go/src/cmd/compile/internal/gc/pgen.go

563 lines
13 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/internal/obj"
"crypto/md5"
"fmt"
"sort"
"strings"
)
// "Portable" code generation.
var makefuncdatasym_nsym int32
func makefuncdatasym(namefmt string, funcdatakind int64) *Sym {
var nod Node
sym := Lookupf(namefmt, makefuncdatasym_nsym)
makefuncdatasym_nsym++
pnod := newname(sym)
pnod.Class = PEXTERN
Nodconst(&nod, Types[TINT32], funcdatakind)
Thearch.Gins(obj.AFUNCDATA, &nod, pnod)
return sym
}
// gvardef inserts a VARDEF for n into the instruction stream.
// VARDEF is an annotation for the liveness analysis, marking a place
// where a complete initialization (definition) of a variable begins.
// Since the liveness analysis can see initialization of single-word
// variables quite easy, gvardef is usually only called for multi-word
// or 'fat' variables, those satisfying isfat(n->type).
// However, gvardef is also called when a non-fat variable is initialized
// via a block move; the only time this happens is when you have
// return f()
// for a function with multiple return values exactly matching the return
// types of the current function.
//
// A 'VARDEF x' annotation in the instruction stream tells the liveness
// analysis to behave as though the variable x is being initialized at that
// point in the instruction stream. The VARDEF must appear before the
// actual (multi-instruction) initialization, and it must also appear after
// any uses of the previous value, if any. For example, if compiling:
//
// x = x[1:]
//
// it is important to generate code like:
//
// base, len, cap = pieces of x[1:]
// VARDEF x
// x = {base, len, cap}
//
// If instead the generated code looked like:
//
// VARDEF x
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
//
// then the liveness analysis would decide the previous value of x was
// unnecessary even though it is about to be used by the x[1:] computation.
// Similarly, if the generated code looked like:
//
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
// VARDEF x
//
// then the liveness analysis will not preserve the new value of x, because
// the VARDEF appears to have "overwritten" it.
//
// VARDEF is a bit of a kludge to work around the fact that the instruction
// stream is working on single-word values but the liveness analysis
// wants to work on individual variables, which might be multi-word
// aggregates. It might make sense at some point to look into letting
// the liveness analysis work on single-word values as well, although
// there are complications around interface values, slices, and strings,
// all of which cannot be treated as individual words.
//
// VARKILL is the opposite of VARDEF: it marks a value as no longer needed,
// even if its address has been taken. That is, a VARKILL annotation asserts
// that its argument is certainly dead, for use when the liveness analysis
// would not otherwise be able to deduce that fact.
func gvardefx(n *Node, as int) {
if n == nil {
Fatalf("gvardef nil")
}
if n.Op != ONAME {
Yyerror("gvardef %v; %v", Oconv(int(n.Op), obj.FmtSharp), n)
return
}
switch n.Class {
case PAUTO, PPARAM, PPARAMOUT:
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
if as == obj.AVARLIVE {
Thearch.Gins(as, n, nil)
} else {
Thearch.Gins(as, nil, n)
}
}
}
func Gvardef(n *Node) {
gvardefx(n, obj.AVARDEF)
}
func gvarkill(n *Node) {
gvardefx(n, obj.AVARKILL)
}
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
func gvarlive(n *Node) {
gvardefx(n, obj.AVARLIVE)
}
func removevardef(firstp *obj.Prog) {
for p := firstp; p != nil; p = p.Link {
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
for p.Link != nil && (p.Link.As == obj.AVARDEF || p.Link.As == obj.AVARKILL || p.Link.As == obj.AVARLIVE) {
p.Link = p.Link.Link
}
if p.To.Type == obj.TYPE_BRANCH {
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
for p.To.Val.(*obj.Prog) != nil && (p.To.Val.(*obj.Prog).As == obj.AVARDEF || p.To.Val.(*obj.Prog).As == obj.AVARKILL || p.To.Val.(*obj.Prog).As == obj.AVARLIVE) {
p.To.Val = p.To.Val.(*obj.Prog).Link
}
}
}
}
func gcsymdup(s *Sym) {
ls := Linksym(s)
if len(ls.R) > 0 {
Fatalf("cannot rosymdup %s with relocations", ls.Name)
}
ls.Name = fmt.Sprintf("gclocals·%x", md5.Sum(ls.P))
ls.Dupok = 1
}
func emitptrargsmap() {
if Curfn.Func.Nname.Sym.Name == "_" {
return
}
sym := Lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Func.Nname.Sym.Name))
nptr := int(Curfn.Type.Argwid / int64(Widthptr))
bv := bvalloc(int32(nptr) * 2)
nbitmap := 1
if Curfn.Type.Outtuple > 0 {
nbitmap = 2
}
off := duint32(sym, 0, uint32(nbitmap))
off = duint32(sym, off, uint32(bv.n))
var xoffset int64
if Curfn.Type.Thistuple > 0 {
xoffset = 0
