width = (s->width + 15) / 16;
 | |
|     s->macroblock_height = (s->height + 15) / 16;
 | |
|     s->macroblock_count = s->macroblock_width * s->macroblock_height;
 | |
| 
 | |
|     s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
 | |
|     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
 | |
|     s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
 | |
|     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
 | |
| 
 | |
|     /* fragment count covers all 8x8 blocks for all 3 planes */
 | |
|     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
 | |
|     s->fragment_count    = y_fragment_count + 2*c_fragment_count;
 | |
|     s->fragment_start[1] = y_fragment_count;
 | |
|     s->fragment_start[2] = y_fragment_count + c_fragment_count;
 | |
| 
 | |
|     if (!s->theora_tables)
 | |
|     {
 | |
|         for (i = 0; i < 64; i++) {
 | |
|             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
 | |
|             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
 | |
|             s->base_matrix[0][i] = vp31_intra_y_dequant[i];
 | |
|             s->base_matrix[1][i] = vp31_intra_c_dequant[i];
 | |
|             s->base_matrix[2][i] = vp31_inter_dequant[i];
 | |
|             s->filter_limit_values[i] = vp31_filter_limit_values[i];
 | |
|         }
 | |
| 
 | |
|         for(inter=0; inter<2; inter++){
 | |
|             for(plane=0; plane<3; plane++){
 | |
|                 s->qr_count[inter][plane]= 1;
 | |
|                 s->qr_size [inter][plane][0]= 63;
 | |
|                 s->qr_base [inter][plane][0]=
 | |
|                 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* init VLC tables */
 | |
|         for (i = 0; i < 16; i++) {
 | |
| 
 | |
|             /* DC histograms */
 | |
|             init_vlc(&s->dc_vlc[i], 11, 32,
 | |
|                 &dc_bias[i][0][1], 4, 2,
 | |
|                 &dc_bias[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 1 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_1[i], 11, 32,
 | |
|                 &ac_bias_0[i][0][1], 4, 2,
 | |
|                 &ac_bias_0[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 2 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_2[i], 11, 32,
 | |
|                 &ac_bias_1[i][0][1], 4, 2,
 | |
|                 &ac_bias_1[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 3 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_3[i], 11, 32,
 | |
|                 &ac_bias_2[i][0][1], 4, 2,
 | |
|                 &ac_bias_2[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 4 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_4[i], 11, 32,
 | |
|                 &ac_bias_3[i][0][1], 4, 2,
 | |
|                 &ac_bias_3[i][0][0], 4, 2, 0);
 | |
|         }
 | |
|     } else {
 | |
| 
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             /* DC histograms */
 | |
|             if (init_vlc(&s->dc_vlc[i], 11, 32,
 | |
|                 &s->huffman_table[i][0][1], 8, 4,
 | |
|                 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 1 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_1[i], 11, 32,
 | |
|                 &s->huffman_table[i+16][0][1], 8, 4,
 | |
|                 &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 2 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_2[i], 11, 32,
 | |
|                 &s->huffman_table[i+16*2][0][1], 8, 4,
 | |
|                 &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 3 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_3[i], 11, 32,
 | |
|                 &s->huffman_table[i+16*3][0][1], 8, 4,
 | |
|                 &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 4 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_4[i], 11, 32,
 | |
|                 &s->huffman_table[i+16*4][0][1], 8, 4,
 | |
|                 &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     init_vlc(&s->superblock_run_length_vlc, 6, 34,
 | |
|         &superblock_run_length_vlc_table[0][1], 4, 2,
 | |
|         &superblock_run_length_vlc_table[0][0], 4, 2, 0);
 | |
| 
 | |
|     init_vlc(&s->fragment_run_length_vlc, 5, 30,
 | |
|         &fragment_run_length_vlc_table[0][1], 4, 2,
 | |
|         &fragment_run_length_vlc_table[0][0], 4, 2, 0);
 | |
| 
 | |
|     init_vlc(&s->mode_code_vlc, 3, 8,
