go/src/pkg/runtime/malloc.c

439 lines
13 KiB
C
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "type.h"
#include "typekind.h"
#include "race.h"
#include "stack.h"
#include "../../cmd/ld/textflag.h"
// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
#pragma dataflag NOPTR
MHeap runtime·mheap;
#pragma dataflag NOPTR
MStats runtime·memstats;
Type* runtime·conservative;
void runtime·cmallocgc(uintptr size, Type *typ, uint32 flag, void **ret);
void runtime·gc_notype_ptr(Eface*);
void*
runtime·mallocgc(uintptr size, Type *typ, uint32 flag)
{
void *ret;
// Call into the Go version of mallocgc.
// TODO: maybe someday we can get rid of this. It is
// probably the only location where we run Go code on the M stack.
if((flag&FlagNoScan) == 0 && typ == nil)
typ = runtime·conservative;
runtime·cmallocgc(size, typ, flag, &ret);
return ret;
}
int32
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
uintptr n, i;
byte *p;
MSpan *s;
2014-06-26 11:54:39 -04:00
g->m->mcache->local_nlookup++;
if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) {
runtime: use uintptr where possible in malloc stats linux/arm OMAP4 pandaboard benchmark old ns/op new ns/op delta BenchmarkBinaryTree17 68723297000 37026214000 -46.12% BenchmarkFannkuch11 34962402000 35958435000 +2.85% BenchmarkGobDecode 137298600 124182150 -9.55% BenchmarkGobEncode 60717160 60006700 -1.17% BenchmarkGzip 5647156000 5550873000 -1.70% BenchmarkGunzip 1196350000 1198670000 +0.19% BenchmarkJSONEncode 863012800 782898000 -9.28% BenchmarkJSONDecode 3312989000 2781800000 -16.03% BenchmarkMandelbrot200 45727540 45703120 -0.05% BenchmarkParse 74781800 59990840 -19.78% BenchmarkRevcomp 140043650 139462300 -0.42% BenchmarkTemplate 6467682000 5832153000 -9.83% benchmark old MB/s new MB/s speedup BenchmarkGobDecode 5.59 6.18 1.11x BenchmarkGobEncode 12.64 12.79 1.01x BenchmarkGzip 3.44 3.50 1.02x BenchmarkGunzip 16.22 16.19 1.00x BenchmarkJSONEncode 2.25 2.48 1.10x BenchmarkJSONDecode 0.59 0.70 1.19x BenchmarkParse 0.77 0.97 1.26x BenchmarkRevcomp 18.15 18.23 1.00x BenchmarkTemplate 0.30 0.33 1.10x darwin/386 core duo benchmark old ns/op new ns/op delta BenchmarkBinaryTree17 10591616577 9678245733 -8.62% BenchmarkFannkuch11 10758473315 10749303846 -0.09% BenchmarkGobDecode 34379785 34121250 -0.75% BenchmarkGobEncode 23523721 23475750 -0.20% BenchmarkGzip 2486191492 2446539568 -1.59% BenchmarkGunzip 444179328 444250293 +0.02% BenchmarkJSONEncode 221138507 219757826 -0.62% BenchmarkJSONDecode 1056034428 1048975133 -0.67% BenchmarkMandelbrot200 19862516 19868346 +0.03% BenchmarkRevcomp 3742610872 3724821662 -0.48% BenchmarkTemplate 960283112 944791517 -1.61% benchmark old MB/s new MB/s speedup BenchmarkGobDecode 22.33 22.49 1.01x BenchmarkGobEncode 32.63 32.69 1.00x BenchmarkGzip 7.80 7.93 1.02x BenchmarkGunzip 43.69 43.68 1.00x BenchmarkJSONEncode 8.77 8.83 1.01x BenchmarkJSONDecode 1.84 1.85 1.01x BenchmarkRevcomp 67.91 68.24 1.00x BenchmarkTemplate 2.02 2.05 1.01x R=rsc, 0xe2.0x9a.0x9b, mirtchovski CC=golang-dev, minux.ma https://golang.org/cl/6297047
2012-06-08 17:35:14 -04:00
