go/src/cmd/link/internal/ppc64/asm.go

1031 lines
30 KiB
Go
Raw Normal View History

// Inferno utils/5l/asm.c
// https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package ppc64
import (
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/ld"
"encoding/binary"
"fmt"
"log"
)
func genplt(ctxt *ld.Link) {
// The ppc64 ABI PLT has similar concepts to other
// architectures, but is laid out quite differently. When we
// see an R_PPC64_REL24 relocation to a dynamic symbol
// (indicating that the call needs to go through the PLT), we
// generate up to three stubs and reserve a PLT slot.
//
// 1) The call site will be bl x; nop (where the relocation
// applies to the bl). We rewrite this to bl x_stub; ld
// r2,24(r1). The ld is necessary because x_stub will save
// r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
//
// 2) We reserve space for a pointer in the .plt section (once
// per referenced dynamic function). .plt is a data
// section filled solely by the dynamic linker (more like
// .plt.got on other architectures). Initially, the
// dynamic linker will fill each slot with a pointer to the
// corresponding x@plt entry point.
//
// 3) We generate the "call stub" x_stub (once per dynamic
// function/object file pair). This saves the TOC in the
// TOC save slot, reads the function pointer from x's .plt
// slot and calls it like any other global entry point
// (including setting r12 to the function address).
//
// 4) We generate the "symbol resolver stub" x@plt (once per
// dynamic function). This is solely a branch to the glink
// resolver stub.
//
// 5) We generate the glink resolver stub (only once). This
// computes which symbol resolver stub we came through and
// invokes the dynamic resolver via a pointer provided by
// the dynamic linker. This will patch up the .plt slot to
// point directly at the function so future calls go
// straight from the call stub to the real function, and
// then call the function.
// NOTE: It's possible we could make ppc64 closer to other
// architectures: ppc64's .plt is like .plt.got on other
// platforms and ppc64's .glink is like .plt on other
// platforms.
// Find all R_PPC64_REL24 relocations that reference dynamic
// imports. Reserve PLT entries for these symbols and
// generate call stubs. The call stubs need to live in .text,
// which is why we need to do this pass this early.
//
// This assumes "case 1" from the ABI, where the caller needs
// us to save and restore the TOC pointer.
var stubs []*ld.Symbol
for _, s := range ctxt.Textp {
for i := range s.R {
r := &s.R[i]
if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT {
continue
}
// Reserve PLT entry and generate symbol
// resolver
addpltsym(ctxt, r.Sym)
// Generate call stub
n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
stub := ctxt.Syms.Lookup(n, 0)
if s.Attr.Reachable() {
stub.Attr |= ld.AttrReachable
}
if stub.Size == 0 {
// Need outer to resolve .TOC.
stub.Outer = s
stubs = append(stubs, stub)
gencallstub(ctxt, 1, stub, r.Sym)
}
// Update the relocation to use the call stub
r.Sym = stub
// Restore TOC after bl. The compiler put a
// nop here for us to overwrite.
const o1 = 0xe8410018 // ld r2,24(r1)
ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
}
}
// Put call stubs at the beginning (instead of the end).
// So when resolving the relocations to calls to the stubs,
// the addresses are known and trampolines can be inserted
// when necessary.
ctxt.Textp = append(stubs, ctxt.Textp...)