 | |
|         &mode_code_vlc_table[0][1], 2, 1,
 | |
|         &mode_code_vlc_table[0][0], 2, 1, 0);
 | |
| 
 | |
|     init_vlc(&s->motion_vector_vlc, 6, 63,
 | |
|         &motion_vector_vlc_table[0][1], 2, 1,
 | |
|         &motion_vector_vlc_table[0][0], 2, 1, 0);
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         s->current_frame.data[i] = NULL;
 | |
|         s->last_frame.data[i] = NULL;
 | |
|         s->golden_frame.data[i] = NULL;
 | |
|     }
 | |
| 
 | |
|     return allocate_tables(avctx);
 | |
| 
 | |
| vlc_fail:
 | |
|     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /// Release and shuffle frames after decode finishes
 | |
| static void update_frames(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     /* release the last frame, if it is allocated and if it is not the
 | |
|      * golden frame */
 | |
|     if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
 | |
|         ff_thread_release_buffer(avctx, &s->last_frame);
 | |
| 
 | |
|     /* shuffle frames (last = current) */
 | |
|     s->last_frame= s->current_frame;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (s->golden_frame.data[0])
 | |
|             ff_thread_release_buffer(avctx, &s->golden_frame);
 | |
|         s->golden_frame = s->current_frame;
 | |
|         s->last_frame.type = FF_BUFFER_TYPE_COPY;
 | |
|     }
 | |
| 
 | |
|     s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
 | |
| }
 | |
| 
 | |
| static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
 | |
| {
 | |
|     Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
 | |
|     int qps_changed = 0, i, err;
 | |
| 
 | |
| #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
 | |
| 
 | |
|     if (!s1->current_frame.data[0]
 | |
|         ||s->width != s1->width
 | |
|         ||s->height!= s1->height) {
 | |
|         if (s != s1)
 | |
|             copy_fields(s, s1, golden_frame, current_frame);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (s != s1) {
 | |
|         // init tables if the first frame hasn't been decoded
 | |
|         if (!s->current_frame.data[0]) {
 | |
|             int y_fragment_count, c_fragment_count;
 | |
|             s->avctx = dst;
 | |
|             err = allocate_tables(dst);
 | |
|             if (err)
 | |
|                 return err;
 | |
|             y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | |
|             c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | |
|             memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
 | |
|             memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
 | |
|         }
 | |
| 
 | |
|         // copy previous frame data
 | |
|         copy_fields(s, s1, golden_frame, dsp);
 | |
| 
 | |
|         // copy qscale data if necessary
 | |
|         for (i = 0; i < 3; i++) {
 | |
|             if (s->qps[i] != s1->qps[1]) {
 | |
|                 qps_changed = 1;
 | |
|                 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->qps[0] != s1->qps[0])
 | |
|             memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
 | |
| 
 | |
|         if (qps_changed)
 | |
|             copy_fields(s, s1, qps, superblock_count);
 | |
| #undef copy_fields
 | |
|     }
 | |
| 
 | |
|     update_frames(dst);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vp3_decode_frame(AVCodecContext *avctx,
 | |
|                             void *data, int *data_size,
 | |
|                             AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int i;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
| 
 | |
|     if (s->theora && get_bits1(&gb))
 | |
|     {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     s->keyframe = !get_bits1(&gb);
 | |
|     if (!s->theora)
 | |
|         skip_bits(&gb, 1);
 | |
|     for (i = 0; i < 3; i++)
 | |
|         s->last_qps[i] = s->qps[i];
 | |
| 
 | |
|     s->nqps=0;
 | |
|     do{
 | |
|         s->qps[s->nqps++]= get_bits(&gb, 6);
 | |
|     } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
 | |
|     for (i = s->nqps; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | |
|         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
 | |
|             s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
 | |
| 
 | |