cmd/internal/gc, runtime: use 1-bit bitmap for stack frames, data, bss The bitmaps were 2 bits per pointer because we needed to distinguish scalar, pointer, multiword, and we used the leftover value to distinguish uninitialized from scalar, even though the garbage collector (GC) didn't care. Now that there are no multiword structures from the GC's point of view, cut the bitmaps down to 1 bit per pointer, recording just live pointer vs not. The GC assumes the same layout for stack frames and for the maps describing the global data and bss sections, so change them all in one CL. The code still refers to 4-bit heap bitmaps and 2-bit "type bitmaps", since the 2-bit representation lives (at least for now) in some of the reflect data. Because these stack frame bitmaps are stored directly in the rodata in the binary, this CL reduces the size of the 6g binary by about 1.1%. Performance change is basically a wash, but using less memory, and smaller binaries, and enables other bitmap reductions. name old mean new mean delta BenchmarkBinaryTree17 13.2s × (0.97,1.03) 13.0s × (0.99,1.01) -0.93% (p=0.005) BenchmarkBinaryTree17-2 9.69s × (0.96,1.05) 9.51s × (0.96,1.03) -1.86% (p=0.001) BenchmarkBinaryTree17-4 10.1s × (0.97,1.05) 10.0s × (0.96,1.05) ~ (p=0.141) BenchmarkFannkuch11 4.35s × (0.99,1.01) 4.43s × (0.98,1.04) +1.75% (p=0.001) BenchmarkFannkuch11-2 4.31s × (0.99,1.03) 4.32s × (1.00,1.00) ~ (p=0.095) BenchmarkFannkuch11-4 4.32s × (0.99,1.02) 4.38s × (0.98,1.04) +1.38% (p=0.008) BenchmarkFmtFprintfEmpty 83.5ns × (0.97,1.10) 87.3ns × (0.92,1.11) +4.55% (p=0.014) BenchmarkFmtFprintfEmpty-2 81.8ns × (0.98,1.04) 82.5ns × (0.97,1.08) ~ (p=0.364) BenchmarkFmtFprintfEmpty-4 80.9ns × (0.99,1.01) 82.6ns × (0.97,1.08) +2.12% (p=0.010) BenchmarkFmtFprintfString 320ns × (0.95,1.04) 322ns × (0.97,1.05) ~ (p=0.368) BenchmarkFmtFprintfString-2 303ns × (0.97,1.04) 304ns × (0.97,1.04) ~ (p=0.484) BenchmarkFmtFprintfString-4 305ns × (0.97,1.05) 306ns × (0.98,1.05) ~ (p=0.543) BenchmarkFmtFprintfInt 311ns × (0.98,1.03) 319ns × (0.97,1.03) +2.63% (p=0.000) BenchmarkFmtFprintfInt-2 297ns × (0.98,1.04) 301ns × (0.97,1.04) +1.19% (p=0.023) BenchmarkFmtFprintfInt-4 302ns × (0.98,1.02) 304ns × (0.97,1.03) ~ (p=0.126) BenchmarkFmtFprintfIntInt 554ns × (0.96,1.05) 554ns × (0.97,1.03) ~ (p=0.975) BenchmarkFmtFprintfIntInt-2 520ns × (0.98,1.03) 517ns × (0.98,1.02) ~ (p=0.153) BenchmarkFmtFprintfIntInt-4 524ns × (0.98,1.02) 525ns × (0.98,1.03) ~ (p=0.597) BenchmarkFmtFprintfPrefixedInt 433ns × (0.97,1.06) 434ns × (0.97,1.06) ~ (p=0.804) BenchmarkFmtFprintfPrefixedInt-2 413ns × (0.98,1.04) 413ns × (0.98,1.03) ~ (p=0.881) BenchmarkFmtFprintfPrefixedInt-4 420ns × (0.97,1.03) 421ns × (0.97,1.03) ~ (p=0.561) BenchmarkFmtFprintfFloat 620ns × (0.99,1.03) 636ns × (0.97,1.03) +2.57% (p=0.000) BenchmarkFmtFprintfFloat-2 601ns × (0.98,1.02) 617ns × (0.98,1.03) +2.58% (p=0.000) BenchmarkFmtFprintfFloat-4 613ns × (0.98,1.03) 626ns × (0.98,1.02) +2.15% (p=0.000) BenchmarkFmtManyArgs 2.19µs × (0.96,1.04) 2.23µs × (0.97,1.02) +1.65% (p=0.000) BenchmarkFmtManyArgs-2 2.08µs × (0.98,1.03) 2.10µs × (0.99,1.02) +0.79% (p=0.019) BenchmarkFmtManyArgs-4 2.10µs × (0.98,1.02) 2.13µs × (0.98,1.02) +1.72% (p=0.000) BenchmarkGobDecode 21.3ms × (0.97,1.05) 21.1ms × (0.97,1.04) -1.36% (p=0.025) BenchmarkGobDecode-2 20.0ms × (0.97,1.03) 19.2ms × (0.97,1.03) -4.00% (p=0.000) BenchmarkGobDecode-4 19.5ms × (0.99,1.02) 19.0ms × (0.99,1.01) -2.39% (p=0.000) BenchmarkGobEncode 18.3ms × (0.95,1.07) 18.1ms × (0.96,1.08) ~ (p=0.305) BenchmarkGobEncode-2 16.8ms × (0.97,1.02) 16.4ms × (0.98,1.02) -2.79% (p=0.000) BenchmarkGobEncode-4 15.4ms × (0.98,1.02) 15.4ms × (0.98,1.02) ~ (p=0.465) BenchmarkGzip 650ms × (0.98,1.03) 655ms × (0.97,1.04) ~ (p=0.075) BenchmarkGzip-2 652ms × (0.98,1.03) 655ms × (0.98,1.02) ~ (p=0.337) BenchmarkGzip-4 656ms × (0.98,1.04) 653ms × (0.98,1.03) ~ (p=0.291) BenchmarkGunzip 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.507) BenchmarkGunzip-2 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.313) BenchmarkGunzip-4 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.312) BenchmarkHTTPClientServer 110µs × (0.98,1.03) 109µs × (0.99,1.02) -1.40% (p=0.000) BenchmarkHTTPClientServer-2 154µs × (0.90,1.08) 149µs × (0.90,1.08) -3.43% (p=0.007) BenchmarkHTTPClientServer-4 138µs × (0.97,1.04) 138µs × (0.96,1.04) ~ (p=0.670) BenchmarkJSONEncode 40.2ms × (0.98,1.02) 40.2ms × (0.98,1.05) ~ (p=0.828) BenchmarkJSONEncode-2 35.1ms × (0.99,1.02) 35.2ms × (0.98,1.03) ~ (p=0.392) BenchmarkJSONEncode-4 35.3ms × (0.98,1.03) 35.3ms × (0.98,1.02) ~ (p=0.813) BenchmarkJSONDecode 119ms × (0.97,1.02) 117ms × (0.98,1.02) -1.80% (p=0.000) BenchmarkJSONDecode-2 115ms × (0.99,1.02) 114ms × (0.98,1.02) -1.18% (p=0.000) BenchmarkJSONDecode-4 116ms × (0.98,1.02) 114ms × (0.98,1.02) -1.43% (p=0.000) BenchmarkMandelbrot200 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.985) BenchmarkMandelbrot200-2 6.03ms × (1.00,1.01) 6.02ms × (1.00,1.01) ~ (p=0.320) BenchmarkMandelbrot200-4 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.799) BenchmarkGoParse 8.63ms × (0.89,1.10) 8.58ms × (0.93,1.09) ~ (p=0.667) BenchmarkGoParse-2 8.20ms × (0.97,1.04) 8.37ms × (0.97,1.04) +1.96% (p=0.001) BenchmarkGoParse-4 8.00ms × (0.98,1.02) 8.14ms × (0.99,1.02) +1.75% (p=0.000) BenchmarkRegexpMatchEasy0_32 162ns × (1.00,1.01) 164ns × (0.98,1.04) +1.35% (p=0.011) BenchmarkRegexpMatchEasy0_32-2 161ns × (1.00,1.01) 161ns × (1.00,1.00) ~ (p=0.185) BenchmarkRegexpMatchEasy0_32-4 161ns × (1.00,1.00) 161ns × (1.00,1.00) -0.19% (p=0.001) BenchmarkRegexpMatchEasy0_1K 540ns × (0.99,1.02) 566ns × (0.98,1.04) +4.98% (p=0.000) BenchmarkRegexpMatchEasy0_1K-2 