2014-12-08 14:36:39 -08:00
|
|
|
|
// Copyright 2014 The Go Authors. All rights reserved.
|
|
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
|
|
|
|
// This file implements multi-precision floating-point numbers.
|
|
|
|
|
|
// Like in the GNU MPFR library (http://www.mpfr.org/), operands
|
|
|
|
|
|
// can be of mixed precision. Unlike MPFR, the rounding mode is
|
|
|
|
|
|
// not specified with each operation, but with each operand. The
|
|
|
|
|
|
// rounding mode of the result operand determines the rounding
|
|
|
|
|
|
// mode of an operation. This is a from-scratch implementation.
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// CAUTION: WORK IN PROGRESS - USE AT YOUR OWN RISK.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
|
|
|
|
|
package big
|
|
|
|
|
|
|
|
|
|
|
|
import (
|
|
|
|
|
|
"fmt"
|
|
|
|
|
|
"math"
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
const debugFloat = true // enable for debugging
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// A Float represents a multi-precision floating point number of the form
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// sign * mantissa * 2**exponent
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp (with the
|
|
|
|
|
|
// exception of 0 and Inf which have a 0 mantissa and special exponents).
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// Each Float value also has a precision, rounding mode, and accuracy.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// The precision is the number of mantissa bits used to represent the
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// value. The rounding mode specifies how a result should be rounded
|
|
|
|
|
|
// to fit into the mantissa bits, and accuracy describes the rounding
|
|
|
|
|
|
// error with respect to the exact result.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// All operations, including setters, that specify a *Float for the result,
|
|
|
|
|
|
// usually via the receiver, round their result to the result's precision
|
|
|
|
|
|
// and according to its rounding mode, unless specified otherwise. If the
|
|
|
|
|
|
// result precision is 0 (see below), it is set to the precision of the
|
|
|
|
|
|
// argument with the largest precision value before any rounding takes
|
|
|
|
|
|
// place.
|
|
|
|
|
|
// TODO(gri) should the rounding mode also be copied in this case?
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// By setting the desired precision to 24 or 53 and using ToNearestEven
|
|
|
|
|
|
// rounding, Float operations produce the same results as the corresponding
|
|
|
|
|
|
// float32 or float64 IEEE-754 arithmetic for normalized operands (no NaNs
|
|
|
|
|
|
// or denormalized numbers). Additionally, positive and negative zeros and
|
|
|
|
|
|
// infinities are fully supported.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// The zero (uninitialized) value for a Float is ready to use and
|
|
|
|
|
|
// represents the number +0.0 of 0 bit precision.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
//
|
|
|
|
|
|
type Float struct {
|
|
|
|
|
|
mode RoundingMode
|
|
|
|
|
|
acc Accuracy
|
|
|
|
|
|
neg bool
|
|
|
|
|
|
mant nat
|
|
|
|
|
|
exp int32
|
|
|
|
|
|
prec uint // TODO(gri) make this a 32bit field
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// Internal representation details: The mantissa bits x.mant of a Float x
|
|
|
|
|
|
// are stored in the shortest nat slice long enough to hold x.prec bits.
|
|
|
|
|
|
// Unless x is a zero or an infinity, x.mant is normalized such that the
|
|
|
|
|
|
// msb of x.mant == 1. Thus, if the precision is not a multiple of the
|
|
|
|
|
|
// the Word size _W, x.mant[0] contains trailing zero bits. Zero and Inf
|
|
|
|
|
|
// values have an empty mantissa and a 0 or infExp exponent, respectively.
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// NewFloat returns a new Float with value x rounded
|
|
|
|
|
|
// to prec bits according to the given rounding mode.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// If prec == 0, the result has value 0.0 independent
|
|
|
|
|
|
// of the value of x.