}
func genaddmoduledata(ctxt *ld.Link) {
addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0)
if addmoduledata.Type == ld.STEXT && ld.Buildmode != ld.BuildmodePlugin {
return
}
addmoduledata.Attr |= ld.AttrReachable
initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0)
initfunc.Type = ld.STEXT
initfunc.Attr |= ld.AttrLocal
initfunc.Attr |= ld.AttrReachable
o := func(op uint32) {
initfunc.AddUint32(ctxt.Arch, op)
}
// addis r2, r12, .TOC.-func@ha
rel := initfunc.AddRel()
rel.Off = int32(initfunc.Size)
rel.Siz = 8
rel.Sym = ctxt.Syms.Lookup(".TOC.", 0)
rel.Sym.Attr |= ld.AttrReachable
rel.Type = objabi.R_ADDRPOWER_PCREL
o(0x3c4c0000)
// addi r2, r2, .TOC.-func@l
o(0x38420000)
// mflr r31
o(0x7c0802a6)
// stdu r31, -32(r1)
o(0xf801ffe1)
// addis r3, r2, local.moduledata@got@ha
rel = initfunc.AddRel()
rel.Off = int32(initfunc.Size)
rel.Siz = 8
if !ctxt.CanUsePlugins() {
rel.Sym = ctxt.Syms.Lookup("local.moduledata", 0)
} else {
rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0)
}
rel.Sym.Attr |= ld.AttrReachable
rel.Sym.Attr |= ld.AttrLocal
rel.Type = objabi.R_ADDRPOWER_GOT
o(0x3c620000)
// ld r3, local.moduledata@got@l(r3)
o(0xe8630000)
// bl runtime.addmoduledata
rel = initfunc.AddRel()
rel.Off = int32(initfunc.Size)
rel.Siz = 4
rel.Sym = addmoduledata
rel.Type = objabi.R_CALLPOWER
o(0x48000001)
// nop
o(0x60000000)
// ld r31, 0(r1)
o(0xe8010000)
// mtlr r31
o(0x7c0803a6)
// addi r1,r1,32
o(0x38210020)
// blr
o(0x4e800020)
if ld.Buildmode == ld.BuildmodePlugin {
ctxt.Textp = append(ctxt.Textp, addmoduledata)
}
initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0)
ctxt.Textp = append(ctxt.Textp, initfunc)
initarray_entry.Attr |= ld.AttrReachable
initarray_entry.Attr |= ld.AttrLocal
initarray_entry.Type = ld.SINITARR
initarray_entry.AddAddr(ctxt.Arch, initfunc)
}
func gentext(ctxt *ld.Link) {
if ctxt.DynlinkingGo() {
genaddmoduledata(ctxt)
}
if ld.Linkmode == ld.LinkInternal {
genplt(ctxt)
}
}
// Construct a call stub in stub that calls symbol targ via its PLT
// entry.
func gencallstub(ctxt *ld.Link, abicase int, stub *ld.Symbol, targ *ld.Symbol) {
if abicase != 1 {
// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
// relocations, we'll need to implement cases 2 and 3.
log.Fatalf("gencallstub only implements case 1 calls")
}
plt := ctxt.Syms.Lookup(".plt", 0)
stub.Type = ld.STEXT
// Save TOC pointer in TOC save slot
stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
// Load the function pointer from the PLT.
r := stub.AddRel()
r.Off = int32(stub.Size)
r.Sym = plt
r.Add = int64(targ.Plt)
r.Siz = 2
if ctxt.Arch.ByteOrder == binary.BigEndian {
r.Off += int32(r.Siz)
}
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_HA
stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
r = stub.AddRel()
r.Off = int32(stub.Size)
r.Sym = plt
r.Add = int64(targ.Plt)
r.Siz = 2
if ctxt.Arch.ByteOrder == binary.BigEndian {
r.Off += int32(r.Siz)
}
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_LO
stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
// Jump to the loaded pointer
stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
}
func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool {
targ := r.Sym
switch r.Type {
default:
if r.Type >= 256 {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, ld.RelocName(ctxt.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case 256 + ld.R_PPC64_REL24:
r.Type = objabi.R_CALLPOWER
// This is a local call, so the caller isn't setting
// up r12 and r2 is the same for the caller and
// callee. Hence, we need to go to the local entry
// point. (If we don't do this, the callee will try
// to use r12 to compute r2.)