540ns × (0.99,1.01) 557ns × (0.99,1.01) +3.21% (p=0.000) BenchmarkRegexpMatchEasy0_1K-4 541ns × (0.99,1.01) 559ns × (0.99,1.01) +3.26% (p=0.000) BenchmarkRegexpMatchEasy1_32 139ns × (0.98,1.04) 139ns × (0.99,1.03) ~ (p=0.979) BenchmarkRegexpMatchEasy1_32-2 139ns × (0.99,1.04) 139ns × (0.99,1.02) ~ (p=0.777) BenchmarkRegexpMatchEasy1_32-4 139ns × (0.98,1.04) 139ns × (0.99,1.04) ~ (p=0.771) BenchmarkRegexpMatchEasy1_1K 890ns × (0.99,1.03) 885ns × (1.00,1.01) -0.50% (p=0.004) BenchmarkRegexpMatchEasy1_1K-2 888ns × (0.99,1.01) 885ns × (0.99,1.01) -0.37% (p=0.004) BenchmarkRegexpMatchEasy1_1K-4 890ns × (0.99,1.02) 884ns × (1.00,1.00) -0.70% (p=0.000) BenchmarkRegexpMatchMedium_32 252ns × (0.99,1.01) 251ns × (0.99,1.01) ~ (p=0.081) BenchmarkRegexpMatchMedium_32-2 254ns × (0.99,1.04) 252ns × (0.99,1.01) -0.78% (p=0.027) BenchmarkRegexpMatchMedium_32-4 253ns × (0.99,1.04) 252ns × (0.99,1.01) -0.70% (p=0.022) BenchmarkRegexpMatchMedium_1K 72.9µs × (0.99,1.01) 72.7µs × (1.00,1.00) ~ (p=0.064) BenchmarkRegexpMatchMedium_1K-2 74.1µs × (0.98,1.05) 72.9µs × (1.00,1.01) -1.61% (p=0.001) BenchmarkRegexpMatchMedium_1K-4 73.6µs × (0.99,1.05) 72.8µs × (1.00,1.00) -1.13% (p=0.007) BenchmarkRegexpMatchHard_32 3.88µs × (0.99,1.03) 3.92µs × (0.98,1.05) ~ (p=0.143) BenchmarkRegexpMatchHard_32-2 3.89µs × (0.99,1.03) 3.93µs × (0.98,1.09) ~ (p=0.278) BenchmarkRegexpMatchHard_32-4 3.90µs × (0.99,1.05) 3.93µs × (0.98,1.05) ~ (p=0.252) BenchmarkRegexpMatchHard_1K 118µs × (0.99,1.01) 117µs × (0.99,1.02) -0.54% (p=0.003) BenchmarkRegexpMatchHard_1K-2 118µs × (0.99,1.01) 118µs × (0.99,1.03) ~ (p=0.581) BenchmarkRegexpMatchHard_1K-4 118µs × (0.99,1.02) 117µs × (0.99,1.01) -0.54% (p=0.002) BenchmarkRevcomp 991ms × (0.95,1.10) 989ms × (0.94,1.08) ~ (p=0.879) BenchmarkRevcomp-2 978ms × (0.95,1.11) 962ms × (0.96,1.08) ~ (p=0.257) BenchmarkRevcomp-4 979ms × (0.96,1.07) 974ms × (0.96,1.11) ~ (p=0.678) BenchmarkTemplate 141ms × (0.99,1.02) 145ms × (0.99,1.02) +2.75% (p=0.000) BenchmarkTemplate-2 135ms × (0.98,1.02) 138ms × (0.99,1.02) +2.34% (p=0.000) BenchmarkTemplate-4 136ms × (0.98,1.02) 140ms × (0.99,1.02) +2.71% (p=0.000) BenchmarkTimeParse 640ns × (0.99,1.01) 622ns × (0.99,1.01) -2.88% (p=0.000) BenchmarkTimeParse-2 640ns × (0.99,1.01) 622ns × (1.00,1.00) -2.81% (p=0.000) BenchmarkTimeParse-4 640ns × (1.00,1.01) 622ns × (0.99,1.01) -2.82% (p=0.000) BenchmarkTimeFormat 730ns × (0.98,1.02) 731ns × (0.98,1.03) ~ (p=0.767) BenchmarkTimeFormat-2 709ns × (0.99,1.02) 707ns × (0.99,1.02) ~ (p=0.347) BenchmarkTimeFormat-4 717ns × (0.98,1.01) 718ns × (0.98,1.02) ~ (p=0.793) Change-Id: Ie779c47e912bf80eb918bafa13638bd8dfd6c2d9 Reviewed-on: https://go-review.googlesource.com/9406 Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-27 22:45:57 -04:00
onebitwalktype1(getthisx(Curfn.Type), &xoffset, bv)
}
if Curfn.Type.Intuple > 0 {
xoffset = 0
cmd/internal/gc, runtime: use 1-bit bitmap for stack frames, data, bss The bitmaps were 2 bits per pointer because we needed to distinguish scalar, pointer, multiword, and we used the leftover value to distinguish uninitialized from scalar, even though the garbage collector (GC) didn't care. Now that there are no multiword structures from the GC's point of view, cut the bitmaps down to 1 bit per pointer, recording just live pointer vs not. The GC assumes the same layout for stack frames and for the maps describing the global data and bss sections, so change them all in one CL. The code still refers to 4-bit heap bitmaps and 2-bit "type bitmaps", since the 2-bit representation lives (at least for now) in some of the reflect data. Because these stack frame bitmaps are stored directly in the rodata in the binary, this CL reduces the size of the 6g binary by about 1.1%. Performance change is basically a wash, but using less memory, and smaller binaries, and enables other bitmap reductions. name old mean new mean delta BenchmarkBinaryTree17 13.2s × (0.97,1.03) 13.0s × (0.99,1.01) -0.93% (p=0.005) BenchmarkBinaryTree17-2 9.69s × (0.96,1.05) 9.51s × (0.96,1.03) -1.86% (p=0.001) BenchmarkBinaryTree17-4 10.1s × (0.97,1.05) 10.0s × (0.96,1.05) ~ (p=0.141) BenchmarkFannkuch11 4.35s × (0.99,1.01) 4.43s × (0.98,1.04) +1.75% (p=0.001) BenchmarkFannkuch11-2 4.31s × (0.99,1.03) 4.32s × (1.00,1.00) ~ (p=0.095) BenchmarkFannkuch11-4 4.32s × (0.99,1.02) 4.38s × (0.98,1.04) +1.38% (p=0.008) BenchmarkFmtFprintfEmpty 83.5ns × (0.97,1.10) 87.3ns × (0.92,1.11) +4.55% (p=0.014) BenchmarkFmtFprintfEmpty-2 81.8ns × (0.98,1.04) 82.5ns × (0.97,1.08) ~ (p=0.364) BenchmarkFmtFprintfEmpty-4 80.9ns × (0.99,1.01) 82.6ns × (0.97,1.08) +2.12% (p=0.010) BenchmarkFmtFprintfString 320ns × (0.95,1.04) 322ns × (0.97,1.05) ~ (p=0.368) BenchmarkFmtFprintfString-2 303ns × (0.97,1.04) 304ns × (0.97,1.04) ~ (p=0.484) BenchmarkFmtFprintfString-4 305ns × (0.97,1.05) 306ns × (0.98,1.05) ~ (p=0.543) BenchmarkFmtFprintfInt 311ns × (0.98,1.03) 319ns × (0.97,1.03) +2.63% (p=0.000) BenchmarkFmtFprintfInt-2 297ns × (0.98,1.04) 301ns × (0.97,1.04) +1.19% (p=0.023) BenchmarkFmtFprintfInt-4 302ns × (0.98,1.02) 304ns × (0.97,1.03) ~ (p=0.126) BenchmarkFmtFprintfIntInt 554ns × (0.96,1.05) 554ns × (0.97,1.03) ~ (p=0.975) BenchmarkFmtFprintfIntInt-2 