go/src/cmd/link/internal/ld/dwarf.go

2026 lines
64 KiB
Go
Raw Normal View History

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO/NICETOHAVE:
// - eliminate DW_CLS_ if not used
// - package info in compilation units
// - assign types to their packages
// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg
// ptype struct '[]uint8' and qualifiers need to be quoted away
// - file:line info for variables
// - make strings a typedef so prettyprinters can see the underlying string type
package ld
import (
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
"cmd/link/internal/sym"
"fmt"
"log"
"sort"
"strings"
)
type dwctxt struct {
linkctxt *Link
}
func (c dwctxt) PtrSize() int {
return c.linkctxt.Arch.PtrSize
}
func (c dwctxt) AddInt(s dwarf.Sym, size int, i int64) {
ls := s.(*sym.Symbol)
ls.AddUintXX(c.linkctxt.Arch, uint64(i), size)
}
func (c dwctxt) AddBytes(s dwarf.Sym, b []byte) {
ls := s.(*sym.Symbol)
ls.AddBytes(b)
}
func (c dwctxt) AddString(s dwarf.Sym, v string) {
Addstring(s.(*sym.Symbol), v)
}
func (c dwctxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
if value != 0 {
value -= (data.(*sym.Symbol)).Value
}
s.(*sym.Symbol).AddAddrPlus(c.linkctxt.Arch, data.(*sym.Symbol), value)
}
func (c dwctxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
if value != 0 {
value -= (data.(*sym.Symbol)).Value
}
s.(*sym.Symbol).AddCURelativeAddrPlus(c.linkctxt.Arch, data.(*sym.Symbol), value)
}
func (c dwctxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
ls := s.(*sym.Symbol)
switch size {
default:
Errorf(ls, "invalid size %d in adddwarfref\n", size)
fallthrough
case c.linkctxt.Arch.PtrSize:
ls.AddAddr(c.linkctxt.Arch, t.(*sym.Symbol))
case 4:
ls.AddAddrPlus4(t.(*sym.Symbol), 0)
}
r := &ls.R[len(ls.R)-1]
r.Type = objabi.R_ADDROFF
r.Add = ofs
}
func (c dwctxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
size := 4
if isDwarf64(c.linkctxt) {
size = 8
}
c.AddSectionOffset(s, size, t, ofs)
ls := s.(*sym.Symbol)
ls.R[len(ls.R)-1].Type = objabi.R_DWARFSECREF
}
func (c dwctxt) Logf(format string, args ...interface{}) {
c.linkctxt.Logf(format, args...)
}
// At the moment these interfaces are only used in the compiler.
func (c dwctxt) AddFileRef(s dwarf.Sym, f interface{}) {
panic("should be used only in the compiler")
}
func (c dwctxt) CurrentOffset(s dwarf.Sym) int64 {
panic("should be used only in the compiler")
}
func (c dwctxt) RecordDclReference(s dwarf.Sym, t dwarf.Sym, dclIdx int, inlIndex int) {
panic("should be used only in the compiler")
}
func (c dwctxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
panic("should be used only in the compiler")
}
func isDwarf64(ctxt *Link) bool {
return ctxt.HeadType == objabi.Haix
}
var gdbscript string
var dwarfp []*sym.Symbol
func writeabbrev(ctxt *Link) *sym.Symbol {
s := ctxt.Syms.Lookup(".debug_abbrev", 0)
s.Type = sym.SDWARFSECT
s.AddBytes(dwarf.GetAbbrev())
return s
}
var dwtypes dwarf.DWDie
func newattr(die *dwarf.DWDie, attr uint16, cls int, value int64, data interface{}) *dwarf.DWAttr {
a := new(dwarf.DWAttr)
a.Link = die.Attr
die.Attr = a
a.Atr = attr
a.Cls = uint8(cls)
a.Value = value
a.Data = data
return a
}
// Each DIE (except the root ones) has at least 1 attribute: its
// name. getattr moves the desired one to the front so
// frequently searched ones are found faster.
func getattr(die *dwarf.DWDie, attr uint16) *dwarf.DWAttr {
if die.Attr.Atr == attr {
return die.Attr
}
a := die.Attr
b := a.Link
for b != nil {
if b.Atr == attr {
a.Link = b.Link
b.Link = die.Attr
die.Attr = b
return b
}
a = b
b = b.Link
}
return nil
}
// Every DIE manufactured by the linker has at least an AT_name
// attribute (but it will only be written out if it is listed in the abbrev).
// The compiler does create nameless DWARF DIEs (ex: concrete subprogram
// instance).
func newdie(ctxt *Link, parent *dwarf.DWDie, abbrev int, name string, version int) *dwarf.DWDie {
die := new(dwarf.DWDie)
die.Abbrev = abbrev
die.Link = parent.Child
parent.Child = die
newattr(die, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len(name)), name)
if name != "" && (abbrev <= dwarf.DW_ABRV_VARIABLE || abbrev >= dwarf.DW_ABRV_NULLTYPE) {
if abbrev != dwarf.DW_ABRV_VARIABLE || version == 0 {
if abbrev == dwarf.DW_ABRV_COMPUNIT {
// Avoid collisions with "real" symbol names.
name = fmt.Sprintf(".pkg.%s.%d", name, len(ctxt.compUnits))
}
s := ctxt.Syms.Lookup(dwarf.InfoPrefix+name, version)
s.Attr |= sym.AttrNotInSymbolTable
s.Type = sym.SDWARFINFO
die.Sym = s
}
}
return die
}
func walktypedef(die *dwarf.DWDie) *dwarf.DWDie {
if die == nil {
return nil
}
// Resolve typedef if present.
if die.Abbrev == dwarf.DW_ABRV_TYPEDECL {
for attr := die.Attr; attr != nil; attr = attr.Link {
if attr.Atr == dwarf.DW_AT_type && attr.Cls == dwarf.DW_CLS_REFERENCE && attr.Data != nil {
return attr.Data.(*dwarf.DWDie)
}
}
}
return die
}
func walksymtypedef(ctxt *Link, s *sym.Symbol) *sym.Symbol {
if t := ctxt.Syms.ROLookup(s.Name+"..def", int(s.Version)); t != nil {
return t
}
return s
}
// Find child by AT_name using hashtable if available or linear scan
// if not.
func findchild(die *dwarf.DWDie, name string) *dwarf.DWDie {
var prev *dwarf.DWDie
for ; die != prev; prev, die = die, walktypedef(die) {
for a := die.Child; a != nil; a = a.Link {
if name == getattr(a, dwarf.DW_AT_name).Data {
return a
}
}
continue
}
return nil
}
// Used to avoid string allocation when looking up dwarf symbols
var prefixBuf = []byte(dwarf.InfoPrefix)
func find(ctxt *Link, name string) *sym.Symbol {
n := append(prefixBuf, name...)
// The string allocation below is optimized away because it is only used in a map lookup.
s := ctxt.Syms.ROLookup(string(n), 0)
prefixBuf = n[:len(dwarf.InfoPrefix)]
if s != nil && s.Type == sym.SDWARFINFO {
return s
}
return nil
}
func mustFind(ctxt *Link, name string) *sym.Symbol {
r := find(ctxt, name)
if r == nil {
Exitf("dwarf find: cannot find %s", name)
}
return r
}
func adddwarfref(ctxt *Link, s *sym.Symbol, t *sym.Symbol, size int) int64 {
var result int64
switch size {
default:
Errorf(s, "invalid size %d in adddwarfref\n", size)
fallthrough
case ctxt.Arch.PtrSize:
result = s.AddAddr(ctxt.Arch, t)
case 4:
result = s.AddAddrPlus4(t, 0)
}
r := &s.R[len(s.R)-1]
r.Type = objabi.R_DWARFSECREF
return result
}
func newrefattr(die *dwarf.DWDie, attr uint16, ref *sym.Symbol) *dwarf.DWAttr {
if ref == nil {
return nil
}
return newattr(die, attr, dwarf.DW_CLS_REFERENCE, 0, ref)
}
func dtolsym(s dwarf.Sym) *sym.Symbol {
if s == nil {
return nil
}
return s.(*sym.Symbol)
}
func putdie(linkctxt *Link, ctxt dwarf.Context, syms []*sym.Symbol, die *dwarf.DWDie) []*sym.Symbol {
s := dtolsym(die.Sym)
if s == nil {
s = syms[len(syms)-1]
} else {
if s.Attr.OnList() {
log.Fatalf("symbol %s listed multiple times", s.Name)
}
s.Attr |= sym.AttrOnList
syms = append(syms, s)
}
dwarf.Uleb128put(ctxt, s, int64(die.Abbrev))
dwarf.PutAttrs(ctxt, s, die.Abbrev, die.Attr)
if dwarf.HasChildren(die) {
for die := die.Child; die != nil; die = die.Link {
syms = putdie(linkctxt, ctxt, syms, die)
}
syms[len(syms)-1].AddUint8(0)
}
return syms
}
func reverselist(list **dwarf.DWDie) {
curr := *list
var prev *dwarf.DWDie
for curr != nil {
next := curr.Link
curr.Link = prev
prev = curr
curr = next
}
*list = prev
}
func reversetree(list **dwarf.DWDie) {
reverselist(list)
for die := *list; die != nil; die = die.Link {
if dwarf.HasChildren(die) {
reversetree(&die.Child)
}
}
}
func newmemberoffsetattr(die *dwarf.DWDie, offs int32) {
newattr(die, dwarf.DW_AT_data_member_location, dwarf.DW_CLS_CONSTANT, int64(offs), nil)
}
// GDB doesn't like FORM_addr for AT_location, so emit a
// location expression that evals to a const.
func newabslocexprattr(die *dwarf.DWDie, addr int64, sym *sym.Symbol) {
newattr(die, dwarf.DW_AT_location, dwarf.DW_CLS_ADDRESS, addr, sym)
// below
}
// Lookup predefined types
func lookupOrDiag(ctxt *Link, n string) *sym.Symbol {
s := ctxt.Syms.ROLookup(n, 0)
if s == nil || s.Size == 0 {
Exitf("dwarf: missing type: %s", n)
}
return s
}
// dwarfFuncSym looks up a DWARF metadata symbol for function symbol s.
// If the symbol does not exist, it creates it if create is true,
// or returns nil otherwise.
func dwarfFuncSym(ctxt *Link, s *sym.Symbol, meta string, create bool) *sym.Symbol {
// All function ABIs use symbol version 0 for the DWARF data.