|
|
|
|
|
|
// BUG(gri) For prec == 0 and x == Inf, the result
|
|
|
|
|
|
// should be Inf as well.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) rethink this signature.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func NewFloat(x float64, prec uint, mode RoundingMode) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
var z Float
|
|
|
|
|
|
if prec > 0 {
|
|
|
|
|
|
// TODO(gri) should make this more efficient
|
|
|
|
|
|
z.SetFloat64(x)
|
|
|
|
|
|
return z.Round(&z, prec, mode)
|
|
|
|
|
|
}
|
|
|
|
|
|
z.mode = mode // TODO(gri) don't do this twice for prec > 0
|
|
|
|
|
|
return &z
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-05 17:21:48 -08:00
|
|
|
|
const (
|
2015-02-06 16:51:00 -08:00
|
|
|
|
MaxExp = math.MaxInt32 // largest supported exponent magnitude
|
|
|
|
|
|
infExp = -MaxExp - 1 // exponent for Inf values
|
2015-02-05 17:21:48 -08:00
|
|
|
|
)
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// NewInf returns a new infinite Float value with value +Inf (sign >= 0),
|
|
|
|
|
|
// or -Inf (sign < 0).
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func NewInf(sign int) *Float {
|
|
|
|
|
|
return &Float{neg: sign < 0, exp: infExp}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Accuracy describes the rounding error produced by the most recent
|
|
|
|
|
|
// operation that generated a Float value, relative to the exact value:
|
|
|
|
|
|
//
|
|
|
|
|
|
// -1: below exact value
|
|
|
|
|
|
// 0: exact value
|
|
|
|
|
|
// +1: above exact value
|
|
|
|
|
|
//
|
|
|
|
|
|
type Accuracy int8
|
|
|
|
|
|
|
|
|
|
|
|
// Constants describing the Accuracy of a Float.
|
|
|
|
|
|
const (
|
|
|
|
|
|
Below Accuracy = -1
|
|
|
|
|
|
Exact Accuracy = 0
|
|
|
|
|
|
Above Accuracy = +1
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
func (a Accuracy) String() string {
|
|
|
|
|
|
switch {
|
|
|
|
|
|
case a < 0:
|
|
|
|
|
|
return "below"
|
|
|
|
|
|
default:
|
|
|
|
|
|
return "exact"
|
|
|
|
|
|
case a > 0:
|
|
|
|
|
|
return "above"
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// RoundingMode determines how a Float value is rounded to the
|
|
|
|
|
|
// desired precision. Rounding may change the Float value; the
|
|
|
|
|
|
// rounding error is described by the Float's Accuracy.
|
|
|
|
|
|
type RoundingMode uint8
|
|
|
|
|
|
|
|
|
|
|
|
// The following rounding modes are supported.
|
|
|
|
|
|
const (
|
|
|
|
|
|
ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
|
|
|
|
|
|
ToNearestAway // == IEEE 754-2008 roundTiesToAway
|
|
|
|
|
|
ToZero // == IEEE 754-2008 roundTowardZero
|
|
|
|
|
|
AwayFromZero // no IEEE 754-2008 equivalent
|
|
|
|
|
|
ToNegativeInf // == IEEE 754-2008 roundTowardNegative
|
|
|
|
|
|
ToPositiveInf // == IEEE 754-2008 roundTowardPositive
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
func (mode RoundingMode) String() string {
|
|
|
|
|
|
switch mode {
|
|
|
|
|
|
case ToNearestEven:
|
|
|
|
|
|
return "ToNearestEven"
|
|
|
|
|
|
case ToNearestAway:
|
|
|
|
|
|
return "ToNearestAway"
|
|
|
|
|
|
case ToZero:
|
|
|
|
|
|
return "ToZero"
|
|
|
|
|
|
case AwayFromZero:
|
|
|
|
|
|
return "AwayFromZero"
|
|
|
|
|
|
case ToNegativeInf:
|
|
|
|
|
|
return "ToNegativeInf"
|
|
|
|
|
|
case ToPositiveInf:
|
|
|
|
|
|
return "ToPositiveInf"
|
|
|
|
|
|
}
|
|
|
|
|
|
panic("unreachable")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Precision returns the mantissa precision of x in bits.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// The precision may be 0 for |x| == 0 or |x| == Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (x *Float) Precision() uint {
|
|
|
|
|
|
return uint(x.prec)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Accuracy returns the accuracy of x produced by the most recent operation.
|
|
|
|
|
|
func (x *Float) Accuracy() Accuracy {
|
|
|
|
|
|
return x.acc
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Mode returns the rounding mode of x.