520ns × (0.98,1.03) 517ns × (0.98,1.02) ~ (p=0.153) BenchmarkFmtFprintfIntInt-4 524ns × (0.98,1.02) 525ns × (0.98,1.03) ~ (p=0.597) BenchmarkFmtFprintfPrefixedInt 433ns × (0.97,1.06) 434ns × (0.97,1.06) ~ (p=0.804) BenchmarkFmtFprintfPrefixedInt-2 413ns × (0.98,1.04) 413ns × (0.98,1.03) ~ (p=0.881) BenchmarkFmtFprintfPrefixedInt-4 420ns × (0.97,1.03) 421ns × (0.97,1.03) ~ (p=0.561) BenchmarkFmtFprintfFloat 620ns × (0.99,1.03) 636ns × (0.97,1.03) +2.57% (p=0.000) BenchmarkFmtFprintfFloat-2 601ns × (0.98,1.02) 617ns × (0.98,1.03) +2.58% (p=0.000) BenchmarkFmtFprintfFloat-4 613ns × (0.98,1.03) 626ns × (0.98,1.02) +2.15% (p=0.000) BenchmarkFmtManyArgs 2.19µs × (0.96,1.04) 2.23µs × (0.97,1.02) +1.65% (p=0.000) BenchmarkFmtManyArgs-2 2.08µs × (0.98,1.03) 2.10µs × (0.99,1.02) +0.79% (p=0.019) BenchmarkFmtManyArgs-4 2.10µs × (0.98,1.02) 2.13µs × (0.98,1.02) +1.72% (p=0.000) BenchmarkGobDecode 21.3ms × (0.97,1.05) 21.1ms × (0.97,1.04) -1.36% (p=0.025) BenchmarkGobDecode-2 20.0ms × (0.97,1.03) 19.2ms × (0.97,1.03) -4.00% (p=0.000) BenchmarkGobDecode-4 19.5ms × (0.99,1.02) 19.0ms × (0.99,1.01) -2.39% (p=0.000) BenchmarkGobEncode 18.3ms × (0.95,1.07) 18.1ms × (0.96,1.08) ~ (p=0.305) BenchmarkGobEncode-2 16.8ms × (0.97,1.02) 16.4ms × (0.98,1.02) -2.79% (p=0.000) BenchmarkGobEncode-4 15.4ms × (0.98,1.02) 15.4ms × (0.98,1.02) ~ (p=0.465) BenchmarkGzip 650ms × (0.98,1.03) 655ms × (0.97,1.04) ~ (p=0.075) BenchmarkGzip-2 652ms × (0.98,1.03) 655ms × (0.98,1.02) ~ (p=0.337) BenchmarkGzip-4 656ms × (0.98,1.04) 653ms × (0.98,1.03) ~ (p=0.291) BenchmarkGunzip 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.507) BenchmarkGunzip-2 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.313) BenchmarkGunzip-4 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.312) BenchmarkHTTPClientServer 110µs × (0.98,1.03) 109µs × (0.99,1.02) -1.40% (p=0.000) BenchmarkHTTPClientServer-2 154µs × (0.90,1.08) 149µs × (0.90,1.08) -3.43% (p=0.007) BenchmarkHTTPClientServer-4 138µs × (0.97,1.04) 138µs × (0.96,1.04) ~ (p=0.670) BenchmarkJSONEncode 40.2ms × (0.98,1.02) 40.2ms × (0.98,1.05) ~ (p=0.828) BenchmarkJSONEncode-2 35.1ms × (0.99,1.02) 35.2ms × (0.98,1.03) ~ (p=0.392) BenchmarkJSONEncode-4 35.3ms × (0.98,1.03) 35.3ms × (0.98,1.02) ~ (p=0.813) BenchmarkJSONDecode 119ms × (0.97,1.02) 117ms × (0.98,1.02) -1.80% (p=0.000) BenchmarkJSONDecode-2 115ms × (0.99,1.02) 114ms × (0.98,1.02) -1.18% (p=0.000) BenchmarkJSONDecode-4 116ms × (0.98,1.02) 114ms × (0.98,1.02) -1.43% (p=0.000) BenchmarkMandelbrot200 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.985) BenchmarkMandelbrot200-2 6.03ms × (1.00,1.01) 6.02ms × (1.00,1.01) ~ (p=0.320) BenchmarkMandelbrot200-4 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.799) BenchmarkGoParse 8.63ms × (0.89,1.10) 8.58ms × (0.93,1.09) ~ (p=0.667) BenchmarkGoParse-2 8.20ms × (0.97,1.04) 8.37ms × (0.97,1.04) +1.96% (p=0.001) BenchmarkGoParse-4 8.00ms × (0.98,1.02) 8.14ms × (0.99,1.02) +1.75% (p=0.000) BenchmarkRegexpMatchEasy0_32 162ns × (1.00,1.01) 164ns × (0.98,1.04) +1.35% (p=0.011) BenchmarkRegexpMatchEasy0_32-2 161ns × (1.00,1.01) 161ns × (1.00,1.00) ~ (p=0.185) BenchmarkRegexpMatchEasy0_32-4 161ns × (1.00,1.00) 161ns × (1.00,1.00) -0.19% (p=0.001) BenchmarkRegexpMatchEasy0_1K 540ns × (0.99,1.02) 566ns × (0.98,1.04) +4.98% (p=0.000) BenchmarkRegexpMatchEasy0_1K-2 540ns × (0.99,1.01) 557ns × (0.99,1.01) +3.21% (p=0.000) BenchmarkRegexpMatchEasy0_1K-4 541ns × (0.99,1.01) 559ns × (0.99,1.01) +3.26% (p=0.000) BenchmarkRegexpMatchEasy1_32 139ns × (0.98,1.04) 139ns × (0.99,1.03) ~ (p=0.979) BenchmarkRegexpMatchEasy1_32-2 139ns × (0.99,1.04) 139ns × (0.99,1.02) ~ (p=0.777) BenchmarkRegexpMatchEasy1_32-4 139ns × (0.98,1.04) 139ns × (0.99,1.04) ~ (p=0.771) BenchmarkRegexpMatchEasy1_1K 890ns × (0.99,1.03) 885ns × (1.00,1.01) -0.50% (p=0.004) BenchmarkRegexpMatchEasy1_1K-2 888ns × (0.99,1.01) 885ns × (0.99,1.01) -0.37% (p=0.004) BenchmarkRegexpMatchEasy1_1K-4 890ns × (0.99,1.02) 884ns × (1.00,1.00) -0.70% (p=0.000) BenchmarkRegexpMatchMedium_32 252ns × (0.99,1.01) 251ns × (0.99,1.01) ~ (p=0.081) BenchmarkRegexpMatchMedium_32-2 254ns × (0.99,1.04) 252ns × (0.99,1.01) -0.78% (p=0.027) BenchmarkRegexpMatchMedium_32-4 253ns × (0.99,1.04) 252ns × (0.99,1.01) -0.70% (p=0.022) BenchmarkRegexpMatchMedium_1K 72.9µs × (0.99,1.01) 72.7µs × (1.00,1.00) ~ (p=0.064) BenchmarkRegexpMatchMedium_1K-2 74.1µs × (0.98,1.05) 72.9µs × (1.00,1.01) -1.61% (p=0.001) BenchmarkRegexpMatchMedium_1K-4 73.6µs × (0.99,1.05) 72.8µs × (1.00,1.00) -1.13% (p=0.007) BenchmarkRegexpMatchHard_32 3.88µs × (0.99,1.03) 3.92µs × (0.98,1.05) ~ (p=0.143) BenchmarkRegexpMatchHard_32-2 3.89µs × (0.99,1.03) 3.93µs × (0.98,1.09) ~ (p=0.278) BenchmarkRegexpMatchHard_32-4 3.90µs × (0.99,1.05) 3.93µs × (0.98,1.05) ~ (p=0.252) BenchmarkRegexpMatchHard_1K 118µs × (0.99,1.01) 117µs × (0.99,1.02) -0.54% (p=0.003) BenchmarkRegexpMatchHard_1K-2 118µs × (0.99,1.01) 118µs × (0.99,1.03) ~ (p=0.581) BenchmarkRegexpMatchHard_1K-4 118µs × (0.99,1.02) 117µs × (0.99,1.01) -0.54% (p=0.002) BenchmarkRevcomp 991ms × (0.95,1.10) 989ms × (0.94,1.08) ~ (p=0.879) BenchmarkRevcomp-2 978ms × (0.95,1.11) 962ms × (0.96,1.08) ~ (p=0.257) BenchmarkRevcomp-4 979ms × (0.96,1.07) 974ms × (0.96,1.11) ~ (p=0.678) BenchmarkTemplate 141ms × (0.99,1.02) 145ms × (0.99,1.02) +2.75% (p=0.000) BenchmarkTemplate-2 135ms × (0.98,1.02) 138ms × (0.99,1.02) +2.34% (p=0.000) BenchmarkTemplate-4 136ms × (0.98,1.02) 140ms × (0.99,1.02) +2.71% (p=0.000) BenchmarkTimeParse 640ns × (0.99,1.01) 622ns × (0.99,1.01) -2.88% (p=0.000) BenchmarkTimeParse-2 640ns × (0.99,1.01) 622ns × (1.00,1.00) -2.81% (p=0.000) BenchmarkTimeParse-4 640ns × (1.00,1.01) 622ns × (0.99,1.01) -2.82% (p=0.000) BenchmarkTimeFormat 730ns × (0.98,1.02) 731ns × (0.98,1.03) ~ (p=0.767) BenchmarkTimeFormat-2 709ns × (0.99,1.02) 707ns × (0.99,1.02) ~ (p=0.347) BenchmarkTimeFormat-4 717ns × (0.98,1.01) 718ns × (0.98,1.02) ~ (p=0.793) Change-Id: Ie779c47e912bf80eb918bafa13638bd8dfd6c2d9 Reviewed-on: https://go-review.googlesource.com/9406 Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-27 22:45:57 -04:00
onebitwalktype1(getinargx(Curfn.Type), &xoffset, bv)
}
for j := 0; int32(j) < bv.n; j += 32 {
off = duint32(sym, off, bv.b[j/32])
}
if Curfn.Type.Outtuple > 0 {
xoffset = 0
cmd/internal/gc, runtime: use 1-bit bitmap for stack frames, data, bss The bitmaps were 2 bits per pointer because we needed to distinguish scalar, pointer, multiword, and we used the leftover value to distinguish uninitialized from scalar, even though the garbage collector (GC) didn't care. Now that there are no multiword structures from the GC's point of view, cut the bitmaps down to 1 bit per pointer, recording just live pointer vs not. The GC assumes the same layout for stack frames and for the maps describing the global data and bss sections, so change them all in one CL. The code still refers to 4-bit heap bitmaps and 2-bit "type bitmaps", since the 2-bit representation lives (at least for now) in some of the reflect data. Because these stack frame bitmaps are stored directly in the rodata in the binary, this CL reduces the size of the 6g binary by about 1.1%. Performance change is basically a wash, but using less memory, and smaller binaries, and enables other bitmap reductions. name old mean new mean delta BenchmarkBinaryTree17 13.2s × (0.97,1.03) 13.0s × (0.99,1.01) -0.93% (p=0.005) BenchmarkBinaryTree17-2 9.69s × (0.96,1.05) 9.51s × (0.96,1.03) -1.86% (p=0.001) BenchmarkBinaryTree17-4 10.1s × (0.97,1.05) 10.0s × (0.96,1.05) ~ (p=0.141) BenchmarkFannkuch11 4.35s × (0.99,1.01) 4.43s × (0.98,1.04) +1.75% (p=0.001) BenchmarkFannkuch11-2 4.31s × (0.99,1.03) 4.32s × (1.00,1.00) ~ (p=0.095) BenchmarkFannkuch11-4 4.32s × (0.99,1.02) 4.38s × (0.98,1.04) +1.38% (p=0.008) BenchmarkFmtFprintfEmpty 83.5ns × (0.97,1.10) 87.3ns × (0.92,1.11) +4.55% (p=0.014) BenchmarkFmtFprintfEmpty-2 81.8ns × (0.98,1.04) 82.5ns × (0.97,1.08) ~ (p=0.364) BenchmarkFmtFprintfEmpty-4 80.9ns × (0.99,1.01) 82.6ns × (0.97,1.08) +2.12% (p=0.010) BenchmarkFmtFprintfString 320ns × (0.95,1.04) 322ns × (0.97,1.05) ~ (p=0.368) BenchmarkFmtFprintfString-2 303ns × (0.97,1.04) 304ns × (0.97,1.04) ~ (p=0.484) BenchmarkFmtFprintfString-4 305ns × (0.97,1.05) 306ns × (0.98,1.05) ~ (p=0.543) BenchmarkFmtFprintfInt 311ns × (0.98,1.03) 319ns × (0.97,1.03) +2.63% (p=0.000) BenchmarkFmtFprintfInt-2 297ns × (0.98,1.04) 301ns × (0.97,1.04) +1.19% (p=0.023) BenchmarkFmtFprintfInt-4 302ns × (0.98,1.02) 304ns × (0.97,1.03) ~ (p=0.126) BenchmarkFmtFprintfIntInt 554ns × (0.96,1.05) 554ns × (0.97,1.03) ~ (p=0.975) BenchmarkFmtFprintfIntInt-2 520ns × (0.98,1.03) 517ns × (0.98,1.02) ~ (p=0.153) BenchmarkFmtFprintfIntInt-4 524ns × (0.98,1.02) 525ns × (0.98,1.03) ~ (p=0.597) BenchmarkFmtFprintfPrefixedInt 433ns × (0.97,1.06) 434ns × (0.97,1.06) ~ (p=0.804) BenchmarkFmtFprintfPrefixedInt-2 413ns × (0.98,1.04) 413ns × (0.98,1.03) ~ (p=0.881) BenchmarkFmtFprintfPrefixedInt-4 420ns × (0.97,1.03) 421ns × (0.97,1.03) ~ (p=0.561) BenchmarkFmtFprintfFloat 620ns × (0.99,1.03) 636ns × (0.97,1.03) +2.57% (p=0.000) BenchmarkFmtFprintfFloat-2 601ns × (0.98,1.02) 617ns × (0.98,1.03) +2.58% (p=0.000) BenchmarkFmtFprintfFloat-4 613ns × (0.98,1.03) 626ns × (0.98,1.02) +2.15% (p=0.000) BenchmarkFmtManyArgs 2.19µs × (0.96,1.04) 2.23µs × (0.97,1.02) +1.65% (p=0.000) BenchmarkFmtManyArgs-2 2.08µs × (0.98,1.03) 2.10µs × (0.99,1.02) +0.79% (p=0.019) BenchmarkFmtManyArgs-4 2.10µs × (0.98,1.02) 2.13µs × (0.98,1.02) +1.72% (p=0.000) BenchmarkGobDecode 21.3ms × (0.97,1.05) 21.1ms × (0.97,1.04) -1.36% (p=0.025) BenchmarkGobDecode-2 20.0ms × (0.97,1.03) 19.2ms × (0.97,1.03) -4.00% (p=0.000) BenchmarkGobDecode-4 19.5ms × (0.99,1.02) 19.0ms × (0.99,1.01) -2.39% (p=0.000) BenchmarkGobEncode 18.3ms × (0.95,1.07) 18.1ms × (0.96,1.08) ~ (p=0.305) BenchmarkGobEncode-2 16.8ms × (0.97,1.02) 16.4ms × (0.98,1.02) -2.79% (p=0.000) BenchmarkGobEncode-4 15.4ms × (0.98,1.02) 15.4ms × (0.98,1.02) ~ (p=0.465) BenchmarkGzip 650ms × (0.98,1.03) 655ms × (0.97,1.04) ~ (p=0.075) BenchmarkGzip-2 652ms × (0.98,1.03) 655ms × (0.98,1.02) ~ (p=0.337) BenchmarkGzip-4 656ms × (0.98,1.04) 653ms × (0.98,1.03) ~ (p=0.291) BenchmarkGunzip 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.507) BenchmarkGunzip-2 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.313) BenchmarkGunzip-4 143ms × (1.00,1.01) 