r.Add += int64(r.Sym.Localentry) * 4
if targ.Type == ld.SDYNIMPORT {
// Should have been handled in elfsetupplt
ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
}
return true
case 256 + ld.R_PPC_REL32:
r.Type = objabi.R_PCREL
r.Add += 4
if targ.Type == ld.SDYNIMPORT {
ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
}
return true
case 256 + ld.R_PPC64_ADDR64:
r.Type = objabi.R_ADDR
if targ.Type == ld.SDYNIMPORT {
// These happen in .toc sections
ld.Adddynsym(ctxt, targ)
rela := ctxt.Syms.Lookup(".rela", 0)
rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off))
rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64))
rela.AddUint64(ctxt.Arch, uint64(r.Add))
r.Type = 256 // ignore during relocsym
}
return true
case 256 + ld.R_PPC64_TOC16:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW
return true
case 256 + ld.R_PPC64_TOC16_LO:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_LO
return true
case 256 + ld.R_PPC64_TOC16_HA:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
return true
case 256 + ld.R_PPC64_TOC16_HI:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
return true
case 256 + ld.R_PPC64_TOC16_DS:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW
return true
case 256 + ld.R_PPC64_TOC16_LO_DS:
r.Type = objabi.R_POWER_TOC
r.Variant = ld.RV_POWER_DS
return true
case 256 + ld.R_PPC64_REL16_LO:
r.Type = objabi.R_PCREL
r.Variant = ld.RV_POWER_LO
r.Add += 2 // Compensate for relocation size of 2
return true
case 256 + ld.R_PPC64_REL16_HI:
r.Type = objabi.R_PCREL
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
r.Add += 2
return true
case 256 + ld.R_PPC64_REL16_HA:
r.Type = objabi.R_PCREL
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
r.Add += 2
return true
}
// Handle references to ELF symbols from our own object files.
if targ.Type != ld.SDYNIMPORT {
return true
}
// TODO(austin): Translate our relocations to ELF
return false
}
func elfreloc1(ctxt *ld.Link, r *ld.Reloc, sectoff int64) bool {
ctxt.Out.Write64(uint64(sectoff))
elfsym := r.Xsym.ElfsymForReloc()
switch r.Type {
default:
return false
case objabi.R_ADDR:
switch r.Siz {
case 4:
ctxt.Out.Write64(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32)
case 8:
ctxt.Out.Write64(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32)
default:
return false
}
case objabi.R_POWER_TLS:
ctxt.Out.Write64(ld.R_PPC64_TLS | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_LE:
ctxt.Out.Write64(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_IE:
ctxt.Out.Write64(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER:
ctxt.Out.Write64(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_DS:
ctxt.Out.Write64(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_GOT:
ctxt.Out.Write64(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_PCREL:
ctxt.Out.Write64(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32)
cmd/compile, cmd/link, runtime: on ppc64x, maintain the TOC pointer in R2 when compiling PIC The PowerPC ISA does not have a PC-relative load instruction, which poses obvious challenges when generating position-independent code. The way the ELFv2 ABI addresses this is to specify that r2 points to a per "module" (shared library or executable) TOC pointer. Maintaining this pointer requires cooperation between codegen and the system linker: * Non-leaf functions leave space on the stack at r1+24 to save the TOC pointer. * A call to a function that *might* have to go via a PLT stub must be followed by a nop instruction that the system linker can replace with "ld r1, 24(r1)" to restore the TOC pointer (only when dynamically linking Go code). * When calling a function via a function pointer, the address of the function must be in r12, and the first couple of instructions (the "global entry point") of the called function use this to derive the address of the TOC for the module it is in. * When calling a function that is implemented in the same module, the system linker adjusts the call to skip over the instructions mentioned above (the "local entry point"), assuming that r2 is already correctly set. So this changeset adds the global entry point instructions, sets the metadata so the system linker knows where the local entry point is, inserts code to save the TOC pointer at 24(r1), adds a nop after any call not known to be local and copes with the odd non-local code transfer in the runtime (e.g. the stuff around jmpdefer). It does not actually compile PIC yet. Change-Id: I7522e22bdfd2f891745a900c60254fe9e372c854 Reviewed-on: https://go-review.googlesource.com/15967 Reviewed-by: Russ Cox <rsc@golang.org>
2015-10-16 15:42:09 +13:00
r.Xadd += 4
case objabi.R_ADDRPOWER_TOCREL:
ctxt.Out.Write64(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_TOCREL_DS:
ctxt.Out.Write64(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
ctxt.Out.Write64(uint64(r.Xadd))
ctxt.Out.Write64(uint64(sectoff + 4))
ctxt.Out.Write64(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32)
case objabi.R_CALLPOWER:
if r.Siz != 4 {
return false
}
ctxt.Out.Write64(ld.R_PPC64_REL24 | uint64(elfsym)<<32)
}
ctxt.Out.Write64(uint64(r.Xadd))
return true
}
func elfsetupplt(ctxt *ld.Link) {
plt := ctxt.Syms.Lookup(".plt", 0)
if plt.Size == 0 {
// The dynamic linker stores the address of the
// dynamic resolver and the DSO identifier in the two
// doublewords at the beginning of the .plt section
// before the PLT array. Reserve space for these.