|
|
|
|
|
|
func (x *Float) Mode() RoundingMode {
|
|
|
|
|
|
return x.mode
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// IsInf reports whether x is an infinity, according to sign.
|
|
|
|
|
|
// If sign > 0, IsInf reports whether x is positive infinity.
|
|
|
|
|
|
// If sign < 0, IsInf reports whether x is negative infinity.
|
|
|
|
|
|
// If sign == 0, IsInf reports whether x is either infinity.
|
|
|
|
|
|
func (x *Float) IsInf(sign int) bool {
|
|
|
|
|
|
return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// setExp sets the exponent for z.
|
|
|
|
|
|
// If the exponent's magnitude is too large, z becomes +/-Inf.
|
|
|
|
|
|
func (z *Float) setExp(e int64) {
|
|
|
|
|
|
if -MaxExp <= e && e <= MaxExp {
|
|
|
|
|
|
z.exp = int32(e)
|
|
|
|
|
|
return
|
|
|
|
|
|
}
|
|
|
|
|
|
// Inf
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = infExp
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// debugging support
|
|
|
|
|
|
func (x *Float) validate() {
|
|
|
|
|
|
const msb = 1 << (_W - 1)
|
|
|
|
|
|
m := len(x.mant)
|
2015-02-06 16:51:00 -08:00
|
|
|
|
if m == 0 {
|
|
|
|
|
|
// 0.0 or Inf
|
|
|
|
|
|
if x.exp != 0 && x.exp != infExp {
|
|
|
|
|
|
panic(fmt.Sprintf("empty matissa with invalid exponent %d", x.exp))
|
|
|
|
|
|
}
|
|
|
|
|
|
return
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if x.mant[m-1]&msb == 0 {
|
2015-01-30 15:57:38 -08:00
|
|
|
|
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
|
|
|
|
|
if x.prec <= 0 {
|
|
|
|
|
|
panic(fmt.Sprintf("invalid precision %d", x.prec))
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
|
|
|
|
|
|
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// have before calling round. z's mantissa must be normalized (with the msb set)
|
|
|
|
|
|
// or empty.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) round(sbit uint) {
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// handle zero and Inf
|
2014-12-08 14:36:39 -08:00
|
|
|
|
m := uint(len(z.mant)) // mantissa length in words for current precision
|
|
|
|
|
|
if m == 0 {
|
2015-02-06 16:51:00 -08:00
|
|
|
|
if z.exp != infExp {
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return
|
|
|
|
|
|
}
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// z.prec > 0
|
2015-02-05 17:21:48 -08:00
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if debugFloat {
|
|
|
|
|
|
z.validate()
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bits := m * _W // available mantissa bits
|
|
|
|
|
|
if bits == z.prec {
|
|
|
|
|
|
// mantissa fits Exactly => nothing to do
|
|
|
|
|
|
return
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
|
|
|
|
|
|
if bits < z.prec {
|
|
|
|
|
|
// mantissa too small => extend
|
|
|
|
|
|
if m < n {
|
|
|
|
|
|
// slice too short => extend slice
|
|
|
|
|
|
if int(n) <= cap(z.mant) {
|
|
|
|
|
|
// reuse existing slice
|
|
|
|
|
|
z.mant = z.mant[:n]
|
|
|
|
|
|
copy(z.mant[n-m:], z.mant[:m])
|
|
|
|
|
|
z.mant[:n-m].clear()
|
|
|
|
|
|
} else {
|
|
|
|
|
|
// n > cap(z.mant) => allocate new slice
|
|
|
|
|
|
const e = 4 // extra capacity (see nat.make)
|
|
|
|
|
|
new := make(nat, n, n+e)
|
|
|
|
|
|
copy(new[n-m:], z.mant)
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
return
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Rounding is based on two bits: the rounding bit (rbit) and the
|
|
|
|
|
|
// sticky bit (sbit). The rbit is the bit immediately before the
|
|
|
|
|
|
// mantissa bits (the "0.5"). The sbit is set if any of the bits
|
|
|
|
|
|