//
// TODO(austin): It may be useful to have DWARF info for ABI
// wrappers, in which case we may want these versions to
// align. Better yet, replace these name lookups with a
// general way to attach metadata to a symbol.
ver := 0
if s.IsFileLocal() {
ver = int(s.Version)
}
if create {
return ctxt.Syms.Lookup(meta+s.Name, ver)
}
return ctxt.Syms.ROLookup(meta+s.Name, ver)
}
func dotypedef(ctxt *Link, parent *dwarf.DWDie, name string, def *dwarf.DWDie) *dwarf.DWDie {
// Only emit typedefs for real names.
if strings.HasPrefix(name, "map[") {
return nil
}
if strings.HasPrefix(name, "struct {") {
return nil
}
if strings.HasPrefix(name, "chan ") {
return nil
}
if name[0] == '[' || name[0] == '*' {
return nil
}
if def == nil {
Errorf(nil, "dwarf: bad def in dotypedef")
}
s := ctxt.Syms.Lookup(dtolsym(def.Sym).Name+"..def", 0)
s.Attr |= sym.AttrNotInSymbolTable
s.Type = sym.SDWARFINFO
def.Sym = s
// The typedef entry must be created after the def,
// so that future lookups will find the typedef instead
// of the real definition. This hooks the typedef into any
// circular definition loops, so that gdb can understand them.
die := newdie(ctxt, parent, dwarf.DW_ABRV_TYPEDECL, name, 0)
newrefattr(die, dwarf.DW_AT_type, s)
return die
}
// Define gotype, for composite ones recurse into constituents.
func defgotype(ctxt *Link, gotype *sym.Symbol) *sym.Symbol {
if gotype == nil {
return mustFind(ctxt, "<unspecified>")
}
if !strings.HasPrefix(gotype.Name, "type.") {
Errorf(gotype, "dwarf: type name doesn't start with \"type.\"")
return mustFind(ctxt, "<unspecified>")
}
name := gotype.Name[5:] // could also decode from Type.string
sdie := find(ctxt, name)
if sdie != nil {
return sdie
}
return newtype(ctxt, gotype).Sym.(*sym.Symbol)
}
func newtype(ctxt *Link, gotype *sym.Symbol) *dwarf.DWDie {
name := gotype.Name[5:] // could also decode from Type.string
kind := decodetypeKind(ctxt.Arch, gotype)
bytesize := decodetypeSize(ctxt.Arch, gotype)
var die, typedefdie *dwarf.DWDie
switch kind {
case objabi.KindBool:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, name, 0)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_boolean, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindInt,
objabi.KindInt8,
objabi.KindInt16,
objabi.KindInt32,
objabi.KindInt64:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, name, 0)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_signed, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindUint,
objabi.KindUint8,
objabi.KindUint16,
objabi.KindUint32,
objabi.KindUint64,
objabi.KindUintptr:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, name, 0)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindFloat32,
objabi.KindFloat64:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, name, 0)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_float, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindComplex64,
objabi.KindComplex128:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, name, 0)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_complex_float, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindArray:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_ARRAYTYPE, name, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
s := decodetypeArrayElem(ctxt.Arch, gotype)
newrefattr(die, dwarf.DW_AT_type, defgotype(ctxt, s))
fld := newdie(ctxt, die, dwarf.DW_ABRV_ARRAYRANGE, "range", 0)
// use actual length not upper bound; correct for 0-length arrays.
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, decodetypeArrayLen(ctxt.Arch, gotype), 0)
newrefattr(fld, dwarf.DW_AT_type, mustFind(ctxt, "uintptr"))
case objabi.KindChan:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_CHANTYPE, name, 0)
s := decodetypeChanElem(ctxt.Arch, gotype)
newrefattr(die, dwarf.DW_AT_go_elem, defgotype(ctxt, s))
// Save elem type for synthesizechantypes. We could synthesize here
// but that would change the order of DIEs we output.
newrefattr(die, dwarf.DW_AT_type, s)
case objabi.KindFunc:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_FUNCTYPE, name, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
nfields := decodetypeFuncInCount(ctxt.Arch, gotype)
for i := 0; i < nfields; i++ {
s := decodetypeFuncInType(ctxt.Arch, gotype, i)
fld := newdie(ctxt, die, dwarf.DW_ABRV_FUNCTYPEPARAM, s.Name[5:], 0)
newrefattr(fld, dwarf.DW_AT_type, defgotype(ctxt, s))
}
if decodetypeFuncDotdotdot(ctxt.Arch, gotype) {
newdie(ctxt, die, dwarf.DW_ABRV_DOTDOTDOT, "...", 0)
}
nfields = decodetypeFuncOutCount(ctxt.Arch, gotype)
for i := 0; i < nfields; i++ {
s := decodetypeFuncOutType(ctxt.Arch, gotype, i)
fld := newdie(ctxt, die, dwarf.DW_ABRV_FUNCTYPEPARAM, s.Name[5:], 0)
newrefattr(fld, dwarf.DW_AT_type, defptrto(ctxt, defgotype(ctxt, s)))
}
case objabi.KindInterface:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_IFACETYPE, name, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
nfields := int(decodetypeIfaceMethodCount(ctxt.Arch, gotype))
var s *sym.Symbol
if nfields == 0 {
s = lookupOrDiag(ctxt, "type.runtime.eface")
} else {
s = lookupOrDiag(ctxt, "type.runtime.iface")
}
newrefattr(die, dwarf.DW_AT_type, defgotype(ctxt, s))
case objabi.KindMap:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_MAPTYPE, name, 0)
s := decodetypeMapKey(ctxt.Arch, gotype)
newrefattr(die, dwarf.DW_AT_go_key, defgotype(ctxt, s))
s = decodetypeMapValue(ctxt.Arch, gotype)
newrefattr(die, dwarf.DW_AT_go_elem, defgotype(ctxt, s))
// Save gotype for use in synthesizemaptypes. We could synthesize here,
// but that would change the order of the DIEs.
newrefattr(die, dwarf.DW_AT_type, gotype)
case objabi.KindPtr:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_PTRTYPE, name, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
s := decodetypePtrElem(ctxt.Arch, gotype)
newrefattr(die, dwarf.DW_AT_type, defgotype(ctxt, s))
case objabi.KindSlice:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_SLICETYPE, name, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
s := decodetypeArrayElem(ctxt.Arch, gotype)
elem := defgotype(ctxt, s)
newrefattr(die, dwarf.DW_AT_go_elem, elem)
case objabi.KindString:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_STRINGTYPE, name, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindStruct:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_STRUCTTYPE, name, 0)
typedefdie = dotypedef(ctxt, &dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
nfields := decodetypeStructFieldCount(ctxt.Arch, gotype)
for i := 0; i < nfields; i++ {
f := decodetypeStructFieldName(ctxt.Arch, gotype, i)
s := decodetypeStructFieldType(ctxt.Arch, gotype, i)
if f == "" {
f = s.Name[5:] // skip "type."
}
fld := newdie(ctxt, die, dwarf.DW_ABRV_STRUCTFIELD, f, 0)
newrefattr(fld, dwarf.DW_AT_type, defgotype(ctxt, s))
offsetAnon := decodetypeStructFieldOffsAnon(ctxt.Arch, gotype, i)
newmemberoffsetattr(fld, int32(offsetAnon>>1))
if offsetAnon&1 != 0 { // is embedded field
newattr(fld, dwarf.DW_AT_go_embedded_field, dwarf.DW_CLS_FLAG, 1, 0)
}
}
case objabi.KindUnsafePointer:
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, name, 0)
default:
Errorf(gotype, "dwarf: definition of unknown kind %d", kind)
die = newdie(ctxt, &dwtypes, dwarf.DW_ABRV_TYPEDECL, name, 0)
newrefattr(die, dwarf.DW_AT_type, mustFind(ctxt, "<unspecified>"))
}
newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(kind), 0)
if gotype.Attr.Reachable() {
newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, gotype)
}
if _, ok := prototypedies[gotype.Name]; ok {
prototypedies[gotype.Name] = die
}
if typedefdie != nil {
return typedefdie
}
return die
}
func nameFromDIESym(dwtype *sym.Symbol) string {
return strings.TrimSuffix(dwtype.Name[len(dwarf.InfoPrefix):], "..def")
}
// Find or construct *T given T.
func defptrto(ctxt *Link, dwtype *sym.Symbol) *sym.Symbol {
ptrname := "*" + nameFromDIESym(dwtype)
if die := find(ctxt, ptrname); die != nil {
return die
}
pdie := newdie(ctxt, &dwtypes, dwarf.DW_ABRV_PTRTYPE, ptrname, 0)
newrefattr(pdie, dwarf.DW_AT_type, dwtype)
// The DWARF info synthesizes pointer types that don't exist at the
// language level, like *hash<...> and *bucket<...>, and the data
// pointers of slices. Link to the ones we can find.
gotype := ctxt.Syms.ROLookup("type."+ptrname, 0)
if gotype != nil && gotype.Attr.Reachable() {
newattr(pdie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, gotype)
}
return dtolsym(pdie.Sym)
}
// Copies src's children into dst. Copies attributes by value.
// DWAttr.data is copied as pointer only. If except is one of
// the top-level children, it will not be copied.
func copychildrenexcept(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie, except *dwarf.DWDie) {
for src = src.Child; src != nil; src = src.Link {
if src == except {
continue
}
c := newdie(ctxt, dst, src.Abbrev, getattr(src, dwarf.DW_AT_name).Data.(string), 0)
for a := src.Attr; a != nil; a = a.Link {
newattr(c, a.Atr, int(a.Cls), a.Value, a.Data)
}
copychildrenexcept(ctxt, c, src, nil)
}
reverselist(&dst.Child)
}
func copychildren(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie) {
copychildrenexcept(ctxt, dst, src, nil)
}
// Search children (assumed to have TAG_member) for the one named
// field and set its AT_type to dwtype
func substitutetype(structdie *dwarf.DWDie, field string, dwtype *sym.Symbol) {
child := findchild(structdie, field)
if child == nil {
Exitf("dwarf substitutetype: %s does not have member %s",
getattr(structdie, dwarf.DW_AT_name).Data, field)
return
}
a := getattr(child, dwarf.DW_AT_type)
if a != nil {
a.Data = dwtype
} else {
newrefattr(child, dwarf.DW_AT_type, dwtype)
}
}
func findprotodie(ctxt *Link, name string) *dwarf.DWDie {
die, ok := prototypedies[name]
if ok && die == nil {
defgotype(ctxt, lookupOrDiag(ctxt, name))
die = prototypedies[name]
}
return die
}
func synthesizestringtypes(ctxt *Link, die *dwarf.DWDie) {
prototype := walktypedef(findprotodie(ctxt, "type.runtime.stringStructDWARF"))
if prototype == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_STRINGTYPE {
continue
}
copychildren(ctxt, die, prototype)
}
}
func synthesizeslicetypes(ctxt *Link, die *dwarf.DWDie) {
prototype := walktypedef(findprotodie(ctxt, "type.runtime.slice"))
if prototype == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_SLICETYPE {
continue
}
copychildren(ctxt, die, prototype)
elem := getattr(die, dwarf.DW_AT_go_elem).Data.(*sym.Symbol)
substitutetype(die, "array", defptrto(ctxt, elem))
}
}
func mkinternaltypename(base string, arg1 string, arg2 string) string {
if arg2 == "" {
return fmt.Sprintf("%s<%s>", base, arg1)
}
return fmt.Sprintf("%s<%s,%s>", base, arg1, arg2)
}
// synthesizemaptypes is way too closely married to runtime/hashmap.c
const (
MaxKeySize = 128
MaxValSize = 128
BucketSize = 8
)
func mkinternaltype(ctxt *Link, abbrev int, typename, keyname, valname string, f func(*dwarf.DWDie)) *sym.Symbol {
name := mkinternaltypename(typename, keyname, valname)
symname := dwarf.InfoPrefix + name
s := ctxt.Syms.ROLookup(symname, 0)
if s != nil && s.Type == sym.SDWARFINFO {
return s
}
die := newdie(ctxt, &dwtypes, abbrev, name, 0)
f(die)
return dtolsym(die.Sym)
}
func synthesizemaptypes(ctxt *Link, die *dwarf.DWDie) {
hash := walktypedef(findprotodie(ctxt, "type.runtime.hmap"))
bucket := walktypedef(findprotodie(ctxt, "type.runtime.bmap"))
if hash == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_MAPTYPE {
continue
}
gotype := getattr(die, dwarf.DW_AT_type).Data.(*sym.Symbol)
keytype := decodetypeMapKey(ctxt.Arch, gotype)
valtype := decodetypeMapValue(ctxt.Arch, gotype)
keysize, valsize := decodetypeSize(ctxt.Arch, keytype), decodetypeSize(ctxt.Arch, valtype)
keytype, valtype = walksymtypedef(ctxt, defgotype(ctxt, keytype)), walksymtypedef(ctxt, defgotype(ctxt, valtype))
// compute size info like hashmap.c does.