plt.Size = 16
}
}
func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *ld.Symbol, r *ld.Reloc, sectoff int64) bool {
return false
}
// Return the value of .TOC. for symbol s
func symtoc(ctxt *ld.Link, s *ld.Symbol) int64 {
var toc *ld.Symbol
if s.Outer != nil {
toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version))
} else {
toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
}
if toc == nil {
ld.Errorf(s, "TOC-relative relocation in object without .TOC.")
return 0
}
return toc.Value
}
func archrelocaddr(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) bool {
var o1, o2 uint32
if ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = uint32(*val >> 32)
o2 = uint32(*val)
} else {
o1 = uint32(*val)
o2 = uint32(*val >> 32)
}
// We are spreading a 31-bit address across two instructions, putting the
// high (adjusted) part in the low 16 bits of the first instruction and the
// low part in the low 16 bits of the second instruction, or, in the DS case,
// bits 15-2 (inclusive) of the address into bits 15-2 of the second
// instruction (it is an error in this case if the low 2 bits of the address
// are non-zero).
t := ld.Symaddr(r.Sym) + r.Add
if t < 0 || t >= 1<<31 {
ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym))
}
if t&0x8000 != 0 {
t += 0x10000
}
switch r.Type {
case objabi.R_ADDRPOWER:
o1 |= (uint32(t) >> 16) & 0xffff
o2 |= uint32(t) & 0xffff
case objabi.R_ADDRPOWER_DS:
o1 |= (uint32(t) >> 16) & 0xffff
if t&3 != 0 {
ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
}
o2 |= uint32(t) & 0xfffc
default:
return false
}
if ctxt.Arch.ByteOrder == binary.BigEndian {
*val = int64(o1)<<32 | int64(o2)
} else {
*val = int64(o2)<<32 | int64(o1)
}
return true
}
// resolve direct jump relocation r in s, and add trampoline if necessary
func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) {
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
// For internal linking, trampolines are always created for long calls.
// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
// r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
if ld.Linkmode == ld.LinkExternal && (ctxt.DynlinkingGo() || ld.Buildmode == ld.BuildmodeCArchive || ld.Buildmode == ld.BuildmodeCShared || ld.Buildmode == ld.BuildmodePIE) {
// No trampolines needed since r2 contains the TOC
return
}
t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
switch r.Type {
case objabi.R_CALLPOWER:
// If branch offset is too far then create a trampoline.
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
if (ld.Linkmode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ld.Linkmode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) {
var tramp *ld.Symbol
for i := 0; ; i++ {
// Using r.Add as part of the name is significant in functions like duffzero where the call
// target is at some offset within the function. Calls to duff+8 and duff+256 must appear as
// distinct trampolines.
name := r.Sym.Name
if r.Add == 0 {
name = name + fmt.Sprintf("-tramp%d", i)
} else {
name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i)
}
// Look up the trampoline in case it already exists
tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version))
if tramp.Value == 0 {
break
}
t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off))
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
// With internal linking, the trampoline can be used if it is not too far.