|     s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
 | |
|         avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
 | |
| 
 | |
|     if (s->qps[0] != s->last_qps[0])
 | |
|         init_loop_filter(s);
 | |
| 
 | |
|     for (i = 0; i < s->nqps; i++)
 | |
|         // reinit all dequantizers if the first one changed, because
 | |
|         // the DC of the first quantizer must be used for all matrices
 | |
|         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
 | |
|             init_dequantizer(s, i);
 | |
| 
 | |
|     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
 | |
|         return buf_size;
 | |
| 
 | |
|     s->current_frame.reference = 3;
 | |
|     s->current_frame.pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
 | |
|     s->current_frame.key_frame = s->keyframe;
 | |
|     if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (!s->edge_emu_buffer)
 | |
|         s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0]));
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (!s->theora)
 | |
|         {
 | |
|             skip_bits(&gb, 4); /* width code */
 | |
|             skip_bits(&gb, 4); /* height code */
 | |
|             if (s->version)
 | |
|             {
 | |
|                 s->version = get_bits(&gb, 5);
 | |
|                 if (avctx->frame_number == 0)
 | |
|                     av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
 | |
|             }
 | |
|         }
 | |
|         if (s->version || s->theora)
 | |
|         {
 | |
|                 if (get_bits1(&gb))
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
 | |
|             skip_bits(&gb, 2); /* reserved? */
 | |
|         }
 | |
|     } else {
 | |
|         if (!s->golden_frame.data[0]) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
 | |
| 
 | |
|             s->golden_frame.reference = 3;
 | |
|             s->golden_frame.pict_type = AV_PICTURE_TYPE_I;
 | |
|             if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|                 goto error;
 | |
|             }
 | |
|             s->last_frame = s->golden_frame;
 | |
|             s->last_frame.type = FF_BUFFER_TYPE_COPY;
 | |
|             ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
 | |
|     ff_thread_finish_setup(avctx);
 | |
| 
 | |
|     if (unpack_superblocks(s, &gb)){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_modes(s, &gb)){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_vectors(s, &gb)){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_block_qpis(s, &gb)){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_dct_coeffs(s, &gb)){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int height = s->height >> (i && s->chroma_y_shift);
 | |
|         if (s->flipped_image)
 | |
|             s->data_offset[i] = 0;
 | |
|         else
 | |
|             s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
 | |
|     }
 | |
| 
 | |
|     s->last_slice_end = 0;
 | |
|     for (i = 0; i < s->c_superblock_height; i++)
 | |
|         render_slice(s, i);
 | |
| 
 | |
|     // filter the last row
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
 | |
|         apply_loop_filter(s, i, row, row+1);
 | |
|     }
 | |
|     vp3_draw_horiz_band(s, s->avctx->height);
 | |
| 
 | |
|     *data_size=sizeof(AVFrame);
 | |
|     *(AVFrame*)data= s->current_frame;
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
 | |
|         update_frames(avctx);
 | |
| 
 | |
|     return buf_size;
 | |
| 
 | |
| error:
 | |
|     ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
 | |
|         avctx->release_buffer(avctx, &s->current_frame);
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void vp3_decode_flush(AVCodecContext *avctx);
 | |
| 
 | |
| static av_cold int vp3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     av_free(s->superblock_coding);
 | |
|     av_free(s->all_fragments);
 | |
|     av_free(s->coded_fragment_list[0]);
 | |
|     av_free(s->dct_tokens_base);
 | |
|     av_free(s->superblock_fragments);
 | |
|     av_free(s->macroblock_coding);
 | |
|     av_free(s->motion_val[0]);
 | |
|     av_free(s->motion_val[1]);
 | |
|     av_free(s->edge_emu_buffer);
 | |
| 
 | |
|     if (avctx->internal->is_copy)
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         free_vlc(&s->dc_vlc[i]);
 | |