indirectKey, indirectVal := false, false
if keysize > MaxKeySize {
keysize = int64(ctxt.Arch.PtrSize)
indirectKey = true
}
if valsize > MaxValSize {
valsize = int64(ctxt.Arch.PtrSize)
indirectVal = true
}
// Construct type to represent an array of BucketSize keys
keyname := nameFromDIESym(keytype)
dwhks := mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) {
newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*keysize, 0)
t := keytype
if indirectKey {
t = defptrto(ctxt, keytype)
}
newrefattr(dwhk, dwarf.DW_AT_type, t)
fld := newdie(ctxt, dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size", 0)
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0)
newrefattr(fld, dwarf.DW_AT_type, mustFind(ctxt, "uintptr"))
})
// Construct type to represent an array of BucketSize values
valname := nameFromDIESym(valtype)
dwhvs := mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) {
newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*valsize, 0)
t := valtype
if indirectVal {
t = defptrto(ctxt, valtype)
}
newrefattr(dwhv, dwarf.DW_AT_type, t)
fld := newdie(ctxt, dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size", 0)
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0)
newrefattr(fld, dwarf.DW_AT_type, mustFind(ctxt, "uintptr"))
})
// Construct bucket<K,V>
dwhbs := mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) {
// Copy over all fields except the field "data" from the generic
// bucket. "data" will be replaced with keys/values below.
copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data"))
fld := newdie(ctxt, dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys", 0)
newrefattr(fld, dwarf.DW_AT_type, dwhks)
newmemberoffsetattr(fld, BucketSize)
fld = newdie(ctxt, dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values", 0)
newrefattr(fld, dwarf.DW_AT_type, dwhvs)
newmemberoffsetattr(fld, BucketSize+BucketSize*int32(keysize))
fld = newdie(ctxt, dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow", 0)
newrefattr(fld, dwarf.DW_AT_type, defptrto(ctxt, dtolsym(dwhb.Sym)))
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize)))
if ctxt.Arch.RegSize > ctxt.Arch.PtrSize {
fld = newdie(ctxt, dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad", 0)
newrefattr(fld, dwarf.DW_AT_type, mustFind(ctxt, "uintptr"))
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize))+int32(ctxt.Arch.PtrSize))
}
newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize+BucketSize*keysize+BucketSize*valsize+int64(ctxt.Arch.RegSize), 0)
})
// Construct hash<K,V>
dwhs := mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) {
copychildren(ctxt, dwh, hash)
substitutetype(dwh, "buckets", defptrto(ctxt, dwhbs))
substitutetype(dwh, "oldbuckets", defptrto(ctxt, dwhbs))
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil)
})
// make map type a pointer to hash<K,V>
newrefattr(die, dwarf.DW_AT_type, defptrto(ctxt, dwhs))
}
}
func synthesizechantypes(ctxt *Link, die *dwarf.DWDie) {
sudog := walktypedef(findprotodie(ctxt, "type.runtime.sudog"))
waitq := walktypedef(findprotodie(ctxt, "type.runtime.waitq"))
hchan := walktypedef(findprotodie(ctxt, "type.runtime.hchan"))
if sudog == nil || waitq == nil || hchan == nil {
return
}
sudogsize := int(getattr(sudog, dwarf.DW_AT_byte_size).Value)
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_CHANTYPE {
continue
}
elemgotype := getattr(die, dwarf.DW_AT_type).Data.(*sym.Symbol)
elemname := elemgotype.Name[5:]
elemtype := walksymtypedef(ctxt, defgotype(ctxt, elemgotype))
// sudog<T>
dwss := mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *dwarf.DWDie) {
copychildren(ctxt, dws, sudog)
substitutetype(dws, "elem", defptrto(ctxt, elemtype))
newattr(dws, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(sudogsize), nil)
})
// waitq<T>
dwws := mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *dwarf.DWDie) {
copychildren(ctxt, dww, waitq)
substitutetype(dww, "first", defptrto(ctxt, dwss))
substitutetype(dww, "last", defptrto(ctxt, dwss))
newattr(dww, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(waitq, dwarf.DW_AT_byte_size).Value, nil)
})
// hchan<T>
dwhs := mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *dwarf.DWDie) {
copychildren(ctxt, dwh, hchan)
substitutetype(dwh, "recvq", dwws)
substitutetype(dwh, "sendq", dwws)
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hchan, dwarf.DW_AT_byte_size).Value, nil)
})
newrefattr(die, dwarf.DW_AT_type, defptrto(ctxt, dwhs))
}
}
func dwarfDefineGlobal(ctxt *Link, s *sym.Symbol, str string, v int64, gotype *sym.Symbol) {
// Find a suitable CU DIE to include the global.
// One would think it's as simple as just looking at the unit, but that might
// not have any reachable code. So, we go to the runtime's CU if our unit
// isn't otherwise reachable.
var unit *sym.CompilationUnit
if s.Unit != nil {
unit = s.Unit
} else {
unit = ctxt.runtimeCU
}
dv := newdie(ctxt, unit.DWInfo, dwarf.DW_ABRV_VARIABLE, str, int(s.Version))
newabslocexprattr(dv, v, s)
if !s.IsFileLocal() {
newattr(dv, dwarf.DW_AT_external, dwarf.DW_CLS_FLAG, 1, 0)
}
dt := defgotype(ctxt, gotype)
newrefattr(dv, dwarf.DW_AT_type, dt)
}
// For use with pass.c::genasmsym
func defdwsymb(ctxt *Link, s *sym.Symbol, str string, t SymbolType, v int64, gotype *sym.Symbol) {
if strings.HasPrefix(str, "go.string.") {
return
}
if strings.HasPrefix(str, "runtime.gcbits.") {
return
}
switch t {
case DataSym, BSSSym:
switch s.Type {
case sym.SDATA, sym.SNOPTRDATA, sym.STYPE, sym.SBSS, sym.SNOPTRBSS, sym.STLSBSS:
// ok
case sym.SRODATA:
if gotype != nil {
defgotype(ctxt, gotype)
}
return
default:
return
}
if ctxt.LinkMode != LinkExternal && isStaticTemp(s.Name) {
return
}
dwarfDefineGlobal(ctxt, s, str, v, gotype)
case AutoSym, ParamSym, DeletedAutoSym:
defgotype(ctxt, gotype)
}
}
// createUnitLength creates the initial length field with value v and update
// offset of unit_length if needed.
func createUnitLength(ctxt *Link, s *sym.Symbol, v uint64) {
if isDwarf64(ctxt) {
s.AddUint32(ctxt.Arch, 0xFFFFFFFF)
}
addDwarfAddrField(ctxt, s, v)
}
// addDwarfAddrField adds a DWARF field in DWARF 64bits or 32bits.
func addDwarfAddrField(ctxt *Link, s *sym.Symbol, v uint64) {
if isDwarf64(ctxt) {
s.AddUint(ctxt.Arch, v)
} else {
s.AddUint32(ctxt.Arch, uint32(v))
}
}
// addDwarfAddrRef adds a DWARF pointer in DWARF 64bits or 32bits.
func addDwarfAddrRef(ctxt *Link, s *sym.Symbol, t *sym.Symbol) {
if isDwarf64(ctxt) {
adddwarfref(ctxt, s, t, 8)
} else {
adddwarfref(ctxt, s, t, 4)
}
}
// calcCompUnitRanges calculates the PC ranges of the compilation units.
func calcCompUnitRanges(ctxt *Link) {
var prevUnit *sym.CompilationUnit
for _, s := range ctxt.Textp {
if s.FuncInfo == nil {
continue
}
unit := s.Unit
// Update PC ranges.
//
// We don't simply compare the end of the previous
// symbol with the start of the next because there's
// often a little padding between them. Instead, we
// only create boundaries between symbols from
// different units.
if prevUnit != unit {
unit.PCs = append(unit.PCs, dwarf.Range{Start: s.Value - unit.Textp[0].Value})
prevUnit = unit
}
unit.PCs[len(unit.PCs)-1].End = s.Value - unit.Textp[0].Value + s.Size
}
}
func movetomodule(ctxt *Link, parent *dwarf.DWDie) {
die := ctxt.runtimeCU.DWInfo.Child
if die == nil {
ctxt.runtimeCU.DWInfo.Child = parent.Child
return
}
for die.Link != nil {
die = die.Link
}
die.Link = parent.Child
}
// If the pcln table contains runtime/proc.go, use that to set gdbscript path.
func finddebugruntimepath(s *sym.Symbol) {
if gdbscript != "" {
return
}
for i := range s.FuncInfo.File {
f := s.FuncInfo.File[i]
// We can't use something that may be dead-code
// eliminated from a binary here. proc.go contains
// main and the scheduler, so it's not going anywhere.
if i := strings.Index(f.Name, "runtime/proc.go"); i >= 0 {
gdbscript = f.Name[:i] + "runtime/runtime-gdb.py"
break
}
}
}
/*
* Generate a sequence of opcodes that is as short as possible.
* See section 6.2.5
*/
const (
LINE_BASE = -4
LINE_RANGE = 10
PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE
OPCODE_BASE = 11
)
/*
* Walk prog table, emit line program and build DIE tree.
*/
func getCompilationDir() string {
// OSX requires this be set to something, but it's not easy to choose
// a value. Linking takes place in a temporary directory, so there's
// no point including it here. Paths in the file table are usually
// absolute, in which case debuggers will ignore this value. -trimpath
// produces relative paths, but we don't know where they start, so
// all we can do here is try not to make things worse.
return "."