// purge cache stats to prevent overflow
runtime·lock(&runtime·mheap.lock);
2014-06-26 11:54:39 -04:00
runtime·purgecachedstats(g->m->mcache);
runtime·unlock(&runtime·mheap.lock);
runtime: use uintptr where possible in malloc stats linux/arm OMAP4 pandaboard benchmark old ns/op new ns/op delta BenchmarkBinaryTree17 68723297000 37026214000 -46.12% BenchmarkFannkuch11 34962402000 35958435000 +2.85% BenchmarkGobDecode 137298600 124182150 -9.55% BenchmarkGobEncode 60717160 60006700 -1.17% BenchmarkGzip 5647156000 5550873000 -1.70% BenchmarkGunzip 1196350000 1198670000 +0.19% BenchmarkJSONEncode 863012800 782898000 -9.28% BenchmarkJSONDecode 3312989000 2781800000 -16.03% BenchmarkMandelbrot200 45727540 45703120 -0.05% BenchmarkParse 74781800 59990840 -19.78% BenchmarkRevcomp 140043650 139462300 -0.42% BenchmarkTemplate 6467682000 5832153000 -9.83% benchmark old MB/s new MB/s speedup BenchmarkGobDecode 5.59 6.18 1.11x BenchmarkGobEncode 12.64 12.79 1.01x BenchmarkGzip 3.44 3.50 1.02x BenchmarkGunzip 16.22 16.19 1.00x BenchmarkJSONEncode 2.25 2.48 1.10x BenchmarkJSONDecode 0.59 0.70 1.19x BenchmarkParse 0.77 0.97 1.26x BenchmarkRevcomp 18.15 18.23 1.00x BenchmarkTemplate 0.30 0.33 1.10x darwin/386 core duo benchmark old ns/op new ns/op delta BenchmarkBinaryTree17 10591616577 9678245733 -8.62% BenchmarkFannkuch11 10758473315 10749303846 -0.09% BenchmarkGobDecode 34379785 34121250 -0.75% BenchmarkGobEncode 23523721 23475750 -0.20% BenchmarkGzip 2486191492 2446539568 -1.59% BenchmarkGunzip 444179328 444250293 +0.02% BenchmarkJSONEncode 221138507 219757826 -0.62% BenchmarkJSONDecode 1056034428 1048975133 -0.67% BenchmarkMandelbrot200 19862516 19868346 +0.03% BenchmarkRevcomp 3742610872 3724821662 -0.48% BenchmarkTemplate 960283112 944791517 -1.61% benchmark old MB/s new MB/s speedup BenchmarkGobDecode 22.33 22.49 1.01x BenchmarkGobEncode 32.63 32.69 1.00x BenchmarkGzip 7.80 7.93 1.02x BenchmarkGunzip 43.69 43.68 1.00x BenchmarkJSONEncode 8.77 8.83 1.01x BenchmarkJSONDecode 1.84 1.85 1.01x BenchmarkRevcomp 67.91 68.24 1.00x BenchmarkTemplate 2.02 2.05 1.01x R=rsc, 0xe2.0x9a.0x9b, mirtchovski CC=golang-dev, minux.ma https://golang.org/cl/6297047
2012-06-08 17:35:14 -04:00
}
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
if(sp)
*sp = s;
if(s == nil) {
if(base)
*base = nil;
if(size)
*size = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
return 1;
}
n = s->elemsize;
if(base) {
i = ((byte*)v - p)/n;
*base = p + i*n;
}
if(size)
*size = n;
return 1;
}
void
runtime·purgecachedstats(MCache *c)
{
MHeap *h;
int32 i;
// Protected by either heap or GC lock.
h = &runtime·mheap;
mstats.heap_alloc += c->local_cachealloc;
c->local_cachealloc = 0;
mstats.nlookup += c->local_nlookup;
c->local_nlookup = 0;
h->largefree += c->local_largefree;
c->local_largefree = 0;
h->nlargefree += c->local_nlargefree;
c->local_nlargefree = 0;
for(i=0; i<nelem(c->local_nsmallfree); i++) {
h->nsmallfree[i] += c->local_nsmallfree[i];
c->local_nsmallfree[i] = 0;
}
}
2014-01-30 13:28:19 +04:00
// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.