|         free_vlc(&s->ac_vlc_1[i]);
 | |
|         free_vlc(&s->ac_vlc_2[i]);
 | |
|         free_vlc(&s->ac_vlc_3[i]);
 | |
|         free_vlc(&s->ac_vlc_4[i]);
 | |
|     }
 | |
| 
 | |
|     free_vlc(&s->superblock_run_length_vlc);
 | |
|     free_vlc(&s->fragment_run_length_vlc);
 | |
|     free_vlc(&s->mode_code_vlc);
 | |
|     free_vlc(&s->motion_vector_vlc);
 | |
| 
 | |
|     /* release all frames */
 | |
|     vp3_decode_flush(avctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (get_bits1(gb)) {
 | |
|         int token;
 | |
|         if (s->entries >= 32) { /* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         token = get_bits(gb, 5);
 | |
|         //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
 | |
|         s->huffman_table[s->hti][token][0] = s->hbits;
 | |
|         s->huffman_table[s->hti][token][1] = s->huff_code_size;
 | |
|         s->entries++;
 | |
|     }
 | |
|     else {
 | |
|         if (s->huff_code_size >= 32) {/* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         s->huff_code_size++;
 | |
|         s->hbits <<= 1;
 | |
|         if (read_huffman_tree(avctx, gb))
 | |
|             return -1;
 | |
|         s->hbits |= 1;
 | |
|         if (read_huffman_tree(avctx, gb))
 | |
|             return -1;
 | |
|         s->hbits >>= 1;
 | |
|         s->huff_code_size--;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_THEORA_DECODER
 | |
| static const enum PixelFormat theora_pix_fmts[4] = {
 | |
|     PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
 | |
| };
 | |
| 
 | |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int visible_width, visible_height, colorspace;
 | |
|     int offset_x = 0, offset_y = 0;
 | |
|     AVRational fps, aspect;
 | |
| 
 | |
|     s->theora = get_bits_long(gb, 24);
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
 | |
| 
 | |
|     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
 | |
|     /* but previous versions have the image flipped relative to vp3 */
 | |
|     if (s->theora < 0x030200)
 | |
|     {
 | |
|         s->flipped_image = 1;
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
 | |
|     }
 | |
| 
 | |
|     visible_width  = s->width  = get_bits(gb, 16) << 4;
 | |
|     visible_height = s->height = get_bits(gb, 16) << 4;
 | |
| 
 | |
|     if(av_image_check_size(s->width, s->height, 0, avctx)){
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
 | |
|         s->width= s->height= 0;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         visible_width  = get_bits_long(gb, 24);
 | |
|         visible_height = get_bits_long(gb, 24);
 | |
| 
 | |
|         offset_x = get_bits(gb, 8); /* offset x */
 | |
|         offset_y = get_bits(gb, 8); /* offset y, from bottom */
 | |
|     }
 | |
| 
 | |
|     fps.num = get_bits_long(gb, 32);
 | |
|     fps.den = get_bits_long(gb, 32);
 | |
|     if (fps.num && fps.den) {
 | |
|         av_reduce(&avctx->time_base.num, &avctx->time_base.den,
 | |
|                   fps.den, fps.num, 1<<30);
 | |
|     }
 | |
| 
 | |
|     aspect.num = get_bits_long(gb, 24);
 | |
|     aspect.den = get_bits_long(gb, 24);
 | |
|     if (aspect.num && aspect.den) {
 | |
|         av_reduce(&avctx->sample_aspect_ratio.num,
 | |
|                   &avctx->sample_aspect_ratio.den,
 | |
|                   aspect.num, aspect.den, 1<<30);
 | |
|     }
 | |
| 
 | |
|     if (s->theora < 0x030200)
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|     colorspace = get_bits(gb, 8);
 | |
|     skip_bits(gb, 24); /* bitrate */
 | |
| 
 | |
|     skip_bits(gb, 6); /* quality hint */
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|     {
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
 | |
|         skip_bits(gb, 3); /* reserved */
 | |
|     }
 | |
| 
 | |
| //    align_get_bits(gb);
 | |
| 
 | |
|     if (   visible_width  <= s->width  && visible_width  > s->width-16
 | |
|         && visible_height <= s->height && visible_height > s->height-16
 | |
|         && !offset_x && (offset_y == s->height - visible_height))
 | |
|         avcodec_set_dimensions(avctx, visible_width, visible_height);
 | |
|     else
 | |
|         avcodec_set_dimensions(avctx, s->width, s->height);
 | |
| 
 | |
|     if (colorspace == 1) {
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470M;