}
func importInfoSymbol(ctxt *Link, dsym *sym.Symbol) {
dsym.Attr |= sym.AttrNotInSymbolTable | sym.AttrReachable
dsym.Type = sym.SDWARFINFO
for i := range dsym.R {
r := &dsym.R[i] // Copying sym.Reloc has measurable impact on performance
if r.Type == objabi.R_DWARFSECREF && r.Sym.Size == 0 {
n := nameFromDIESym(r.Sym)
defgotype(ctxt, ctxt.Syms.Lookup("type."+n, 0))
}
}
}
func writelines(ctxt *Link, unit *sym.CompilationUnit, ls *sym.Symbol) {
var dwarfctxt dwarf.Context = dwctxt{ctxt}
is_stmt := uint8(1) // initially = recommended default_is_stmt = 1, tracks is_stmt toggles.
unitstart := int64(-1)
headerstart := int64(-1)
headerend := int64(-1)
newattr(unit.DWInfo, dwarf.DW_AT_stmt_list, dwarf.DW_CLS_PTR, ls.Size, ls)
// Write .debug_line Line Number Program Header (sec 6.2.4)
// Fields marked with (*) must be changed for 64-bit dwarf
unitLengthOffset := ls.Size
createUnitLength(ctxt, ls, 0) // unit_length (*), filled in at end
unitstart = ls.Size
ls.AddUint16(ctxt.Arch, 2) // dwarf version (appendix F) -- version 3 is incompatible w/ XCode 9.0's dsymutil, latest supported on OSX 10.12 as of 2018-05
headerLengthOffset := ls.Size
addDwarfAddrField(ctxt, ls, 0) // header_length (*), filled in at end
headerstart = ls.Size
// cpos == unitstart + 4 + 2 + 4
ls.AddUint8(1) // minimum_instruction_length
ls.AddUint8(is_stmt) // default_is_stmt
ls.AddUint8(LINE_BASE & 0xFF) // line_base
ls.AddUint8(LINE_RANGE) // line_range
ls.AddUint8(OPCODE_BASE) // opcode_base
ls.AddUint8(0) // standard_opcode_lengths[1]
ls.AddUint8(1) // standard_opcode_lengths[2]
ls.AddUint8(1) // standard_opcode_lengths[3]
ls.AddUint8(1) // standard_opcode_lengths[4]
ls.AddUint8(1) // standard_opcode_lengths[5]
ls.AddUint8(0) // standard_opcode_lengths[6]
ls.AddUint8(0) // standard_opcode_lengths[7]
ls.AddUint8(0) // standard_opcode_lengths[8]
ls.AddUint8(1) // standard_opcode_lengths[9]
ls.AddUint8(0) // standard_opcode_lengths[10]
ls.AddUint8(0) // include_directories (empty)
// Copy over the file table.
fileNums := make(map[string]int)
for i, name := range unit.DWARFFileTable {
if len(name) != 0 {
if strings.HasPrefix(name, src.FileSymPrefix) {
name = name[len(src.FileSymPrefix):]
}
name = expandGoroot(name)
} else {
// Can't have empty filenames, and having a unique filename is quite useful
// for debugging.
name = fmt.Sprintf("<missing>_%d", i)
}
fileNums[name] = i + 1
dwarfctxt.AddString(ls, name)
ls.AddUint8(0)
ls.AddUint8(0)
ls.AddUint8(0)
}
// Grab files for inlined functions.
// TODO: With difficulty, this could be moved into the compiler.
for _, s := range unit.Textp {
dsym := dwarfFuncSym(ctxt, s, dwarf.InfoPrefix, true)
for ri := 0; ri < len(dsym.R); ri++ {
r := &dsym.R[ri]
if r.Type != objabi.R_DWARFFILEREF {
continue
}
name := r.Sym.Name
if _, ok := fileNums[name]; ok {
continue
}
fileNums[name] = len(fileNums) + 1
dwarfctxt.AddString(ls, name)
ls.AddUint8(0)
ls.AddUint8(0)
ls.AddUint8(0)
}
}
// 4 zeros: the string termination + 3 fields.
ls.AddUint8(0)
// terminate file_names.
headerend = ls.Size
// Output the state machine for each function remaining.
var lastAddr int64
for _, s := range unit.Textp {
finddebugruntimepath(s)
// Set the PC.
ls.AddUint8(0)
dwarf.Uleb128put(dwarfctxt, ls, 1+int64(ctxt.Arch.PtrSize))
ls.AddUint8(dwarf.DW_LNE_set_address)
addr := ls.AddAddr(ctxt.Arch, s)
// Make sure the units are sorted.
if addr < lastAddr {
Errorf(s, "address wasn't increasing %x < %x", addr, lastAddr)
}
lastAddr = addr
// Output the line table.
// TODO: Now that we have all the debug information in seperate
// symbols, it would make sense to use a rope, and concatenate them all
// together rather then the append() below. This would allow us to have
// the compiler emit the DW_LNE_set_address and a rope data structure
// to concat them all together in the output.
lines := dwarfFuncSym(ctxt, s, dwarf.DebugLinesPrefix, false)
if lines != nil {
ls.P = append(ls.P, lines.P...)
}
}
ls.AddUint8(0) // start extended opcode
dwarf.Uleb128put(dwarfctxt, ls, 1)
ls.AddUint8(dwarf.DW_LNE_end_sequence)
if ctxt.HeadType == objabi.Haix {
saveDwsectCUSize(".debug_line", unit.Lib.Pkg, uint64(ls.Size-unitLengthOffset))
}
if isDwarf64(ctxt) {
ls.SetUint(ctxt.Arch, unitLengthOffset+4, uint64(ls.Size-unitstart)) // +4 because of 0xFFFFFFFF
ls.SetUint(ctxt.Arch, headerLengthOffset, uint64(headerend-headerstart))
} else {
ls.SetUint32(ctxt.Arch, unitLengthOffset, uint32(ls.Size-unitstart))
ls.SetUint32(ctxt.Arch, headerLengthOffset, uint32(headerend-headerstart))
}
// Process any R_DWARFFILEREF relocations, since we now know the
// line table file indices for this compilation unit. Note that
// this loop visits only subprogram DIEs: if the compiler is
// changed to generate DW_AT_decl_file attributes for other
// DIE flavors (ex: variables) then those DIEs would need to
// be included below.
missing := make(map[int]interface{})
s := unit.Textp[0]
for _, f := range unit.FuncDIEs {
for ri := range f.R {
r := &f.R[ri]
if r.Type != objabi.R_DWARFFILEREF {
continue
}
idx, ok := fileNums[r.Sym.Name]
if ok {
if int(int32(idx)) != idx {
Errorf(f, "bad R_DWARFFILEREF relocation: file index overflow")
}
if r.Siz != 4 {
Errorf(f, "bad R_DWARFFILEREF relocation: has size %d, expected 4", r.Siz)
}
if r.Off < 0 || r.Off+4 > int32(len(f.P)) {
Errorf(f, "bad R_DWARFFILEREF relocation offset %d + 4 would write past length %d", r.Off, len(s.P))
continue
}
if r.Add != 0 {
Errorf(f, "bad R_DWARFFILEREF relocation: addend not zero")
}
r.Sym.Attr |= sym.AttrReachable | sym.AttrNotInSymbolTable
r.Add = int64(idx) // record the index in r.Add, we'll apply it in the reloc phase.
} else {
_, found := missing[int(r.Sym.Value)]
if !found {
Errorf(f, "R_DWARFFILEREF relocation file missing: %v idx %d", r.Sym, r.Sym.Value)
missing[int(r.Sym.Value)] = nil
}
}
}
}
}
// writepcranges generates the DW_AT_ranges table for compilation unit cu.
func writepcranges(ctxt *Link, unit *sym.CompilationUnit, base *sym.Symbol, pcs []dwarf.Range, ranges *sym.Symbol) {
var dwarfctxt dwarf.Context = dwctxt{ctxt}
unitLengthOffset := ranges.Size
// Create PC ranges for this CU.
newattr(unit.DWInfo, dwarf.DW_AT_ranges, dwarf.DW_CLS_PTR, ranges.Size, ranges)
newattr(unit.DWInfo, dwarf.DW_AT_low_pc, dwarf.DW_CLS_ADDRESS, base.Value, base)
dwarf.PutBasedRanges(dwarfctxt, ranges, pcs)
if ctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, uint64(ranges.Size-unitLengthOffset))
}
}
/*
* Emit .debug_frame
*/
const (
dataAlignmentFactor = -4
)
// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice.
func appendPCDeltaCFA(arch *sys.Arch, b []byte, deltapc, cfa int64) []byte {
b = append(b, dwarf.DW_CFA_def_cfa_offset_sf)
b = dwarf.AppendSleb128(b, cfa/dataAlignmentFactor)
switch {
case deltapc < 0x40:
b = append(b, uint8(dwarf.DW_CFA_advance_loc+deltapc))
case deltapc < 0x100:
b = append(b, dwarf.DW_CFA_advance_loc1)
b = append(b, uint8(deltapc))
case deltapc < 0x10000:
b = append(b, dwarf.DW_CFA_advance_loc2, 0, 0)
arch.ByteOrder.PutUint16(b[len(b)-2:], uint16(deltapc))
default:
b = append(b, dwarf.DW_CFA_advance_loc4, 0, 0, 0, 0)
arch.ByteOrder.PutUint32(b[len(b)-4:], uint32(deltapc))
}
return b
}
func writeframes(ctxt *Link, syms []*sym.Symbol) []*sym.Symbol {
var dwarfctxt dwarf.Context = dwctxt{ctxt}
fs := ctxt.Syms.Lookup(".debug_frame", 0)
fs.Type = sym.SDWARFSECT
syms = append(syms, fs)
// Length field is 4 bytes on Dwarf32 and 12 bytes on Dwarf64
lengthFieldSize := int64(4)
if isDwarf64(ctxt) {
lengthFieldSize += 8
}
// Emit the CIE, Section 6.4.1
cieReserve := uint32(16)
if haslinkregister(ctxt) {
cieReserve = 32
}
if isDwarf64(ctxt) {
cieReserve += 4 // 4 bytes added for cid
}
createUnitLength(ctxt, fs, uint64(cieReserve)) // initial length, must be multiple of thearch.ptrsize
addDwarfAddrField(ctxt, fs, ^uint64(0)) // cid
fs.AddUint8(3) // dwarf version (appendix F)
fs.AddUint8(0) // augmentation ""
dwarf.Uleb128put(dwarfctxt, fs, 1) // code_alignment_factor
dwarf.Sleb128put(dwarfctxt, fs, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor
dwarf.Uleb128put(dwarfctxt, fs, int64(thearch.Dwarfreglr)) // return_address_register
fs.AddUint8(dwarf.DW_CFA_def_cfa) // Set the current frame address..
dwarf.Uleb128put(dwarfctxt, fs, int64(thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)...
if haslinkregister(ctxt) {
dwarf.Uleb128put(dwarfctxt, fs, int64(0)) // ...plus a 0 offset.
fs.AddUint8(dwarf.DW_CFA_same_value) // The platform's link register is unchanged during the prologue.
dwarf.Uleb128put(dwarfctxt, fs, int64(thearch.Dwarfreglr))
fs.AddUint8(dwarf.DW_CFA_val_offset) // The previous value...
dwarf.Uleb128put(dwarfctxt, fs, int64(thearch.Dwarfregsp)) // ...of the platform's SP register...
dwarf.Uleb128put(dwarfctxt, fs, int64(0)) // ...is CFA+0.
} else {
dwarf.Uleb128put(dwarfctxt, fs, int64(ctxt.Arch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame).
fs.AddUint8(dwarf.DW_CFA_offset_extended) // The previous value...
dwarf.Uleb128put(dwarfctxt, fs, int64(thearch.Dwarfreglr)) // ...of the return address...
dwarf.Uleb128put(dwarfctxt, fs, int64(-ctxt.Arch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)].
}
pad := int64(cieReserve) + lengthFieldSize - fs.Size
if pad < 0 {
Exitf("dwarf: cieReserve too small by %d bytes.", -pad)
}
fs.AddBytes(zeros[:pad])
var deltaBuf []byte
pcsp := obj.NewPCIter(uint32(ctxt.Arch.MinLC))
for _, s := range ctxt.Textp {
if s.FuncInfo == nil {
continue
}
// Emit a FDE, Section 6.4.1.
// First build the section contents into a byte buffer.
deltaBuf = deltaBuf[:0]
if haslinkregister(ctxt) && s.Attr.TopFrame() {
// Mark the link register as having an undefined value.
// This stops call stack unwinders progressing any further.