143ms × (1.00,1.01) ~ (p=0.312) BenchmarkHTTPClientServer 110µs × (0.98,1.03) 109µs × (0.99,1.02) -1.40% (p=0.000) BenchmarkHTTPClientServer-2 154µs × (0.90,1.08) 149µs × (0.90,1.08) -3.43% (p=0.007) BenchmarkHTTPClientServer-4 138µs × (0.97,1.04) 138µs × (0.96,1.04) ~ (p=0.670) BenchmarkJSONEncode 40.2ms × (0.98,1.02) 40.2ms × (0.98,1.05) ~ (p=0.828) BenchmarkJSONEncode-2 35.1ms × (0.99,1.02) 35.2ms × (0.98,1.03) ~ (p=0.392) BenchmarkJSONEncode-4 35.3ms × (0.98,1.03) 35.3ms × (0.98,1.02) ~ (p=0.813) BenchmarkJSONDecode 119ms × (0.97,1.02) 117ms × (0.98,1.02) -1.80% (p=0.000) BenchmarkJSONDecode-2 115ms × (0.99,1.02) 114ms × (0.98,1.02) -1.18% (p=0.000) BenchmarkJSONDecode-4 116ms × (0.98,1.02) 114ms × (0.98,1.02) -1.43% (p=0.000) BenchmarkMandelbrot200 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.985) BenchmarkMandelbrot200-2 6.03ms × (1.00,1.01) 6.02ms × (1.00,1.01) ~ (p=0.320) BenchmarkMandelbrot200-4 6.03ms × (1.00,1.01) 6.03ms × (1.00,1.01) ~ (p=0.799) BenchmarkGoParse 8.63ms × (0.89,1.10) 8.58ms × (0.93,1.09) ~ (p=0.667) BenchmarkGoParse-2 8.20ms × (0.97,1.04) 8.37ms × (0.97,1.04) +1.96% (p=0.001) BenchmarkGoParse-4 8.00ms × (0.98,1.02) 8.14ms × (0.99,1.02) +1.75% (p=0.000) BenchmarkRegexpMatchEasy0_32 162ns × (1.00,1.01) 164ns × (0.98,1.04) +1.35% (p=0.011) BenchmarkRegexpMatchEasy0_32-2 161ns × (1.00,1.01) 161ns × (1.00,1.00) ~ (p=0.185) BenchmarkRegexpMatchEasy0_32-4 161ns × (1.00,1.00) 161ns × (1.00,1.00) -0.19% (p=0.001) BenchmarkRegexpMatchEasy0_1K 540ns × (0.99,1.02) 566ns × (0.98,1.04) +4.98% (p=0.000) BenchmarkRegexpMatchEasy0_1K-2 540ns × (0.99,1.01) 557ns × (0.99,1.01) +3.21% (p=0.000) BenchmarkRegexpMatchEasy0_1K-4 541ns × (0.99,1.01) 559ns × (0.99,1.01) +3.26% (p=0.000) BenchmarkRegexpMatchEasy1_32 139ns × (0.98,1.04) 139ns × (0.99,1.03) ~ (p=0.979) BenchmarkRegexpMatchEasy1_32-2 139ns × (0.99,1.04) 139ns × (0.99,1.02) ~ (p=0.777) BenchmarkRegexpMatchEasy1_32-4 139ns × (0.98,1.04) 139ns × (0.99,1.04) ~ (p=0.771) BenchmarkRegexpMatchEasy1_1K 890ns × (0.99,1.03) 885ns × (1.00,1.01) -0.50% (p=0.004) BenchmarkRegexpMatchEasy1_1K-2 888ns × (0.99,1.01) 885ns × (0.99,1.01) -0.37% (p=0.004) BenchmarkRegexpMatchEasy1_1K-4 890ns × (0.99,1.02) 884ns × (1.00,1.00) -0.70% (p=0.000) BenchmarkRegexpMatchMedium_32 252ns × (0.99,1.01) 251ns × (0.99,1.01) ~ (p=0.081) BenchmarkRegexpMatchMedium_32-2 254ns × (0.99,1.04) 252ns × (0.99,1.01) -0.78% (p=0.027) BenchmarkRegexpMatchMedium_32-4 253ns × (0.99,1.04) 252ns × (0.99,1.01) -0.70% (p=0.022) BenchmarkRegexpMatchMedium_1K 72.9µs × (0.99,1.01) 72.7µs × (1.00,1.00) ~ (p=0.064) BenchmarkRegexpMatchMedium_1K-2 74.1µs × (0.98,1.05) 72.9µs × (1.00,1.01) -1.61% (p=0.001) BenchmarkRegexpMatchMedium_1K-4 73.6µs × (0.99,1.05) 72.8µs × (1.00,1.00) -1.13% (p=0.007) BenchmarkRegexpMatchHard_32 3.88µs × (0.99,1.03) 3.92µs × (0.98,1.05) ~ (p=0.143) BenchmarkRegexpMatchHard_32-2 3.89µs × (0.99,1.03) 3.93µs × (0.98,1.09) ~ (p=0.278) BenchmarkRegexpMatchHard_32-4 3.90µs × (0.99,1.05) 3.93µs × (0.98,1.05) ~ (p=0.252) BenchmarkRegexpMatchHard_1K 118µs × (0.99,1.01) 117µs × (0.99,1.02) -0.54% (p=0.003) BenchmarkRegexpMatchHard_1K-2 118µs × (0.99,1.01) 118µs × (0.99,1.03) ~ (p=0.581) BenchmarkRegexpMatchHard_1K-4 118µs × (0.99,1.02) 117µs × (0.99,1.01) -0.54% (p=0.002) BenchmarkRevcomp 991ms × (0.95,1.10) 989ms × (0.94,1.08) ~ (p=0.879) BenchmarkRevcomp-2 978ms × (0.95,1.11) 962ms × (0.96,1.08) ~ (p=0.257) BenchmarkRevcomp-4 979ms × (0.96,1.07) 974ms × (0.96,1.11) ~ (p=0.678) BenchmarkTemplate 141ms × (0.99,1.02) 145ms × (0.99,1.02) +2.75% (p=0.000) BenchmarkTemplate-2 135ms × (0.98,1.02) 138ms × (0.99,1.02) +2.34% (p=0.000) BenchmarkTemplate-4 136ms × (0.98,1.02) 140ms × (0.99,1.02) +2.71% (p=0.000) BenchmarkTimeParse 640ns × (0.99,1.01) 622ns × (0.99,1.01) -2.88% (p=0.000) BenchmarkTimeParse-2 640ns × (0.99,1.01) 622ns × (1.00,1.00) -2.81% (p=0.000) BenchmarkTimeParse-4 640ns × (1.00,1.01) 622ns × (0.99,1.01) -2.82% (p=0.000) BenchmarkTimeFormat 730ns × (0.98,1.02) 731ns × (0.98,1.03) ~ (p=0.767) BenchmarkTimeFormat-2 709ns × (0.99,1.02) 707ns × (0.99,1.02) ~ (p=0.347) BenchmarkTimeFormat-4 717ns × (0.98,1.01) 718ns × (0.98,1.02) ~ (p=0.793) Change-Id: Ie779c47e912bf80eb918bafa13638bd8dfd6c2d9 Reviewed-on: https://go-review.googlesource.com/9406 Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-27 22:45:57 -04:00
onebitwalktype1(getoutargx(Curfn.Type), &xoffset, bv)
for j := 0; int32(j) < bv.n; j += 32 {
off = duint32(sym, off, bv.b[j/32])
}
}
ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL)
}
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
if (a.Class == PAUTO) != (b.Class == PAUTO) {
return b.Class == PAUTO
}
if a.Class != PAUTO {
return a.Xoffset < b.Xoffset
}
if a.Used != b.Used {
return a.Used
}
ap := haspointers(a.Type)
bp := haspointers(b.Type)
if ap != bp {
return ap
}
ap = a.Name.Needzero
bp = b.Name.Needzero
if ap != bp {
return ap
}
if a.Type.Width != b.Type.Width {
return a.Type.Width > b.Type.Width
}
return a.Sym.Name < b.Sym.Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// stkdelta records the stack offset delta for a node
// during the compaction of the stack frame to remove
// unused stack slots.