// before the rbit are set (the "0.25", "0.125", etc.):
|
|
|
|
|
|
//
|
|
|
|
|
|
// rbit sbit => "fractional part"
|
|
|
|
|
|
//
|
|
|
|
|
|
// 0 0 == 0
|
|
|
|
|
|
// 0 1 > 0 , < 0.5
|
|
|
|
|
|
// 1 0 == 0.5
|
|
|
|
|
|
// 1 1 > 0.5, < 1.0
|
|
|
|
|
|
|
|
|
|
|
|
// bits > z.prec: mantissa too large => round
|
|
|
|
|
|
r := bits - z.prec - 1 // rounding bit position; r >= 0
|
|
|
|
|
|
rbit := z.mant.bit(r) // rounding bit
|
|
|
|
|
|
if sbit == 0 {
|
|
|
|
|
|
sbit = z.mant.sticky(r)
|
|
|
|
|
|
}
|
|
|
|
|
|
if debugFloat && sbit&^1 != 0 {
|
|
|
|
|
|
panic(fmt.Sprintf("invalid sbit %#x", sbit))
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// convert ToXInf rounding modes
|
|
|
|
|
|
mode := z.mode
|
|
|
|
|
|
switch mode {
|
|
|
|
|
|
case ToNegativeInf:
|
|
|
|
|
|
mode = ToZero
|
|
|
|
|
|
if z.neg {
|
|
|
|
|
|
mode = AwayFromZero
|
|
|
|
|
|
}
|
|
|
|
|
|
case ToPositiveInf:
|
|
|
|
|
|
mode = AwayFromZero
|
|
|
|
|
|
if z.neg {
|
|
|
|
|
|
mode = ToZero
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// cut off extra words
|
|
|
|
|
|
if m > n {
|
|
|
|
|
|
copy(z.mant, z.mant[m-n:]) // move n last words to front
|
|
|
|
|
|
z.mant = z.mant[:n]
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// determine number of trailing zero bits t
|
|
|
|
|
|
t := n*_W - z.prec // 0 <= t < _W
|
|
|
|
|
|
lsb := Word(1) << t
|
|
|
|
|
|
|
|
|
|
|
|
// make rounding decision
|
|
|
|
|
|
// TODO(gri) This can be simplified (see roundBits in float_test.go).
|
|
|
|
|
|
switch mode {
|
|
|
|
|
|
case ToZero:
|
|
|
|
|
|
// nothing to do
|
|
|
|
|
|
case ToNearestEven, ToNearestAway:
|
|
|
|
|
|
if rbit == 0 {
|
|
|
|
|
|
// rounding bits == 0b0x
|
|
|
|
|
|
mode = ToZero
|
|
|
|
|
|
} else if sbit == 1 {
|
|
|
|
|
|
// rounding bits == 0b11
|
|
|
|
|
|
mode = AwayFromZero
|
|
|
|
|
|
}
|
|
|
|
|
|
case AwayFromZero:
|
|
|
|
|
|
if rbit|sbit == 0 {
|
|
|
|
|
|
mode = ToZero
|
|
|
|
|
|
}
|
|
|
|
|
|
default:
|
|
|
|
|
|
// ToXInf modes have been converted to ToZero or AwayFromZero
|
|
|
|
|
|
panic("unreachable")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// round and determine accuracy
|
|
|
|
|
|
switch mode {
|
|
|
|
|
|
case ToZero:
|
|
|
|
|
|
if rbit|sbit != 0 {
|
|
|
|
|
|
z.acc = Below
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
case ToNearestEven, ToNearestAway:
|
|
|
|
|
|
if debugFloat && rbit != 1 {
|
|
|
|
|
|
panic("internal error in rounding")
|
|
|
|
|
|
}
|
|
|
|
|
|
if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 {
|
|
|
|
|
|
z.acc = Below
|
|
|
|
|
|
break
|
|
|
|
|
|
}
|
|
|
|
|
|
// mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0
|
|
|
|
|
|
fallthrough
|
|
|
|
|
|
|
|
|
|
|
|
case AwayFromZero:
|
|
|
|
|
|
// add 1 to mantissa
|
|
|
|
|
|
if addVW(z.mant, z.mant, lsb) != 0 {
|
|
|
|
|
|
// overflow => shift mantissa right by 1 and add msb
|
|
|
|
|
|
shrVU(z.mant, z.mant, 1)
|
|
|
|
|
|
z.mant[n-1] |= 1 << (_W - 1)
|
|
|
|
|
|
// adjust exponent
|
|
|
|
|
|
z.exp++
|
|
|
|
|
|
}
|
|
|
|
|
|
z.acc = Above
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// zero out trailing bits in least-significant word
|
|
|
|
|
|
z.mant[0] &^= lsb - 1
|
|
|
|
|
|
|
|
|
|
|
|
// update accuracy
|
|
|
|
|
|
if z.neg {
|
|
|
|
|
|
z.acc = -z.acc
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if debugFloat {
|
|
|
|
|
|
z.validate()
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Round sets z to the value of x rounded according to mode to prec bits and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) rethink this signature.