// With external linking, the trampoline must be in this section for it to be reused.
if (ld.Linkmode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ld.Linkmode == ld.LinkExternal && s.Sect == tramp.Sect) {
break
}
}
if tramp.Type == 0 {
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
if ctxt.DynlinkingGo() || ld.Buildmode == ld.BuildmodeCArchive || ld.Buildmode == ld.BuildmodeCShared || ld.Buildmode == ld.BuildmodePIE {
// Should have returned for above cases
ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n")
} else {
ctxt.AddTramp(tramp)
gentramp(ctxt.Arch, tramp, r.Sym, int64(r.Add))
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
}
}
r.Sym = tramp
r.Add = 0 // This was folded into the trampoline target address
r.Done = false
}
default:
ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, ld.RelocName(ctxt.Arch, r.Type))
}
}
func gentramp(arch *sys.Arch, tramp, target *ld.Symbol, offset int64) {
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
// Used for default build mode for an executable
// Address of the call target is generated using
// relocation and doesn't depend on r2 (TOC).
tramp.Size = 16 // 4 instructions
tramp.P = make([]byte, tramp.Size)
t := ld.Symaddr(target) + offset
o1 := uint32(0x3fe00000) // lis r31,targetaddr hi
o2 := uint32(0x3bff0000) // addi r31,targetaddr lo
// With external linking, the target address must be
// relocated using LO and HA
if ld.Linkmode == ld.LinkExternal {
tr := tramp.AddRel()
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
tr.Off = 0
tr.Type = objabi.R_ADDRPOWER
tr.Siz = 8 // generates 2 relocations: HA + LO
tr.Sym = target
tr.Add = offset
} else {
// adjustment needed if lo has sign bit set
// when using addi to compute address
val := uint32((t & 0xffff0000) >> 16)
if t&0x8000 != 0 {
val += 1
}
o1 |= val // hi part of addr
o2 |= uint32(t & 0xffff) // lo part of addr
}
o3 := uint32(0x7fe903a6) // mtctr r31
o4 := uint32(0x4e800420) // bctr
arch.ByteOrder.PutUint32(tramp.P, o1)
arch.ByteOrder.PutUint32(tramp.P[4:], o2)
arch.ByteOrder.PutUint32(tramp.P[8:], o3)
arch.ByteOrder.PutUint32(tramp.P[12:], o4)
cmd/link: implement trampolines for ppc64le with ext linking When using golang on ppc64le there have been issues when building executables that generate extremely large text sections. This is due to the call instruction and the limitation on the offset field, which is smaller than most platforms. If the size of the call target offset is too big for the offset field in the call instruction, then link errors can occur. The original solution to this problem in golang was to split the text section when it became too large, allowing the external (GNU) linker to insert the necessary stub to handle the long call. That worked fine until the another size limit for the program size was hit, where a plt_branch was created instead of a long branch. In that case the plt_branch code sequence expects r2 to contain the address of the TOC, but when golang creates dynamic executables by default (-buildmode=exe) r2 does not always contain the address of the TOC and as a result when building programs that reach this extremely large size, a runtime SEGV or SIGILL can occur due to branching to a bad address. When using internal linking, trampolines are generated to handle the long calls but the text sections are not split. With this change, text sections will still be split approrpriately with external linking but if the buildmode being used does not maintain r2 as the TOC addresses, then trampolines will be created for those calls. Fixes #20497 Change-Id: If5400b0f86c2c08e106b332be6db0b259b07d93d Reviewed-on: https://go-review.googlesource.com/45130 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-06-08 08:26:19 -04:00
}
func archreloc(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) bool {
if ld.Linkmode == ld.LinkExternal {
switch r.Type {
default:
return false
case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
r.Done = false
// check Outer is nil, Type is TLSBSS?
r.Xadd = r.Add
r.Xsym = r.Sym
return true
case objabi.R_ADDRPOWER,
objabi.R_ADDRPOWER_DS,
objabi.R_ADDRPOWER_TOCREL,
objabi.R_ADDRPOWER_TOCREL_DS,
objabi.R_ADDRPOWER_GOT,
objabi.R_ADDRPOWER_PCREL:
r.Done = false
// set up addend for eventual relocation via outer symbol.