// TODO: similar mark on non-LR architectures.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_undefined)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
}
for pcsp.Init(s.FuncInfo.Pcsp.P); !pcsp.Done; pcsp.Next() {
nextpc := pcsp.NextPC
// pciterinit goes up to the end of the function,
// but DWARF expects us to stop just before the end.
if int64(nextpc) == s.Size {
nextpc--
if nextpc < pcsp.PC {
continue
}
}
spdelta := int64(pcsp.Value)
if !haslinkregister(ctxt) {
// Return address has been pushed onto stack.
spdelta += int64(ctxt.Arch.PtrSize)
}
if haslinkregister(ctxt) && !s.Attr.TopFrame() {
// TODO(bryanpkc): This is imprecise. In general, the instruction
// that stores the return address to the stack frame is not the
// same one that allocates the frame.
if pcsp.Value > 0 {
// The return address is preserved at (CFA-frame_size)
// after a stack frame has been allocated.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_offset_extended_sf)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
deltaBuf = dwarf.AppendSleb128(deltaBuf, -spdelta/dataAlignmentFactor)
} else {
// The return address is restored into the link register
// when a stack frame has been de-allocated.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_same_value)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
}
}
deltaBuf = appendPCDeltaCFA(ctxt.Arch, deltaBuf, int64(nextpc)-int64(pcsp.PC), spdelta)
}
pad := int(Rnd(int64(len(deltaBuf)), int64(ctxt.Arch.PtrSize))) - len(deltaBuf)
deltaBuf = append(deltaBuf, zeros[:pad]...)
// Emit the FDE header, Section 6.4.1.
// 4 bytes: length, must be multiple of thearch.ptrsize
// 4/8 bytes: Pointer to the CIE above, at offset 0
// ptrsize: initial location
// ptrsize: address range
fdeLength := uint64(4 + 2*ctxt.Arch.PtrSize + len(deltaBuf))
if isDwarf64(ctxt) {
fdeLength += 4 // 4 bytes added for CIE pointer
}
createUnitLength(ctxt, fs, fdeLength)
if ctxt.LinkMode == LinkExternal {
addDwarfAddrRef(ctxt, fs, fs)
} else {
addDwarfAddrField(ctxt, fs, 0) // CIE offset
}
fs.AddAddr(ctxt.Arch, s)
fs.AddUintXX(ctxt.Arch, uint64(s.Size), ctxt.Arch.PtrSize) // address range
fs.AddBytes(deltaBuf)
if ctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_frame", s.File, fdeLength+uint64(lengthFieldSize))
}
}
return syms
}
/*
* Walk DWarfDebugInfoEntries, and emit .debug_info
*/
const (
COMPUNITHEADERSIZE = 4 + 2 + 4 + 1
)
func writeinfo(ctxt *Link, syms []*sym.Symbol, units []*sym.CompilationUnit, abbrevsym *sym.Symbol, pubNames, pubTypes *pubWriter) []*sym.Symbol {
infosec := ctxt.Syms.Lookup(".debug_info", 0)
infosec.Type = sym.SDWARFINFO
infosec.Attr |= sym.AttrReachable
syms = append(syms, infosec)
var dwarfctxt dwarf.Context = dwctxt{ctxt}
for _, u := range units {
compunit := u.DWInfo
s := dtolsym(compunit.Sym)
if len(u.Textp) == 0 && u.DWInfo.Child == nil {
continue
}
pubNames.beginCompUnit(compunit)
pubTypes.beginCompUnit(compunit)
// Write .debug_info Compilation Unit Header (sec 7.5.1)
// Fields marked with (*) must be changed for 64-bit dwarf
// This must match COMPUNITHEADERSIZE above.
createUnitLength(ctxt, s, 0) // unit_length (*), will be filled in later.
s.AddUint16(ctxt.Arch, 4) // dwarf version (appendix F)
// debug_abbrev_offset (*)
addDwarfAddrRef(ctxt, s, abbrevsym)
s.AddUint8(uint8(ctxt.Arch.PtrSize)) // address_size
dwarf.Uleb128put(dwarfctxt, s, int64(compunit.Abbrev))
dwarf.PutAttrs(dwarfctxt, s, compunit.Abbrev, compunit.Attr)
cu := []*sym.Symbol{s}
cu = append(cu, u.AbsFnDIEs...)
cu = append(cu, u.FuncDIEs...)
if u.Consts != nil {
cu = append(cu, u.Consts)
}
var cusize int64
for _, child := range cu {
cusize += child.Size
}
for die := compunit.Child; die != nil; die = die.Link {
l := len(cu)
lastSymSz := cu[l-1].Size
cu = putdie(ctxt, dwarfctxt, cu, die)
if ispubname(die) {
pubNames.add(die, cusize)
}
if ispubtype(die) {
pubTypes.add(die, cusize)
}
if lastSymSz != cu[l-1].Size {
// putdie will sometimes append directly to the last symbol of the list
cusize = cusize - lastSymSz + cu[l-1].Size
}
for _, child := range cu[l:] {
cusize += child.Size
}
}
cu[len(cu)-1].AddUint8(0) // closes compilation unit DIE
cusize++
// Save size for AIX symbol table.
if ctxt.HeadType == objabi.Haix {
saveDwsectCUSize(".debug_info", getPkgFromCUSym(s), uint64(cusize))
}
if isDwarf64(ctxt) {
cusize -= 12 // exclude the length field.
s.SetUint(ctxt.Arch, 4, uint64(cusize)) // 4 because of 0XFFFFFFFF
} else {
cusize -= 4 // exclude the length field.
s.SetUint32(ctxt.Arch, 0, uint32(cusize))
}
pubNames.endCompUnit(compunit, uint32(cusize)+4)
pubTypes.endCompUnit(compunit, uint32(cusize)+4)
syms = append(syms, cu...)
}
return syms
}
/*
* Emit .debug_pubnames/_types. _info must have been written before,
* because we need die->offs and infoo/infosize;
*/
func ispubname(die *dwarf.DWDie) bool {
switch die.Abbrev {
case dwarf.DW_ABRV_FUNCTION, dwarf.DW_ABRV_VARIABLE:
a := getattr(die, dwarf.DW_AT_external)
return a != nil && a.Value != 0
}
return false
}
func ispubtype(die *dwarf.DWDie) bool {
return die.Abbrev >= dwarf.DW_ABRV_NULLTYPE
}
type pubWriter struct {
ctxt *Link
s *sym.Symbol
sname string
sectionstart int64
culengthOff int64
}
func newPubWriter(ctxt *Link, sname string) *pubWriter {
s := ctxt.Syms.Lookup(sname, 0)
s.Type = sym.SDWARFSECT
return &pubWriter{ctxt: ctxt, s: s, sname: sname}
}
func (pw *pubWriter) beginCompUnit(compunit *dwarf.DWDie) {
pw.sectionstart = pw.s.Size
// Write .debug_pubnames/types Header (sec 6.1.1)
createUnitLength(pw.ctxt, pw.s, 0) // unit_length (*), will be filled in later.
pw.s.AddUint16(pw.ctxt.Arch, 2) // dwarf version (appendix F)
addDwarfAddrRef(pw.ctxt, pw.s, dtolsym(compunit.Sym)) // debug_info_offset (of the Comp unit Header)
pw.culengthOff = pw.s.Size
addDwarfAddrField(pw.ctxt, pw.s, uint64(0)) // debug_info_length, will be filled in later.
}
func (pw *pubWriter) add(die *dwarf.DWDie, offset int64) {
dwa := getattr(die, dwarf.DW_AT_name)
name := dwa.Data.(string)
if die.Sym == nil {
fmt.Println("Missing sym for ", name)
}
addDwarfAddrField(pw.ctxt, pw.s, uint64(offset))
Addstring(pw.s, name)
}
func (pw *pubWriter) endCompUnit(compunit *dwarf.DWDie, culength uint32) {
addDwarfAddrField(pw.ctxt, pw.s, 0) // Null offset
// On AIX, save the current size of this compilation unit.
if pw.ctxt.HeadType == objabi.Haix {
saveDwsectCUSize(pw.sname, getPkgFromCUSym(dtolsym(compunit.Sym)), uint64(pw.s.Size-pw.sectionstart))
}
if isDwarf64(pw.ctxt) {
pw.s.SetUint(pw.ctxt.Arch, pw.sectionstart+4, uint64(pw.s.Size-pw.sectionstart)-12) // exclude the length field.
pw.s.SetUint(pw.ctxt.Arch, pw.culengthOff, uint64(culength))
} else {
pw.s.SetUint32(pw.ctxt.Arch, pw.sectionstart, uint32(pw.s.Size-pw.sectionstart)-4) // exclude the length field.
pw.s.SetUint32(pw.ctxt.Arch, pw.culengthOff, culength)
}
}
func writegdbscript(ctxt *Link, syms []*sym.Symbol) []*sym.Symbol {
// TODO (aix): make it available
if ctxt.HeadType == objabi.Haix {
return syms
}
if ctxt.LinkMode == LinkExternal && ctxt.HeadType == objabi.Hwindows && ctxt.BuildMode == BuildModeCArchive {
// gcc on Windows places .debug_gdb_scripts in the wrong location, which
// causes the program not to run. See https://golang.org/issue/20183
// Non c-archives can avoid this issue via a linker script
// (see fix near writeGDBLinkerScript).
// c-archive users would need to specify the linker script manually.
// For UX it's better not to deal with this.
return syms
}
if gdbscript != "" {
s := ctxt.Syms.Lookup(".debug_gdb_scripts", 0)
s.Type = sym.SDWARFSECT
syms = append(syms, s)
s.AddUint8(1) // magic 1 byte?
Addstring(s, gdbscript)
}
return syms
}
var prototypedies map[string]*dwarf.DWDie
func dwarfEnabled(ctxt *Link) bool {
if *FlagW { // disable dwarf
return false
}
if *FlagS && ctxt.HeadType != objabi.Hdarwin {
return false
}
if ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hjs {
return false
}
if ctxt.LinkMode == LinkExternal {
switch {
case ctxt.IsELF:
case ctxt.HeadType == objabi.Hdarwin:
case ctxt.HeadType == objabi.Hwindows:
case ctxt.HeadType == objabi.Haix:
res, err := dwarf.IsDWARFEnabledOnAIXLd(ctxt.extld())
if err != nil {
Exitf("%v", err)
}
return res
default:
return false
}
}
return true
}
// dwarfGenerateDebugInfo generated debug info entries for all types,
// variables and functions in the program.
