go/src/cmd/compile/internal/noder/irgen.go

210 lines
6 KiB
Go
Raw Normal View History

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"os"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
// check2 type checks a Go package using types2, and then generates IR
// using the results.
func check2(noders []*noder) {
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// setup and syntax error reporting
var m posMap
files := make([]*syntax.File, len(noders))
for i, p := range noders {
m.join(&p.posMap)
files[i] = p.file
}
// typechecking
conf := types2.Config{
GoVersion: base.Flag.Lang,
InferFromConstraints: true,
IgnoreLabels: true, // parser already checked via syntax.CheckBranches mode
CompilerErrorMessages: true, // use error strings matching existing compiler errors
Error: func(err error) {
terr := err.(types2.Error)
if len(terr.Msg) > 0 && terr.Msg[0] == '\t' {
// types2 reports error clarifications via separate
// error messages which are indented with a tab.
// Ignore them to satisfy tools and tests that expect
// only one error in such cases.
// TODO(gri) Need to adjust error reporting in types2.
return
}
base.ErrorfAt(m.makeXPos(terr.Pos), "%s", terr.Msg)
},
Importer: &gcimports{
packages: make(map[string]*types2.Package),
},
Sizes: &gcSizes{},
}
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
Selections: make(map[*syntax.SelectorExpr]*types2.Selection),
Implicits: make(map[syntax.Node]types2.Object),
Scopes: make(map[syntax.Node]*types2.Scope),
Inferred: make(map[syntax.Expr]types2.Inferred),
// expand as needed
}
pkg, err := conf.Check(base.Ctxt.Pkgpath, files, &info)
files = nil
base.ExitIfErrors()
if err != nil {
base.FatalfAt(src.NoXPos, "conf.Check error: %v", err)
}
if base.Flag.G < 2 {
os.Exit(0)
}
g := irgen{
target: typecheck.Target,
self: pkg,
info: &info,
posMap: m,
objs: make(map[types2.Object]*ir.Name),
typs: make(map[types2.Type]*types.Type),
}
g.generate(noders)
if base.Flag.G < 3 {
os.Exit(0)
}
}
type irgen struct {
target *ir.Package
self *types2.Package
info *types2.Info
posMap
objs map[types2.Object]*ir.Name
typs map[types2.Type]*types.Type
marker dwarfgen.ScopeMarker
}
func (g *irgen) generate(noders []*noder) {
types.LocalPkg.Name = g.self.Name()
typecheck.TypecheckAllowed = true
// Prevent size calculations until we set the underlying type
// for all package-block defined types.
types.DeferCheckSize()
// At this point, types2 has already handled name resolution and
// type checking. We just need to map from its object and type
// representations to those currently used by the rest of the
// compiler. This happens mostly in 3 passes.
// 1. Process all import declarations. We use the compiler's own
// importer for this, rather than types2's gcimporter-derived one,
// to handle extensions and inline function bodies correctly.
//
// Also, we need to do this in a separate pass, because mappings are
// instantiated on demand. If we interleaved processing import
// declarations with other declarations, it's likely we'd end up
// wanting to map an object/type from another source file, but not
// yet have the import data it relies on.
declLists := make([][]syntax.Decl, len(noders))
Outer:
for i, p := range noders {
g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma)
for j, decl := range p.file.DeclList {
switch decl := decl.(type) {
case *syntax.ImportDecl:
g.importDecl(p, decl)
default:
declLists[i] = p.file.DeclList[j:]
continue Outer // no more ImportDecls
}
}
}
types.LocalPkg.Height = myheight
// 2. Process all package-block type declarations. As with imports,
// we need to make sure all types are properly instantiated before
// trying to map any expressions that utilize them. In particular,
// we need to make sure type pragmas are already known (see comment
// in irgen.typeDecl).
//
// We could perhaps instead defer processing of package-block
// variable initializers and function bodies, like noder does, but
// special-casing just package-block type declarations minimizes the
// differences between processing package-block and function-scoped
// declarations.
for _, declList := range declLists {
for _, decl := range declList {
switch decl := decl.(type) {
case *syntax.TypeDecl:
g.typeDecl((*ir.Nodes)(&g.target.Decls), decl)
}
}
}
types.ResumeCheckSize()
// 3. Process all remaining declarations.
for _, declList := range declLists {
g.target.Decls = append(g.target.Decls, g.decls(declList)...)
}
if base.Flag.W > 1 {
for _, n := range g.target.Decls {
s := fmt.Sprintf("\nafter noder2 %v", n)
ir.Dump(s, n)
}
}
typecheck.DeclareUniverse()
for _, p := range noders {
// Process linkname and cgo pragmas.
p.processPragmas()
// Double check for any type-checking inconsistencies. This can be
// removed once we're confident in IR generation results.
syntax.Walk(p.file, func(n syntax.Node) bool {
g.validate(n)
return false
})
}
// Create any needed stencils of generic functions
g.stencil()
// For now, remove all generic functions from g.target.Decl, since they
// have been used for stenciling, but don't compile. TODO: We will
// eventually export any exportable generic functions.
j := 0
for i, decl := range g.target.Decls {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
if decl.Op() != ir.ODCLFUNC || !decl.Type().HasTParam() {
g.target.Decls[j] = g.target.Decls[i]
j++
}
}
g.target.Decls = g.target.Decls[:j]
}
func (g *irgen) unhandled(what string, p poser) {
base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p)
panic("unreachable")
}