rs := r.Sym
r.Xadd = r.Add
for rs.Outer != nil {
r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
rs = rs.Outer
}
if rs.Type != ld.SHOSTOBJ && rs.Type != ld.SDYNIMPORT && rs.Sect == nil {
ld.Errorf(s, "missing section for %s", rs.Name)
}
r.Xsym = rs
return true
case objabi.R_CALLPOWER:
r.Done = false
r.Xsym = r.Sym
r.Xadd = r.Add
return true
}
}
switch r.Type {
case objabi.R_CONST:
*val = r.Add
return true
case objabi.R_GOTOFF:
*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0))
return true
case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS:
return archrelocaddr(ctxt, r, s, val)
case objabi.R_CALLPOWER:
// Bits 6 through 29 = (S + A - P) >> 2
t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
if t&3 != 0 {
ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
}
// If branch offset is too far then create a trampoline.
if int64(int32(t<<6)>>6) != t {
ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t)
}
*val |= int64(uint32(t) &^ 0xfc000003)
return true
case objabi.R_POWER_TOC: // S + A - .TOC.
*val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s)
return true
case objabi.R_POWER_TLS_LE:
// The thread pointer points 0x7000 bytes after the start of the the
// thread local storage area as documented in section "3.7.2 TLS
// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
// Specification".
v := r.Sym.Value - 0x7000
if int64(int16(v)) != v {
ld.Errorf(s, "TLS offset out of range %d", v)
}
*val = (*val &^ 0xffff) | (v & 0xffff)
return true
}
return false
}
func archrelocvariant(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, t int64) int64 {
switch r.Variant & ld.RV_TYPE_MASK {
default:
ld.Errorf(s, "unexpected relocation variant %d", r.Variant)
fallthrough
case ld.RV_NONE:
return t
case ld.RV_POWER_LO:
if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = ld.Be32(s.P[r.Off-2:])
} else {
o1 = ld.Le32(s.P[r.Off:])
}
switch o1 >> 26 {
case 24, // ori
26, // xori
28: // andi
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case ld.RV_POWER_HA:
t += 0x8000
fallthrough
// Fallthrough
case ld.RV_POWER_HI:
t >>= 16
if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = ld.Be32(s.P[r.Off-2:])
} else {
o1 = ld.Le32(s.P[r.Off:])
}
switch o1 >> 26 {
case 25, // oris
27, // xoris
29: // andis
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case ld.RV_POWER_DS:
var o1 uint32
if ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = uint32(ld.Be16(s.P[r.Off:]))
} else {
o1 = uint32(ld.Le16(s.P[r.Off:]))
}
if t&3 != 0 {
ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
}
if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
goto overflow
}
return int64(o1)&0x3 | int64(int16(t))
}
overflow:
ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
return t
}
func addpltsym(ctxt *ld.Link, s *ld.Symbol) {
if s.Plt >= 0 {
return
}
ld.Adddynsym(ctxt, s)
if ld.Iself {
plt := ctxt.Syms.Lookup(".plt", 0)
rela := ctxt.Syms.Lookup(".rela.plt", 0)
if plt.Size == 0 {
elfsetupplt(ctxt)
}
// Create the glink resolver if necessary
glink := ensureglinkresolver(ctxt)
// Write symbol resolver stub (just a branch to the
// glink resolver stub)
r := glink.AddRel()
r.Sym = glink
r.Off = int32(glink.Size)
r.Siz = 4
r.Type = objabi.R_CALLPOWER
glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink
// In the ppc64 ABI, the dynamic linker is responsible
// for writing the entire PLT. We just need to
// reserve 8 bytes for each PLT entry and generate a
// JMP_SLOT dynamic relocation for it.