// Along with dwarfGenerateDebugSyms they are the two main entry points into
// dwarf generation: dwarfGenerateDebugInfo does all the work that should be
// done before symbol names are mangled while dwarfgeneratedebugsyms does
// all the work that can only be done after addresses have been assigned to
// text symbols.
func dwarfGenerateDebugInfo(ctxt *Link) {
if !dwarfEnabled(ctxt) {
return
}
if ctxt.HeadType == objabi.Haix {
// Initial map used to store package size for each DWARF section.
dwsectCUSize = make(map[string]uint64)
}
// Forctxt.Diagnostic messages.
newattr(&dwtypes, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len("dwtypes")), "dwtypes")
// Some types that must exist to define other ones.
newdie(ctxt, &dwtypes, dwarf.DW_ABRV_NULLTYPE, "<unspecified>", 0)
newdie(ctxt, &dwtypes, dwarf.DW_ABRV_NULLTYPE, "void", 0)
newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer", 0)
die := newdie(ctxt, &dwtypes, dwarf.DW_ABRV_BASETYPE, "uintptr", 0) // needed for array size
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(ctxt.Arch.PtrSize), 0)
newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, objabi.KindUintptr, 0)
newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_ADDRESS, 0, lookupOrDiag(ctxt, "type.uintptr"))
// Prototypes needed for type synthesis.
prototypedies = map[string]*dwarf.DWDie{
"type.runtime.stringStructDWARF": nil,
"type.runtime.slice": nil,
"type.runtime.hmap": nil,
"type.runtime.bmap": nil,
"type.runtime.sudog": nil,
"type.runtime.waitq": nil,
"type.runtime.hchan": nil,
}
// Needed by the prettyprinter code for interface inspection.
for _, typ := range []string{
"type.runtime._type",
"type.runtime.arraytype",
"type.runtime.chantype",
"type.runtime.functype",
"type.runtime.maptype",
"type.runtime.ptrtype",
"type.runtime.slicetype",
"type.runtime.structtype",
"type.runtime.interfacetype",
"type.runtime.itab",
"type.runtime.imethod"} {
defgotype(ctxt, lookupOrDiag(ctxt, typ))
}
// fake root DIE for compile unit DIEs
var dwroot dwarf.DWDie
flagVariants := make(map[string]bool)
for _, lib := range ctxt.Library {
consts := ctxt.Syms.ROLookup(dwarf.ConstInfoPrefix+lib.Pkg, 0)
for _, unit := range lib.Units {
// We drop the constants into the first CU.
if consts != nil {
importInfoSymbol(ctxt, consts)
unit.Consts = consts
consts = nil
}
ctxt.compUnits = append(ctxt.compUnits, unit)
// We need at least one runtime unit.
if unit.Lib.Pkg == "runtime" {
ctxt.runtimeCU = unit
}
unit.DWInfo = newdie(ctxt, &dwroot, dwarf.DW_ABRV_COMPUNIT, unit.Lib.Pkg, 0)
newattr(unit.DWInfo, dwarf.DW_AT_language, dwarf.DW_CLS_CONSTANT, int64(dwarf.DW_LANG_Go), 0)
// OS X linker requires compilation dir or absolute path in comp unit name to output debug info.
compDir := getCompilationDir()
// TODO: Make this be the actual compilation directory, not
// the linker directory. If we move CU construction into the
// compiler, this should happen naturally.
newattr(unit.DWInfo, dwarf.DW_AT_comp_dir, dwarf.DW_CLS_STRING, int64(len(compDir)), compDir)
producerExtra := ctxt.Syms.Lookup(dwarf.CUInfoPrefix+"producer."+unit.Lib.Pkg, 0)
producer := "Go cmd/compile " + objabi.Version
if len(producerExtra.P) > 0 {
// We put a semicolon before the flags to clearly
// separate them from the version, which can be long
// and have lots of weird things in it in development
// versions. We promise not to put a semicolon in the
// version, so it should be safe for readers to scan
// forward to the semicolon.
producer += "; " + string(producerExtra.P)
flagVariants[string(producerExtra.P)] = true
} else {
flagVariants[""] = true
}
newattr(unit.DWInfo, dwarf.DW_AT_producer, dwarf.DW_CLS_STRING, int64(len(producer)), producer)
var pkgname string
if s := ctxt.Syms.ROLookup(dwarf.CUInfoPrefix+"packagename."+unit.Lib.Pkg, 0); s != nil {
pkgname = string(s.P)
}
newattr(unit.DWInfo, dwarf.DW_AT_go_package_name, dwarf.DW_CLS_STRING, int64(len(pkgname)), pkgname)
if len(unit.Textp) == 0 {
unit.DWInfo.Abbrev = dwarf.DW_ABRV_COMPUNIT_TEXTLESS
}
// Scan all functions in this compilation unit, create DIEs for all
// referenced types, create the file table for debug_line, find all
// referenced abstract functions.
// Collect all debug_range symbols in unit.rangeSyms
for _, s := range unit.Textp { // textp has been dead-code-eliminated already.
dsym := dwarfFuncSym(ctxt, s, dwarf.InfoPrefix, false)
dsym.Attr |= sym.AttrNotInSymbolTable | sym.AttrReachable
dsym.Type = sym.SDWARFINFO
unit.FuncDIEs = append(unit.FuncDIEs, dsym)
rangeSym := dwarfFuncSym(ctxt, s, dwarf.RangePrefix, false)
if rangeSym != nil && rangeSym.Size > 0 {
rangeSym.Attr |= sym.AttrReachable | sym.AttrNotInSymbolTable
rangeSym.Type = sym.SDWARFRANGE
if ctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, uint64(rangeSym.Size))
}
unit.RangeSyms = append(unit.RangeSyms, rangeSym)
}
for ri := 0; ri < len(dsym.R); ri++ {
r := &dsym.R[ri]
if r.Type == objabi.R_DWARFSECREF {
rsym := r.Sym
if strings.HasPrefix(rsym.Name, dwarf.InfoPrefix) && strings.HasSuffix(rsym.Name, dwarf.AbstractFuncSuffix) && !rsym.Attr.OnList() {
// abstract function
rsym.Attr |= sym.AttrOnList
unit.AbsFnDIEs = append(unit.AbsFnDIEs, rsym)
importInfoSymbol(ctxt, rsym)
} else if rsym.Size == 0 {
// a type we do not have a DIE for
n := nameFromDIESym(rsym)
defgotype(ctxt, ctxt.Syms.Lookup("type."+n, 0))
}
}
}
}
}
}
// Fix for 31034: if the objects feeding into this link were compiled
// with different sets of flags, then don't issue an error if
// the -strictdups checks fail.
if checkStrictDups > 1 && len(flagVariants) > 1 {
checkStrictDups = 1
}
// Create DIEs for global variables and the types they use.
genasmsym(ctxt, defdwsymb)
synthesizestringtypes(ctxt, dwtypes.Child)
synthesizeslicetypes(ctxt, dwtypes.Child)
synthesizemaptypes(ctxt, dwtypes.Child)
synthesizechantypes(ctxt, dwtypes.Child)
}
// dwarfGenerateDebugSyms constructs debug_line, debug_frame, debug_loc,
// debug_pubnames and debug_pubtypes. It also writes out the debug_info
// section using symbols generated in dwarfGenerateDebugInfo.
func dwarfGenerateDebugSyms(ctxt *Link) {
if !dwarfEnabled(ctxt) {
return
}
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f dwarf\n", Cputime())
}
abbrev := writeabbrev(ctxt)
syms := []*sym.Symbol{abbrev}
calcCompUnitRanges(ctxt)
sort.Sort(compilationUnitByStartPC(ctxt.compUnits))
// Write per-package line and range tables and start their CU DIEs.
debugLine := ctxt.Syms.Lookup(".debug_line", 0)
debugLine.Type = sym.SDWARFSECT
debugRanges := ctxt.Syms.Lookup(".debug_ranges", 0)
debugRanges.Type = sym.SDWARFRANGE
debugRanges.Attr |= sym.AttrReachable
syms = append(syms, debugLine)
for _, u := range ctxt.compUnits {
reversetree(&u.DWInfo.Child)
if u.DWInfo.Abbrev == dwarf.DW_ABRV_COMPUNIT_TEXTLESS {
continue
}
writelines(ctxt, u, debugLine)
writepcranges(ctxt, u, u.Textp[0], u.PCs, debugRanges)
}
// newdie adds DIEs to the *beginning* of the parent's DIE list.
// Now that we're done creating DIEs, reverse the trees so DIEs
// appear in the order they were created.
reversetree(&dwtypes.Child)
movetomodule(ctxt, &dwtypes)
pubNames := newPubWriter(ctxt, ".debug_pubnames")
pubTypes := newPubWriter(ctxt, ".debug_pubtypes")
// Need to reorder symbols so sym.SDWARFINFO is after all sym.SDWARFSECT
infosyms := writeinfo(ctxt, nil, ctxt.compUnits, abbrev, pubNames, pubTypes)
syms = writeframes(ctxt, syms)
syms = append(syms, pubNames.s, pubTypes.s)
syms = writegdbscript(ctxt, syms)
// Now we're done writing SDWARFSECT symbols, so we can write
// other SDWARF* symbols.
syms = append(syms, infosyms...)
syms = collectlocs(ctxt, syms, ctxt.compUnits)
syms = append(syms, debugRanges)
for _, unit := range ctxt.compUnits {
syms = append(syms, unit.RangeSyms...)
}
dwarfp = syms
}
func collectlocs(ctxt *Link, syms []*sym.Symbol, units []*sym.CompilationUnit) []*sym.Symbol {
[dev.debug] cmd/compile: better DWARF with optimizations on Debuggers use DWARF information to find local variables on the stack and in registers. Prior to this CL, the DWARF information for functions claimed that all variables were on the stack at all times. That's incorrect when optimizations are enabled, and results in debuggers showing data that is out of date or complete gibberish. After this CL, the compiler is capable of representing variable locations more accurately, and attempts to do so. Due to limitations of the SSA backend, it's not possible to be completely correct. There are a number of problems in the current design. One of the easier to understand is that variable names currently must be attached to an SSA value, but not all assignments in the source code actually result in machine code. For example: type myint int var a int b := myint(int) and b := (*uint64)(unsafe.Pointer(a)) don't generate machine code because the underlying representation is the same, so the correct value of b will not be set when the user would expect. Generating the more precise debug information is behind a flag, dwarflocationlists. Because of the issues described above, setting the flag may not make the debugging experience much better, and may actually make it worse in cases where the variable actually is on the stack and the more complicated analysis doesn't realize it. A number of changes are included: - Add a new pseudo-instruction, RegKill, which indicates that the value in the register has been clobbered. - Adjust regalloc to emit RegKills in the right places. Significantly, this means that phis are mixed with StoreReg and RegKills after regalloc. - Track variable decomposition in ssa.LocalSlots. - After the SSA backend is done, analyze the result and build location lists for each LocalSlot. - After assembly is done, update the location lists with the assembled PC offsets, recompose variables, and build DWARF location lists. Emit the list as a new linker symbol, one per function. - In the linker, aggregate the location lists into a .debug_loc section. TODO: - currently disabled for non-X86/AMD64 because there are no data tables. go build -toolexec 'toolstash -cmp' -a std succeeds. With -dwarflocationlists false: before: f02812195637909ff675782c0b46836a8ff01976 after: 06f61e8112a42ac34fb80e0c818b3cdb84a5e7ec benchstat -geomean /tmp/220352263 /tmp/621364410 completed 15 of 15, estimated time remaining 0s (eta 3:52PM) name old time/op new time/op delta Template 199ms ± 3% 198ms ± 2% ~ (p=0.400 n=15+14) Unicode 96.6ms ± 5% 96.4ms ± 5% ~ (p=0.838 n=15+15) GoTypes 653ms ± 2% 647ms ± 2% ~ (p=0.102 n=15+14) Flate 133ms ± 6% 129ms ± 3% -2.62% (p=0.041 n=15+15) GoParser 164ms ± 5% 159ms ± 3% -3.05% (p=0.000 n=15+15) Reflect 428ms ± 4% 422ms ± 3% ~ (p=0.156 n=15+13) Tar 123ms ±10% 124ms ± 8% ~ (p=0.461 n=15+15) XML 228ms ± 3% 224ms ± 3% -1.57% (p=0.045 n=15+15) [Geo mean] 206ms 377ms +82.86% name old user-time/op new user-time/op delta Template 292ms ±10% 301ms ±12% ~ (p=0.189 n=15+15) Unicode 166ms ±37% 158ms ±14% ~ (p=0.418 n=15+14) GoTypes 962ms ± 6% 963ms ± 7% ~ (p=0.976 n=15+15) Flate 207ms ±19% 200ms ±14% ~ (p=0.345 n=14+15) GoParser 246ms ±22% 240ms ±15% ~ (p=0.587 n=15+15) Reflect 611ms ±13% 587ms ±14% ~ (p=0.085 n=15+13) Tar 211ms ±12% 217ms ±14% ~ (p=0.355 n=14+15) XML 335ms ±15% 320ms ±18% ~ (p=0.169 n=15+15) [Geo mean] 317ms 583ms +83.72% name old alloc/op new alloc/op delta Template 40.2MB ± 0% 40.2MB ± 0% -0.15% (p=0.000 n=14+15) Unicode 29.2MB ± 0% 29.3MB ± 0% ~ (p=0.624 n=15+15) GoTypes 114MB ± 0% 114MB ± 0% -0.15% (p=0.000 n=15+14) Flate 25.7MB ± 0% 25.6MB ± 0% -0.18% (p=0.000 n=13+15) GoParser 32.2MB ± 0% 32.2MB ± 0% -0.14% (p=0.003 n=15+15) Reflect 77.8MB ± 0% 77.9MB ± 0% ~ (p=0.061 n=15+15) Tar 27.1MB ± 0% 27.0MB ± 0% -0.11% (p=0.029 n=15+15) XML 42.7MB ± 0% 42.5MB ± 0% -0.29% (p=0.000 n=15+15) [Geo mean] 42.1MB 75.0MB +78.05% name old allocs/op new allocs/op delta Template 402k ± 1% 398k ± 0% -0.91% (p=0.000 n=15+15) Unicode 344k ± 1% 344k ± 0% ~ (p=0.715 n=15+14) GoTypes 1.18M ± 0% 1.17M ± 0% -0.91% (p=0.000 n=15+14) Flate 243k ± 0% 240k ± 1% -1.05% (p=0.000 n=13+15) GoParser 327k ± 1% 324k ± 1% -0.96% (p=0.000 n=15+15) Reflect 984k ± 1% 982k ± 0% ~ (p=0.050 n=15+15) Tar 261k ± 1% 259k ± 1% -0.77% (p=0.000 n=15+15) XML 411k ± 0% 404k ± 1% -1.55% (p=0.000 n=15+15) [Geo mean] 439k 755k +72.01% name old text-bytes new text-bytes delta HelloSize 694kB ± 0% 694kB ± 0% -0.00% (p=0.000 n=15+15) name old data-bytes new data-bytes delta HelloSize 5.55kB ± 0% 5.55kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 133kB ± 0% 133kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.04MB ± 0% 1.04MB ± 0% ~ (all equal) Change-Id: I991fc553ef175db46bb23b2128317bbd48de70d8 Reviewed-on: https://go-review.googlesource.com/41770 Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2017-07-21 18:30:19 -04:00
empty := true
for _, u := range units {
for _, fn := range u.FuncDIEs {
for i := range fn.R {
reloc := &fn.R[i] // Copying sym.Reloc has measurable impact on performance
if reloc.Type == objabi.R_DWARFSECREF && strings.HasPrefix(reloc.Sym.Name, dwarf.LocPrefix) {
reloc.Sym.Attr |= sym.AttrReachable | sym.AttrNotInSymbolTable
syms = append(syms, reloc.Sym)
empty = false
// One location list entry per function, but many relocations to it. Don't duplicate.