 | |
|     } else if (colorspace == 2) {
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470BG;
 | |
|     }
 | |
|     if (colorspace == 1 || colorspace == 2) {
 | |
|         avctx->colorspace = AVCOL_SPC_BT470BG;
 | |
|         avctx->color_trc  = AVCOL_TRC_BT709;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i, n, matrices, inter, plane;
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         n = get_bits(gb, 3);
 | |
|         /* loop filter limit values table */
 | |
|         if (n)
 | |
|             for (i = 0; i < 64; i++)
 | |
|                 s->filter_limit_values[i] = get_bits(gb, n);
 | |
|     }
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* quality threshold table */
 | |
|     for (i = 0; i < 64; i++)
 | |
|         s->coded_ac_scale_factor[i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* dc scale factor table */
 | |
|     for (i = 0; i < 64; i++)
 | |
|         s->coded_dc_scale_factor[i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         matrices = get_bits(gb, 9) + 1;
 | |
|     else
 | |
|         matrices = 3;
 | |
| 
 | |
|     if(matrices > 384){
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for(n=0; n<matrices; n++){
 | |
|         for (i = 0; i < 64; i++)
 | |
|             s->base_matrix[n][i]= get_bits(gb, 8);
 | |
|     }
 | |
| 
 | |
|     for (inter = 0; inter <= 1; inter++) {
 | |
|         for (plane = 0; plane <= 2; plane++) {
 | |
|             int newqr= 1;
 | |
|             if (inter || plane > 0)
 | |
|                 newqr = get_bits1(gb);
 | |
|             if (!newqr) {
 | |
|                 int qtj, plj;
 | |
|                 if(inter && get_bits1(gb)){
 | |
|                     qtj = 0;
 | |
|                     plj = plane;
 | |
|                 }else{
 | |
|                     qtj= (3*inter + plane - 1) / 3;
 | |
|                     plj= (plane + 2) % 3;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
 | |
|                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
 | |
|                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
 | |
|             } else {
 | |
|                 int qri= 0;
 | |
|                 int qi = 0;
 | |
| 
 | |
|                 for(;;){
 | |
|                     i= get_bits(gb, av_log2(matrices-1)+1);
 | |
|                     if(i>= matrices){
 | |
|                         av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
 | |
|                         return -1;
 | |
|                     }
 | |
|                     s->qr_base[inter][plane][qri]= i;
 | |
|                     if(qi >= 63)
 | |
|                         break;
 | |
|                     i = get_bits(gb, av_log2(63-qi)+1) + 1;
 | |
|                     s->qr_size[inter][plane][qri++]= i;
 | |
|                     qi += i;
 | |
|                 }
 | |
| 
 | |
|                 if (qi > 63) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane]= qri;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Huffman tables */
 | |
|     for (s->hti = 0; s->hti < 80; s->hti++) {
 | |
|         s->entries = 0;
 | |
|         s->huff_code_size = 1;
 | |
|         if (!get_bits1(gb)) {
 | |
|             s->hbits = 0;
 | |
|             if(read_huffman_tree(avctx, gb))
 | |
|                 return -1;
 | |
|             s->hbits = 1;
 | |
|             if(read_huffman_tree(avctx, gb))
 | |
|                 return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->theora_tables = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int theora_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int ptype;
 | |
|     uint8_t *header_start[3];
 | |
|     int header_len[3];
 | |
|     int i;
 | |
| 
 | |
|     s->theora = 1;
 | |
| 
 | |
|     if (!avctx->extradata_size)
 | |
|     {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
 | |
|                               42, header_start, header_len) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|   for(i=0;i<3;i++) {
 | |
|     init_get_bits(&gb, header_start[i], header_len[i] * 8);
 | |
| 
 | |
|     ptype = get_bits(&gb, 8);
 | |
| 
 | |
|      if (!(ptype & 0x80))
 | |
|      {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
 | |
| //        return -1;
 | |
|      }
 | |
| 
 | |
|     // FIXME: Check for this as well.