var stkdelta = map[*Node]int64{}
// TODO(lvd) find out where the PAUTO/OLITERAL nodes come from.
func allocauto(ptxt *obj.Prog) {
Stksize = 0
stkptrsize = 0
if len(Curfn.Func.Dcl) == 0 {
return
}
// Mark the PAUTO's unused.
for _, ln := range Curfn.Func.Dcl {
if ln.Class == PAUTO {
ln.Used = false
}
}
markautoused(ptxt)
sort.Sort(byStackVar(Curfn.Func.Dcl))
// Unused autos are at the end, chop 'em off.
n := Curfn.Func.Dcl[0]
if n.Class == PAUTO && n.Op == ONAME && !n.Used {
// No locals used at all
Curfn.Func.Dcl = nil
fixautoused(ptxt)
return
}
for i := 1; i < len(Curfn.Func.Dcl); i++ {
n = Curfn.Func.Dcl[i]
if n.Class == PAUTO && n.Op == ONAME && !n.Used {
Curfn.Func.Dcl = Curfn.Func.Dcl[:i]
break
}
}
// Reassign stack offsets of the locals that are still there.
var w int64
for _, n := range Curfn.Func.Dcl {
if n.Class != PAUTO || n.Op != ONAME {
continue
}
dowidth(n.Type)
w = n.Type.Width
if w >= Thearch.MAXWIDTH || w < 0 {
Fatalf("bad width")
}
Stksize += w
Stksize = Rnd(Stksize, int64(n.Type.Align))
if haspointers(n.Type) {
stkptrsize = Stksize
}
if Thearch.Thechar == '0' || Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' {
Stksize = Rnd(Stksize, int64(Widthptr))
}
if Stksize >= 1<<31 {
setlineno(Curfn)
Yyerror("stack frame too large (>2GB)")
}
stkdelta[n] = -Stksize - n.Xoffset
}
Stksize = Rnd(Stksize, int64(Widthreg))
stkptrsize = Rnd(stkptrsize, int64(Widthreg))
fixautoused(ptxt)
// The debug information needs accurate offsets on the symbols.
for _, ln := range Curfn.Func.Dcl {
if ln.Class != PAUTO || ln.Op != ONAME {
continue
}
ln.Xoffset += stkdelta[ln]
delete(stkdelta, ln)
}
}
func Cgen_checknil(n *Node) {
if Disable_checknil != 0 {
return
}
// Ideally we wouldn't see any integer types here, but we do.
if n.Type == nil || (!Isptr[n.Type.Etype] && !Isint[n.Type.Etype] && n.Type.Etype != TUNSAFEPTR) {
Dump("checknil", n)
Fatalf("bad checknil")
}
if ((Thearch.Thechar == '0' || Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9') && n.Op != OREGISTER) || !n.Addable || n.Op == OLITERAL {
var reg Node
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
Regalloc(&reg, Types[Tptr], n)
Cgen(n, &reg)
Thearch.Gins(obj.ACHECKNIL, &reg, nil)
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
Regfree(&reg)
return
}
Thearch.Gins(obj.ACHECKNIL, n, nil)
}
func compile(fn *Node) {
if Newproc == nil {
Newproc = Sysfunc("newproc")
Deferproc = Sysfunc("deferproc")
Deferreturn = Sysfunc("deferreturn")
Panicindex = Sysfunc("panicindex")
panicslice = Sysfunc("panicslice")
panicdivide = Sysfunc("panicdivide")
throwreturn = Sysfunc("throwreturn")
growslice = Sysfunc("growslice")
writebarrierptr = Sysfunc("writebarrierptr")
typedmemmove = Sysfunc("typedmemmove")
panicdottype = Sysfunc("panicdottype")
}
lno := setlineno(fn)
Curfn = fn
dowidth(Curfn.Type)
var nod1 Node
var ptxt *obj.Prog
var pl *obj.Plist
var p *obj.Prog
var n *Node
var nam *Node
var gcargs *Sym
var gclocals *Sym
var ssafn *ssa.Func
if len(fn.Nbody.Slice()) == 0 {
if pure_go != 0 || strings.HasPrefix(fn.Func.Nname.Sym.Name, "init.") {
Yyerror("missing function body for %q", fn.Func.Nname.Sym.Name)
goto ret
}
if Debug['A'] != 0 {
goto ret
}
emitptrargsmap()
goto ret
}
saveerrors()
// set up domain for labels
clearlabels()
if Curfn.Type.Outnamed {
// add clearing of the output parameters
var save Iter
t := Structfirst(&save, Getoutarg(Curfn.Type))
for t != nil {
if t.Nname != nil {
n = Nod(OAS, t.Nname, nil)
typecheck(&n, Etop)
Curfn.Nbody.Set(append([]*Node{n}, Curfn.Nbody.Slice()...))