break
}
[dev.debug] cmd/compile: better DWARF with optimizations on Debuggers use DWARF information to find local variables on the stack and in registers. Prior to this CL, the DWARF information for functions claimed that all variables were on the stack at all times. That's incorrect when optimizations are enabled, and results in debuggers showing data that is out of date or complete gibberish. After this CL, the compiler is capable of representing variable locations more accurately, and attempts to do so. Due to limitations of the SSA backend, it's not possible to be completely correct. There are a number of problems in the current design. One of the easier to understand is that variable names currently must be attached to an SSA value, but not all assignments in the source code actually result in machine code. For example: type myint int var a int b := myint(int) and b := (*uint64)(unsafe.Pointer(a)) don't generate machine code because the underlying representation is the same, so the correct value of b will not be set when the user would expect. Generating the more precise debug information is behind a flag, dwarflocationlists. Because of the issues described above, setting the flag may not make the debugging experience much better, and may actually make it worse in cases where the variable actually is on the stack and the more complicated analysis doesn't realize it. A number of changes are included: - Add a new pseudo-instruction, RegKill, which indicates that the value in the register has been clobbered. - Adjust regalloc to emit RegKills in the right places. Significantly, this means that phis are mixed with StoreReg and RegKills after regalloc. - Track variable decomposition in ssa.LocalSlots. - After the SSA backend is done, analyze the result and build location lists for each LocalSlot. - After assembly is done, update the location lists with the assembled PC offsets, recompose variables, and build DWARF location lists. Emit the list as a new linker symbol, one per function. - In the linker, aggregate the location lists into a .debug_loc section. TODO: - currently disabled for non-X86/AMD64 because there are no data tables. go build -toolexec 'toolstash -cmp' -a std succeeds. With -dwarflocationlists false: before: f02812195637909ff675782c0b46836a8ff01976 after: 06f61e8112a42ac34fb80e0c818b3cdb84a5e7ec benchstat -geomean /tmp/220352263 /tmp/621364410 completed 15 of 15, estimated time remaining 0s (eta 3:52PM) name old time/op new time/op delta Template 199ms ± 3% 198ms ± 2% ~ (p=0.400 n=15+14) Unicode 96.6ms ± 5% 96.4ms ± 5% ~ (p=0.838 n=15+15) GoTypes 653ms ± 2% 647ms ± 2% ~ (p=0.102 n=15+14) Flate 133ms ± 6% 129ms ± 3% -2.62% (p=0.041 n=15+15) GoParser 164ms ± 5% 159ms ± 3% -3.05% (p=0.000 n=15+15) Reflect 428ms ± 4% 422ms ± 3% ~ (p=0.156 n=15+13) Tar 123ms ±10% 124ms ± 8% ~ (p=0.461 n=15+15) XML 228ms ± 3% 224ms ± 3% -1.57% (p=0.045 n=15+15) [Geo mean] 206ms 377ms +82.86% name old user-time/op new user-time/op delta Template 292ms ±10% 301ms ±12% ~ (p=0.189 n=15+15) Unicode 166ms ±37% 158ms ±14% ~ (p=0.418 n=15+14) GoTypes 962ms ± 6% 963ms ± 7% ~ (p=0.976 n=15+15) Flate 207ms ±19% 200ms ±14% ~ (p=0.345 n=14+15) GoParser 246ms ±22% 240ms ±15% ~ (p=0.587 n=15+15) Reflect 611ms ±13% 587ms ±14% ~ (p=0.085 n=15+13) Tar 211ms ±12% 217ms ±14% ~ (p=0.355 n=14+15) XML 335ms ±15% 320ms ±18% ~ (p=0.169 n=15+15) [Geo mean] 317ms 583ms +83.72% name old alloc/op new alloc/op delta Template 40.2MB ± 0% 40.2MB ± 0% -0.15% (p=0.000 n=14+15) Unicode 29.2MB ± 0% 29.3MB ± 0% ~ (p=0.624 n=15+15) GoTypes 114MB ± 0% 114MB ± 0% -0.15% (p=0.000 n=15+14) Flate 25.7MB ± 0% 25.6MB ± 0% -0.18% (p=0.000 n=13+15) GoParser 32.2MB ± 0% 32.2MB ± 0% -0.14% (p=0.003 n=15+15) Reflect 77.8MB ± 0% 77.9MB ± 0% ~ (p=0.061 n=15+15) Tar 27.1MB ± 0% 27.0MB ± 0% -0.11% (p=0.029 n=15+15) XML 42.7MB ± 0% 42.5MB ± 0% -0.29% (p=0.000 n=15+15) [Geo mean] 42.1MB 75.0MB +78.05% name old allocs/op new allocs/op delta Template 402k ± 1% 398k ± 0% -0.91% (p=0.000 n=15+15) Unicode 344k ± 1% 344k ± 0% ~ (p=0.715 n=15+14) GoTypes 1.18M ± 0% 1.17M ± 0% -0.91% (p=0.000 n=15+14) Flate 243k ± 0% 240k ± 1% -1.05% (p=0.000 n=13+15) GoParser 327k ± 1% 324k ± 1% -0.96% (p=0.000 n=15+15) Reflect 984k ± 1% 982k ± 0% ~ (p=0.050 n=15+15) Tar 261k ± 1% 259k ± 1% -0.77% (p=0.000 n=15+15) XML 411k ± 0% 404k ± 1% -1.55% (p=0.000 n=15+15) [Geo mean] 439k 755k +72.01% name old text-bytes new text-bytes delta HelloSize 694kB ± 0% 694kB ± 0% -0.00% (p=0.000 n=15+15) name old data-bytes new data-bytes delta HelloSize 5.55kB ± 0% 5.55kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 133kB ± 0% 133kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.04MB ± 0% 1.04MB ± 0% ~ (all equal) Change-Id: I991fc553ef175db46bb23b2128317bbd48de70d8 Reviewed-on: https://go-review.googlesource.com/41770 Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2017-07-21 18:30:19 -04:00
}
}
}
// Don't emit .debug_loc if it's empty -- it makes the ARM linker mad.