uintptr runtime·sizeof_C_MStats = sizeof(MStats) - (NumSizeClasses - 61) * sizeof(mstats.by_size[0]);
#define MaxArena32 (2U<<30)
// For use by Go. It can't be a constant in Go, unfortunately,
// because it depends on the OS.
uintptr runtime·maxMem = MaxMem;
void
runtime·mallocinit(void)
{
byte *p, *p1;
uintptr arena_size, bitmap_size, spans_size, p_size;
extern byte runtime·end[];
uintptr limit;
uint64 i;
bool reserved;
Eface notype_eface;
p = nil;
p_size = 0;
arena_size = 0;
bitmap_size = 0;
spans_size = 0;
reserved = false;
// for 64-bit build
USED(p);
USED(p_size);
USED(arena_size);
USED(bitmap_size);
USED(spans_size);
runtime·InitSizes();
if(runtime·class_to_size[TinySizeClass] != TinySize)
runtime·throw("bad TinySizeClass");
// limit = runtime·memlimit();
// See https://code.google.com/p/go/issues/detail?id=5049
// TODO(rsc): Fix after 1.1.
limit = 0;
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found. The arena begins with a bitmap large
// enough to hold 4 bits per allocated word.
if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 128 GB (MaxMem) should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
// Allocating a 128 GB region takes away 37 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
// UTF-8 sequences, and they are otherwise as far away from
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
// on OS X during thread allocations. 0x00c0 causes conflicts with
// AddressSanitizer which reserves all memory up to 0x0100.
// These choices are both for debuggability and to reduce the
// odds of the conservative garbage collector not collecting memory
// because some non-pointer block of memory had a bit pattern
// that matched a memory address.
//
// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
// but it hardly matters: e0 00 is not valid UTF-8 either.
//
// If this fails we fall back to the 32 bit memory mechanism
arena_size = MaxMem;
bitmap_size = arena_size / (sizeof(void*)*8/4);
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
spans_size = ROUND(spans_size, PageSize);
for(i = 0; i <= 0x7f; i++) {
p = (void*)(i<<40 | 0x00c0ULL<<32);
p_size = bitmap_size + spans_size + arena_size + PageSize;
p = runtime·SysReserve(p, p_size, &reserved);
if(p != nil)
break;
}
}
if (p == nil) {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle another 2GB of mappings (256 MB),
// along with a reservation for another 512 MB of memory.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere and hope it's in the 2GB
// following the bitmap (presumably the executable begins
// near the bottom of memory, so we'll have to use up
// most of memory before the kernel resorts to giving out
// memory before the beginning of the text segment).
//
// Alternatively we could reserve 512 MB bitmap, enough
// for 4GB of mappings, and then accept any memory the
// kernel threw at us, but normally that's a waste of 512 MB
// of address space, which is probably too much in a 32-bit world.
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
arena_size = 512<<20;
spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
arena_size = bitmap_size * 8;
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
}
spans_size = ROUND(spans_size, PageSize);
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. Except QEMU, which
// is buggy, as usual: it won't adjust the pointer upward.
// So adjust it upward a little bit ourselves: 1/4 MB to get
// away from the running binary image and then round up
// to a MB boundary.
p = (byte*)ROUND((uintptr)runtime·end + (1<<18), 1<<20);
p_size = bitmap_size + spans_size + arena_size + PageSize;
p = runtime·SysReserve(p, p_size, &reserved);
if(p == nil)
runtime·throw("runtime: cannot reserve arena virtual address space");
}
// PageSize can be larger than OS definition of page size,
// so SysReserve can give us a PageSize-unaligned pointer.
// To overcome this we ask for PageSize more and round up the pointer.
p1 = (byte*)ROUND((uintptr)p, PageSize);
runtime·mheap.spans = (MSpan**)p1;
runtime·mheap.bitmap = p1 + spans_size;
runtime·mheap.arena_start = p1 + spans_size + bitmap_size;
runtime·mheap.arena_used = runtime·mheap.arena_start;
runtime·mheap.arena_end = p + p_size;
runtime·mheap.arena_reserved = reserved;
if(((uintptr)runtime·mheap.arena_start & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in mallocinit");
// Initialize the rest of the allocator.