 | |
|     skip_bits_long(&gb, 6*8); /* "theora" */
 | |
| 
 | |
|     switch(ptype)
 | |
|     {
 | |
|         case 0x80:
 | |
|             theora_decode_header(avctx, &gb);
 | |
|                 break;
 | |
|         case 0x81:
 | |
| // FIXME: is this needed? it breaks sometimes
 | |
| //            theora_decode_comments(avctx, gb);
 | |
|             break;
 | |
|         case 0x82:
 | |
|             if (theora_decode_tables(avctx, &gb))
 | |
|                 return -1;
 | |
|             break;
 | |
|         default:
 | |
|             av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
 | |
|             break;
 | |
|     }
 | |
|     if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
 | |
|         av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
 | |
|     if (s->theora < 0x030200)
 | |
|         break;
 | |
|   }
 | |
| 
 | |
|     return vp3_decode_init(avctx);
 | |
| }
 | |
| 
 | |
| static void vp3_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (s->golden_frame.data[0]) {
 | |
|         if (s->golden_frame.data[0] == s->last_frame.data[0])
 | |
|             memset(&s->last_frame, 0, sizeof(AVFrame));
 | |
|         if (s->current_frame.data[0] == s->golden_frame.data[0])
 | |
|             memset(&s->current_frame, 0, sizeof(AVFrame));
 | |
|         ff_thread_release_buffer(avctx, &s->golden_frame);
 | |
|     }
 | |
|     if (s->last_frame.data[0]) {
 | |
|         if (s->current_frame.data[0] == s->last_frame.data[0])
 | |
|             memset(&s->current_frame, 0, sizeof(AVFrame));
 | |
|         ff_thread_release_buffer(avctx, &s->last_frame);
 | |
|     }
 | |
|     if (s->current_frame.data[0])
 | |
|         ff_thread_release_buffer(avctx, &s->current_frame);
 | |
| }
 | |
| 
 | |
| static int vp3_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     s->superblock_coding      = NULL;
 | |
|     s->all_fragments          = NULL;
 | |
|     s->coded_fragment_list[0] = NULL;
 | |
|     s->dct_tokens_base        = NULL;
 | |
|     s->superblock_fragments   = NULL;
 | |
|     s->macroblock_coding      = NULL;
 | |
|     s->motion_val[0]          = NULL;
 | |
|     s->motion_val[1]          = NULL;
 | |
|     s->edge_emu_buffer        = NULL;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_theora_decoder = {
 | |
|     .name           = "theora",
 | |
|     .type           = AVMEDIA_TYPE_VIDEO,
 | |
|     .id             = CODEC_ID_THEORA,
 | |
|     .priv_data_size = sizeof(Vp3DecodeContext),
 | |
|     .init           = theora_decode_init,
 | |
|     .close          = vp3_decode_end,
 | |
|     .decode         = vp3_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
 | |
|     .flush = vp3_decode_flush,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Theora"),
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
 | |
| };
 | |
| #endif
 | |
| 
 | |
| AVCodec ff_vp3_decoder = {
 | |
|     .name           = "vp3",
 | |
|     .type           = AVMEDIA_TYPE_VIDEO,
 | |
|     .id             = CODEC_ID_VP3,
 | |
|     .priv_data_size = sizeof(Vp3DecodeContext),
 | |
|     .init           = vp3_decode_init,
 | |
|     .close          = vp3_decode_end,
 | |
|     .decode         = vp3_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
 | |
|     .flush = vp3_decode_flush,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
 | |
| };
 |