//
// TODO(austin): ABI v1 is different
s.Plt = int32(plt.Size)
plt.Size += 8
rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt))
rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
rela.AddUint64(ctxt.Arch, 0)
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
// Generate the glink resolver stub if necessary and return the .glink section
func ensureglinkresolver(ctxt *ld.Link) *ld.Symbol {
glink := ctxt.Syms.Lookup(".glink", 0)
if glink.Size != 0 {
return glink
}
// This is essentially the resolver from the ppc64 ELF ABI.
// At entry, r12 holds the address of the symbol resolver stub
// for the target routine and the argument registers hold the
// arguments for the target routine.
//
// This stub is PIC, so first get the PC of label 1 into r11.
// Other things will be relative to this.
glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0
// Compute the .plt array index from the entry point address.
// Because this is PIC, everything is relative to label 1b (in
// r11):
// r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48
glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2
// r11 = address of the first byte of the PLT
r := glink.AddRel()
r.Off = int32(glink.Size)
r.Sym = ctxt.Syms.Lookup(".plt", 0)
r.Siz = 8
r.Type = objabi.R_ADDRPOWER
glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha
glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l
// Load r12 = dynamic resolver address and r11 = DSO
// identifier from the first two doublewords of the PLT.
glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)
// Jump to the dynamic resolver
glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr
// The symbol resolvers must immediately follow.
// res_0:
// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
// before the first symbol resolver stub.
s := ctxt.Syms.Lookup(".dynamic", 0)
ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32)
return glink
}
func asmb(ctxt *ld.Link) {
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f asmb\n", ld.Cputime())
}
if ld.Iself {
ld.Asmbelfsetup()
}
for _, sect := range ld.Segtext.Sections {
ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
// Handle additional text sections with Codeblk
if sect.Name == ".text" {
ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
} else {
ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
}
}
if ld.Segrodata.Filelen > 0 {
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f rodatblk\n", ld.Cputime())
}
ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff))
ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen))
}
if ld.Segrelrodata.Filelen > 0 {
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime())
}
ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff))
ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen))
}
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f datblk\n", ld.Cputime())
}
ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff))
ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen))
ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff))
ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen))
/* output symbol table */
ld.Symsize = 0
ld.Lcsize = 0
symo := uint32(0)
if !*ld.FlagS {
// TODO: rationalize
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f sym\n", ld.Cputime())
}
switch ld.Headtype {
default:
if ld.Iself {
symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound)))
}
case objabi.Hplan9:
symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
}
ctxt.Out.SeekSet(int64(symo))
switch ld.Headtype {
default:
if ld.Iself {
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f elfsym\n", ld.Cputime())
}
ld.Asmelfsym(ctxt)
ctxt.Out.Flush()
ctxt.Out.Write(ld.Elfstrdat)
if ld.Linkmode == ld.LinkExternal {
ld.Elfemitreloc(ctxt)
}
}
case objabi.Hplan9:
ld.Asmplan9sym(ctxt)
ctxt.Out.Flush()
sym := ctxt.Syms.Lookup("pclntab", 0)
if sym != nil {
ld.Lcsize = int32(len(sym.P))
ctxt.Out.Write(sym.P)
ctxt.Out.Flush()
}
}
}
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f header\n", ld.Cputime())
}
ctxt.Out.SeekSet(0)
switch ld.Headtype {
default:
case objabi.Hplan9: /* plan 9 */
ctxt.Out.Write32(0x647) /* magic */
ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */
ctxt.Out.Write32(uint32(ld.Segdata.Filelen))
ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
ctxt.Out.Write32(uint32(ld.Symsize)) /* nsyms */
ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */
ctxt.Out.Write32(0)
ctxt.Out.Write32(uint32(ld.Lcsize))
case objabi.Hlinux,
objabi.Hfreebsd,
objabi.Hnetbsd,
objabi.Hopenbsd,
objabi.Hnacl:
ld.Asmbelf(ctxt, int64(symo))
}
ctxt.Out.Flush()
if *ld.FlagC {
fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
fmt.Printf("symsize=%d\n", ld.Symsize)
fmt.Printf("lcsize=%d\n", ld.Lcsize)
fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
}
}