runtime·MHeap_Init(&runtime·mheap);
2014-06-26 11:54:39 -04:00
g->m->mcache = runtime·allocmcache();
runtime·gc_notype_ptr(&notype_eface);
runtime·conservative = notype_eface.type;
}
void*
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
{
byte *p, *p_end;
uintptr p_size;
bool reserved;
if(n > h->arena_end - h->arena_used) {
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
// Reserve some more space.
byte *new_end;
p_size = ROUND(n + PageSize, 256<<20);
new_end = h->arena_end + p_size;
if(new_end <= h->arena_start + MaxArena32) {
// TODO: It would be bad if part of the arena
// is reserved and part is not.
p = runtime·SysReserve(h->arena_end, p_size, &reserved);
if(p == h->arena_end) {
h->arena_end = new_end;
h->arena_reserved = reserved;
}
else if(p+p_size <= h->arena_start + MaxArena32) {
// Keep everything page-aligned.
// Our pages are bigger than hardware pages.
h->arena_end = p+p_size;
h->arena_used = p + (-(uintptr)p&(PageSize-1));
h->arena_reserved = reserved;
} else {
uint64 stat;
stat = 0;
runtime·SysFree(p, p_size, &stat);
}
}
}
if(n <= h->arena_end - h->arena_used) {
// Keep taking from our reservation.
p = h->arena_used;
runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
h->arena_used += n;
runtime·MHeap_MapBits(h);
runtime·MHeap_MapSpans(h);
if(raceenabled)
runtime·racemapshadow(p, n);
if(((uintptr)p & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in MHeap_SysAlloc");
return p;
}
// If using 64-bit, our reservation is all we have.
if(h->arena_end - h->arena_start >= MaxArena32)
return nil;
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p_size = ROUND(n, PageSize) + PageSize;
p = runtime·sysAlloc(p_size, &mstats.heap_sys);
if(p == nil)
return nil;
if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) {
runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
p, h->arena_start, h->arena_start+MaxArena32);
runtime·SysFree(p, p_size, &mstats.heap_sys);
return nil;
}
p_end = p + p_size;
p += -(uintptr)p & (PageSize-1);
if(p+n > h->arena_used) {
h->arena_used = p+n;
if(p_end > h->arena_end)
h->arena_end = p_end;
runtime·MHeap_MapBits(h);
runtime·MHeap_MapSpans(h);
if(raceenabled)
runtime·racemapshadow(p, n);
}
if(((uintptr)p & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in MHeap_SysAlloc");
return p;
}
// Runtime stubs.
static void*
cnew(Type *typ, intgo n)
{
if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size))
runtime·panicstring("runtime: allocation size out of range");
return runtime·mallocgc(typ->size*n, typ, typ->kind&KindNoPointers ? FlagNoScan : 0);
}
// same as runtime·new, but callable from C
void*
runtime·cnew(Type *typ)
{
return cnew(typ, 1);
}
void*
runtime·cnewarray(Type *typ, intgo n)
{
return cnew(typ, n);
}
void
runtime·setFinalizer_m(void)
{
FuncVal *fn;
void *arg;
uintptr nret;
Type *fint;
PtrType *ot;
fn = g->m->ptrarg[0];
arg = g->m->ptrarg[1];
nret = g->m->scalararg[0];
fint = g->m->ptrarg[2];
ot = g->m->ptrarg[3];
g->m->ptrarg[0] = nil;
g->m->ptrarg[1] = nil;
g->m->ptrarg[2] = nil;
g->m->ptrarg[3] = nil;
g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot);
}
void
runtime·removeFinalizer_m(void)
{
void *p;
p = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
runtime·removefinalizer(p);
}
// mcallable cache refill
void
runtime·mcacheRefill_m(void)
{
runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]);
}
void
runtime·largeAlloc_m(void)
{
uintptr npages, size;
MSpan *s;
void *v;
int32 flag;
//runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]);
// Allocate directly from heap.
size = g->m->scalararg[0];
flag = (int32)g->m->scalararg[1];
if(size + PageSize < size)
runtime·throw("out of memory");
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
if(s == nil)
runtime·throw("out of memory");
s->limit = (byte*)(s->start<<PageShift) + size;
v = (void*)(s->start << PageShift);
// setup for mark sweep
runtime·markspan(v, 0, 0, true);
g->m->ptrarg[0] = s;
}