if !empty {
locsym := ctxt.Syms.Lookup(".debug_loc", 0)
locsym.Type = sym.SDWARFLOC
locsym.Attr |= sym.AttrReachable
[dev.debug] cmd/compile: better DWARF with optimizations on Debuggers use DWARF information to find local variables on the stack and in registers. Prior to this CL, the DWARF information for functions claimed that all variables were on the stack at all times. That's incorrect when optimizations are enabled, and results in debuggers showing data that is out of date or complete gibberish. After this CL, the compiler is capable of representing variable locations more accurately, and attempts to do so. Due to limitations of the SSA backend, it's not possible to be completely correct. There are a number of problems in the current design. One of the easier to understand is that variable names currently must be attached to an SSA value, but not all assignments in the source code actually result in machine code. For example: type myint int var a int b := myint(int) and b := (*uint64)(unsafe.Pointer(a)) don't generate machine code because the underlying representation is the same, so the correct value of b will not be set when the user would expect. Generating the more precise debug information is behind a flag, dwarflocationlists. Because of the issues described above, setting the flag may not make the debugging experience much better, and may actually make it worse in cases where the variable actually is on the stack and the more complicated analysis doesn't realize it. A number of changes are included: - Add a new pseudo-instruction, RegKill, which indicates that the value in the register has been clobbered. - Adjust regalloc to emit RegKills in the right places. Significantly, this means that phis are mixed with StoreReg and RegKills after regalloc. - Track variable decomposition in ssa.LocalSlots. - After the SSA backend is done, analyze the result and build location lists for each LocalSlot. - After assembly is done, update the location lists with the assembled PC offsets, recompose variables, and build DWARF location lists. Emit the list as a new linker symbol, one per function. - In the linker, aggregate the location lists into a .debug_loc section. TODO: - currently disabled for non-X86/AMD64 because there are no data tables. go build -toolexec 'toolstash -cmp' -a std succeeds. With -dwarflocationlists false: before: f02812195637909ff675782c0b46836a8ff01976 after: 06f61e8112a42ac34fb80e0c818b3cdb84a5e7ec benchstat -geomean /tmp/220352263 /tmp/621364410 completed 15 of 15, estimated time remaining 0s (eta 3:52PM) name old time/op new time/op delta Template 199ms ± 3% 198ms ± 2% ~ (p=0.400 n=15+14) Unicode 96.6ms ± 5% 96.4ms ± 5% ~ (p=0.838 n=15+15) GoTypes 653ms ± 2% 647ms ± 2% ~ (p=0.102 n=15+14) Flate 133ms ± 6% 129ms ± 3% -2.62% (p=0.041 n=15+15) GoParser 164ms ± 5% 159ms ± 3% -3.05% (p=0.000 n=15+15) Reflect 428ms ± 4% 422ms ± 3% ~ (p=0.156 n=15+13) Tar 123ms ±10% 124ms ± 8% ~ (p=0.461 n=15+15) XML 228ms ± 3% 224ms ± 3% -1.57% (p=0.045 n=15+15) [Geo mean] 206ms 377ms +82.86% name old user-time/op new user-time/op delta Template 292ms ±10% 301ms ±12% ~ (p=0.189 n=15+15) Unicode 166ms ±37% 158ms ±14% ~ (p=0.418 n=15+14) GoTypes 962ms ± 6% 963ms ± 7% ~ (p=0.976 n=15+15) Flate 207ms ±19% 200ms ±14% ~ (p=0.345 n=14+15) GoParser 246ms ±22% 240ms ±15% ~ (p=0.587 n=15+15) Reflect 611ms ±13% 587ms ±14% ~ (p=0.085 n=15+13) Tar 211ms ±12% 217ms ±14% ~ (p=0.355 n=14+15) XML 335ms ±15% 320ms ±18% ~ (p=0.169 n=15+15) [Geo mean] 317ms 583ms +83.72% name old alloc/op new alloc/op delta Template 40.2MB ± 0% 40.2MB ± 0% -0.15% (p=0.000 n=14+15) Unicode 29.2MB ± 0% 29.3MB ± 0% ~ (p=0.624 n=15+15) GoTypes 114MB ± 0% 114MB ± 0% -0.15% (p=0.000 n=15+14) Flate 25.7MB ± 0% 25.6MB ± 0% -0.18% (p=0.000 n=13+15) GoParser 32.2MB ± 0% 32.2MB ± 0% -0.14% (p=0.003 n=15+15) Reflect 77.8MB ± 0% 77.9MB ± 0% ~ (p=0.061 n=15+15) Tar 27.1MB ± 0% 27.0MB ± 0% -0.11% (p=0.029 n=15+15) XML 42.7MB ± 0% 42.5MB ± 0% -0.29% (p=0.000 n=15+15) [Geo mean] 42.1MB 75.0MB +78.05% name old allocs/op new allocs/op delta Template 402k ± 1% 398k ± 0% -0.91% (p=0.000 n=15+15) Unicode 344k ± 1% 344k ± 0% ~ (p=0.715 n=15+14) GoTypes 1.18M ± 0% 1.17M ± 0% -0.91% (p=0.000 n=15+14) Flate 243k ± 0% 240k ± 1% -1.05% (p=0.000 n=13+15) GoParser 327k ± 1% 324k ± 1% -0.96% (p=0.000 n=15+15) Reflect 984k ± 1% 982k ± 0% ~ (p=0.050 n=15+15) Tar 261k ± 1% 259k ± 1% -0.77% (p=0.000 n=15+15) XML 411k ± 0% 404k ± 1% -1.55% (p=0.000 n=15+15) [Geo mean] 439k 755k +72.01% name old text-bytes new text-bytes delta HelloSize 694kB ± 0% 694kB ± 0% -0.00% (p=0.000 n=15+15) name old data-bytes new data-bytes delta HelloSize 5.55kB ± 0% 5.55kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 133kB ± 0% 133kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.04MB ± 0% 1.04MB ± 0% ~ (all equal) Change-Id: I991fc553ef175db46bb23b2128317bbd48de70d8 Reviewed-on: https://go-review.googlesource.com/41770 Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2017-07-21 18:30:19 -04:00
syms = append(syms, locsym)
}
return syms
}
// Read a pointer-sized uint from the beginning of buf.
func readPtr(ctxt *Link, buf []byte) uint64 {
switch ctxt.Arch.PtrSize {
case 4:
return uint64(ctxt.Arch.ByteOrder.Uint32(buf))
case 8:
return ctxt.Arch.ByteOrder.Uint64(buf)
default:
panic("unexpected pointer size")
}
}
/*
* Elf.
*/
func dwarfaddshstrings(ctxt *Link, shstrtab *sym.Symbol) {
if *FlagW { // disable dwarf
return
}
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
secs := []string{"abbrev", "frame", "info", "loc", "line", "pubnames", "pubtypes", "gdb_scripts", "ranges"}
for _, sec := range secs {
Addstring(shstrtab, ".debug_"+sec)
if ctxt.LinkMode == LinkExternal {
Addstring(shstrtab, elfRelType+".debug_"+sec)
} else {
Addstring(shstrtab, ".zdebug_"+sec)
}
}
}
// Add section symbols for DWARF debug info. This is called before
// dwarfaddelfheaders.
func dwarfaddelfsectionsyms(ctxt *Link) {
if *FlagW { // disable dwarf
return
}
if ctxt.LinkMode != LinkExternal {
return
}
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
s := ctxt.Syms.Lookup(".debug_info", 0)
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
s = ctxt.Syms.Lookup(".debug_abbrev", 0)
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
s = ctxt.Syms.Lookup(".debug_line", 0)
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
s = ctxt.Syms.Lookup(".debug_frame", 0)
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
s = ctxt.Syms.Lookup(".debug_loc", 0)
if s.Sect != nil {
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
}
s = ctxt.Syms.Lookup(".debug_ranges", 0)
if s.Sect != nil {
putelfsectionsym(ctxt.Out, s, s.Sect.Elfsect.(*ElfShdr).shnum)
}
}
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
// dwarfcompress compresses the DWARF sections. Relocations are applied
// on the fly. After this, dwarfp will contain a different (new) set of
// symbols, and sections may have been replaced.
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
func dwarfcompress(ctxt *Link) {
supported := ctxt.IsELF || ctxt.HeadType == objabi.Hwindows || ctxt.HeadType == objabi.Hdarwin
if !ctxt.compressDWARF || !supported || ctxt.LinkMode != LinkInternal {
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
return
}
var start int
var newDwarfp []*sym.Symbol
Segdwarf.Sections = Segdwarf.Sections[:0]
for i, s := range dwarfp {
// Find the boundaries between sections and compress
// the whole section once we've found the last of its
// symbols.
if i+1 >= len(dwarfp) || s.Sect != dwarfp[i+1].Sect {
s1 := compressSyms(ctxt, dwarfp[start:i+1])
if s1 == nil {
// Compression didn't help.
newDwarfp = append(newDwarfp, dwarfp[start:i+1]...)
Segdwarf.Sections = append(Segdwarf.Sections, s.Sect)
} else {
compressedSegName := ".zdebug_" + s.Sect.Name[len(".debug_"):]
sect := addsection(ctxt.Arch, &Segdwarf, compressedSegName, 04)
sect.Length = uint64(len(s1))
newSym := ctxt.Syms.Lookup(compressedSegName, 0)
newSym.P = s1
newSym.Size = int64(len(s1))
newSym.Sect = sect
newDwarfp = append(newDwarfp, newSym)
}
start = i + 1
}
}
dwarfp = newDwarfp
ctxt.relocbuf = nil // no longer needed, don't hold it live
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
// Re-compute the locations of the compressed DWARF symbols
// and sections, since the layout of these within the file is
// based on Section.Vaddr and Symbol.Value.
pos := Segdwarf.Vaddr
var prevSect *sym.Section
for _, s := range dwarfp {
s.Value = int64(pos)
if s.Sect != prevSect {
s.Sect.Vaddr = uint64(s.Value)
prevSect = s.Sect
}
if s.Sub != nil {
log.Fatalf("%s: unexpected sub-symbols", s)
}
pos += uint64(s.Size)
if ctxt.HeadType == objabi.Hwindows {
pos = uint64(Rnd(int64(pos), PEFILEALIGN))
}
cmd/link: compress DWARF sections in ELF binaries Forked from CL 111895. The trickiest part of this is that the binary layout code (blk, elfshbits, and various other things) assumes a constant offset between symbols' and sections' file locations and their virtual addresses. Compression, of course, breaks this constant offset. But we need to assign virtual addresses to everything before compression in order to resolve relocations before compression. As a result, compression needs to re-compute the "address" of the DWARF sections and symbols based on their compressed size. Luckily, these are at the end of the file, so this doesn't perturb any other sections or symbols. (And there is, of course, a surprising amount of code that assumes the DWARF segment comes last, so what's one more place?) Relevant benchmarks: name old time/op new time/op delta StdCmd 10.3s ± 2% 10.8s ± 1% +5.43% (p=0.000 n=30+30) name old text-bytes new text-bytes delta HelloSize 746kB ± 0% 746kB ± 0% ~ (all equal) CmdGoSize 8.41MB ± 0% 8.41MB ± 0% ~ (all equal) [Geo mean] 2.50MB 2.50MB +0.00% name old data-bytes new data-bytes delta HelloSize 10.6kB ± 0% 10.6kB ± 0% ~ (all equal) CmdGoSize 252kB ± 0% 252kB ± 0% ~ (all equal) [Geo mean] 51.5kB 51.5kB +0.00% name old bss-bytes new bss-bytes delta HelloSize 125kB ± 0% 125kB ± 0% ~ (all equal) CmdGoSize 145kB ± 0% 145kB ± 0% ~ (all equal) [Geo mean] 135kB 135kB +0.00% name old exe-bytes new exe-bytes delta HelloSize 1.60MB ± 0% 1.05MB ± 0% -34.39% (p=0.000 n=30+30) CmdGoSize 16.5MB ± 0% 11.3MB ± 0% -31.76% (p=0.000 n=30+30) [Geo mean] 5.14MB 3.44MB -33.08% Fixes #11799. Updates #6853. Change-Id: I64197afe4c01a237523a943088051ee056331c6f Reviewed-on: https://go-review.googlesource.com/118276 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-05-05 21:49:40 -04:00
}
Segdwarf.Length = pos - Segdwarf.Vaddr
}
type compilationUnitByStartPC []*sym.CompilationUnit
func (v compilationUnitByStartPC) Len() int { return len(v) }
func (v compilationUnitByStartPC) Swap(i, j int) { v[i], v[j] = v[j], v[i] }
func (v compilationUnitByStartPC) Less(i, j int) bool {
switch {
case len(v[i].Textp) == 0 && len(v[j].Textp) == 0:
return v[i].Lib.Pkg < v[j].Lib.Pkg
case len(v[i].Textp) != 0 && len(v[j].Textp) == 0:
return true
case len(v[i].Textp) == 0 && len(v[j].Textp) != 0:
return false
default:
return v[i].Textp[0].Value < v[j].Textp[0].Value
}
}
// On AIX, the symbol table needs to know where are the compilation units parts
// for a specific package in each .dw section.
// dwsectCUSize map will save the size of a compilation unit for
// the corresponding .dw section.
// This size can later be retrieved with the index "sectionName.pkgName".
var dwsectCUSize map[string]uint64
// getDwsectCUSize retrieves the corresponding package size inside the current section.
func getDwsectCUSize(sname string, pkgname string) uint64 {
return dwsectCUSize[sname+"."+pkgname]
}
func saveDwsectCUSize(sname string, pkgname string, size uint64) {
dwsectCUSize[sname+"."+pkgname] = size
}
func addDwsectCUSize(sname string, pkgname string, size uint64) {
dwsectCUSize[sname+"."+pkgname] += size
}
// getPkgFromCUSym returns the package name for the compilation unit
// represented by s.
// The prefix dwarf.InfoPrefix+".pkg." needs to be removed in order to get
// the package name.
func getPkgFromCUSym(s *sym.Symbol) string {
return strings.TrimPrefix(s.Name, dwarf.InfoPrefix+".pkg.")
}