}
t = structnext(&save)
}
}
order(Curfn)
if nerrors != 0 {
goto ret
}
hasdefer = false
walk(Curfn)
if nerrors != 0 {
goto ret
}
if instrumenting {
instrument(Curfn)
}
if nerrors != 0 {
goto ret
}
[dev.ssa] cmd/compile/ssa: separate logging, work in progress, and fatal errors The SSA implementation logs for three purposes: * debug logging * fatal errors * unimplemented features Separating these three uses lets us attempt an SSA implementation for all functions, not just _ssa functions. This turns the entire standard library into a compilation test, and makes it easy to figure out things like "how much coverage does SSA have now" and "what should we do next to get more coverage?". Functions called _ssa are still special. They log profusely by default and the output of the SSA implementation is used. For all other functions, logging is off, and the implementation is built and discarded, due to lack of support for the runtime. While we're here, fix a few minor bugs and add some extra Unimplementeds to allow all.bash to pass. As of now, SSA handles 20.79% of the functions in the standard library (689 of 3314). The top missing features are: 10.03% 2597 SSA unimplemented: zero for type error not implemented 7.79% 2016 SSA unimplemented: addr: bad op DOTPTR 7.33% 1898 SSA unimplemented: unhandled expr EQ 6.10% 1579 SSA unimplemented: unhandled expr OROR 4.91% 1271 SSA unimplemented: unhandled expr NE 4.49% 1163 SSA unimplemented: unhandled expr LROT 4.00% 1036 SSA unimplemented: unhandled expr LEN 3.56% 923 SSA unimplemented: unhandled stmt CALLFUNC 2.37% 615 SSA unimplemented: zero for type []byte not implemented 1.90% 492 SSA unimplemented: unhandled stmt CALLMETH 1.74% 450 SSA unimplemented: unhandled expr CALLINTER 1.74% 450 SSA unimplemented: unhandled expr DOT 1.71% 444 SSA unimplemented: unhandled expr ANDAND 1.65% 426 SSA unimplemented: unhandled expr CLOSUREVAR 1.54% 400 SSA unimplemented: unhandled expr CALLMETH 1.51% 390 SSA unimplemented: unhandled stmt SWITCH 1.47% 380 SSA unimplemented: unhandled expr CONV 1.33% 345 SSA unimplemented: addr: bad op * 1.30% 336 SSA unimplemented: unhandled OLITERAL 6 Change-Id: I4ca07951e276714dc13c31de28640aead17a1be7 Reviewed-on: https://go-review.googlesource.com/11160 Reviewed-by: Keith Randall <khr@golang.org>
2015-06-12 11:01:13 -07:00
// Build an SSA backend function.
if shouldssa(Curfn) {
ssafn = buildssa(Curfn)
}
continpc = nil
breakpc = nil
pl = newplist()
pl.Name = Linksym(Curfn.Func.Nname.Sym)
setlineno(Curfn)
Nodconst(&nod1, Types[TINT32], 0)
nam = Curfn.Func.Nname
if isblank(nam) {
nam = nil
}
ptxt = Thearch.Gins(obj.ATEXT, nam, &nod1)
Afunclit(&ptxt.From, Curfn.Func.Nname)
ptxt.From3 = new(obj.Addr)
if fn.Func.Dupok {
ptxt.From3.Offset |= obj.DUPOK
}
if fn.Func.Wrapper {
ptxt.From3.Offset |= obj.WRAPPER
}
if fn.Func.Needctxt {
ptxt.From3.Offset |= obj.NEEDCTXT
}
if fn.Func.Pragma&Nosplit != 0 {
ptxt.From3.Offset |= obj.NOSPLIT
}
if fn.Func.Pragma&Systemstack != 0 {
ptxt.From.Sym.Cfunc = 1
}
// Clumsy but important.
// See test/recover.go for test cases and src/reflect/value.go
// for the actual functions being considered.
if myimportpath != "" && myimportpath == "reflect" {
if Curfn.Func.Nname.Sym.Name == "callReflect" || Curfn.Func.Nname.Sym.Name == "callMethod" {
ptxt.From3.Offset |= obj.WRAPPER
}
}
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
ginit()
gcargs = makefuncdatasym("gcargs·%d", obj.FUNCDATA_ArgsPointerMaps)
gclocals = makefuncdatasym("gclocals·%d", obj.FUNCDATA_LocalsPointerMaps)
for _, t := range Curfn.Func.Fieldtrack {
gtrack(tracksym(t))
}
for _, n := range fn.Func.Dcl {
if n.Op != ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class {
case PAUTO, PPARAM, PPARAMOUT:
Nodconst(&nod1, Types[TUINTPTR], n.Type.Width)
p = Thearch.Gins(obj.ATYPE, n, &nod1)
p.From.Gotype = Linksym(ngotype(n))
}
}
if ssafn != nil {
genssa(ssafn, ptxt, gcargs, gclocals)
if Curfn.Func.Endlineno != 0 {
lineno = Curfn.Func.Endlineno
}
ssafn.Free()
return
}
Genlist(Curfn.Func.Enter)
Genlist(Curfn.Nbody)
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
gclean()
checklabels()
if nerrors != 0 {
goto ret
}
if Curfn.Func.Endlineno != 0 {
lineno = Curfn.Func.Endlineno
}
if Curfn.Type.Outtuple != 0 {
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
Ginscall(throwreturn, 0)
}
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
ginit()
// TODO: Determine when the final cgen_ret can be omitted. Perhaps always?
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
cgen_ret(nil)
if hasdefer {
// deferreturn pretends to have one uintptr argument.
// Reserve space for it so stack scanner is happy.
if Maxarg < int64(Widthptr) {
Maxarg = int64(Widthptr)
}
}
cmd/internal/gc: move cgen, regalloc, et al to portable code This CL moves the bulk of the code that has been copy-and-pasted since the initial 386 port back into a shared place, cutting 5 copies to 1. The motivation here is not cleanup per se but instead to reduce the cost of introducing changes in shared concepts like regalloc or general expression evaluation. For example, a change after this one will implement x.(*T) without a call into the runtime. This CL makes that followup work 5x easier. The single copy still has more special cases for architecture details than I'd like, but having them called out explicitly like this at least opens the door to generalizing the conditions and smoothing out the distinctions in the future. This is a LARGE CL. I started by trying to pull in one function at a time in a sequence of CLs and it became clear that everything was so interrelated that it had to be moved as a whole. Apologies for the size. It is not clear how many more releases this code will matter for; eventually it will be replaced by Keith's SSA work. But as noted above, the deduplication was necessary to reduce the cost of working on the current code while we have it. Passes tests on amd64, 386, arm, and ppc64le. Can build arm64 binaries but not tested there. Being able to build binaries means it is probably very close. Change-Id: I735977f04c0614f80215fb12966dfe9bbd1f5861 Reviewed-on: https://go-review.googlesource.com/7853 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-03-18 17:26:36 -04:00
gclean()
if nerrors != 0 {
goto ret
}
Pc.As = obj.ARET // overwrite AEND
Pc.Lineno = lineno
fixjmp(ptxt)
if Debug['N'] == 0 || Debug['R'] != 0 || Debug['P'] != 0 {
regopt(ptxt)
nilopt(ptxt)
}
Thearch.Expandchecks(ptxt)
allocauto(ptxt)
setlineno(Curfn)
if Stksize+Maxarg > 1<<31 {
Yyerror("stack frame too large (>2GB)")
goto ret
}
// Emit garbage collection symbols.
liveness(Curfn, ptxt, gcargs, gclocals)
gcsymdup(gcargs)
gcsymdup(gclocals)
Thearch.Defframe(ptxt)
if Debug['f'] != 0 {
frame(0)
}
// Remove leftover instrumentation from the instruction stream.
removevardef(ptxt)
ret:
lineno = lno
}