|
|
|
|
|
|
// TODO(gri) adjust this to match precision semantics.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Round(x *Float, prec uint, mode RoundingMode) *Float {
|
|
|
|
|
|
z.Set(x)
|
|
|
|
|
|
z.prec = prec
|
|
|
|
|
|
z.mode = mode
|
|
|
|
|
|
z.round(0)
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// nlz returns the number of leading zero bits in x.
|
|
|
|
|
|
func nlz(x Word) uint {
|
|
|
|
|
|
return _W - uint(bitLen(x))
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func nlz64(x uint64) uint {
|
2015-01-23 21:40:35 -08:00
|
|
|
|
// TODO(gri) this can be done more nicely
|
|
|
|
|
|
if _W == 32 {
|
|
|
|
|
|
if x>>32 == 0 {
|
|
|
|
|
|
return 32 + nlz(Word(x))
|
|
|
|
|
|
}
|
|
|
|
|
|
return nlz(Word(x >> 32))
|
|
|
|
|
|
}
|
|
|
|
|
|
if _W == 64 {
|
|
|
|
|
|
return nlz(Word(x))
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
2015-01-23 21:40:35 -08:00
|
|
|
|
panic("unreachable")
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// SetUint64 sets z to the (possibly rounded) value of x and returns z.
|
|
|
|
|
|
// If z's precision is 0, it is changed to 64 (and rounding will have
|
|
|
|
|
|
// no effect).
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) SetUint64(x uint64) *Float {
|
2015-02-06 16:51:00 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = 64
|
|
|
|
|
|
}
|
|
|
|
|
|
z.acc = Exact
|
2014-12-08 14:36:39 -08:00
|
|
|
|
z.neg = false
|
|
|
|
|
|
if x == 0 {
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// x != 0
|
2014-12-08 14:36:39 -08:00
|
|
|
|
s := nlz64(x)
|
|
|
|
|
|
z.mant = z.mant.setUint64(x << s)
|
2015-02-06 16:51:00 -08:00
|
|
|
|
z.exp = int32(64 - s) // always fits
|
|
|
|
|
|
if z.prec < 64 {
|
|
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
|
|
|
|
|
|
// If z's precision is 0, it is changed to 64 (and rounding will have
|
|
|
|
|
|
// no effect).
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) SetInt64(x int64) *Float {
|
|
|
|
|
|
u := x
|
|
|
|
|
|
if u < 0 {
|
|
|
|
|
|
u = -u
|
|
|
|
|
|
}
|
|
|
|
|
|
z.SetUint64(uint64(u))
|
|
|
|
|
|
z.neg = x < 0
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-09 11:26:56 -08:00
|
|
|
|
// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// If z's precision is 0, it is changed to 53 (and rounding will have
|
|
|
|
|
|
// no effect).
|
|
|
|
|
|
// If x is denormalized or NaN, the result is unspecified.
|
|
|
|
|
|
// TODO(gri) should return nil in those cases
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) SetFloat64(x float64) *Float {
|
2015-02-06 16:51:00 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = 53
|
|
|
|
|
|
}
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
z.neg = math.Signbit(x) // handle -0 correctly
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if math.IsInf(x, 0) {
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = infExp
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if x == 0 {
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// x != 0
|
2014-12-08 14:36:39 -08:00
|
|
|
|
fmant, exp := math.Frexp(x) // get normalized mantissa
|
|
|
|
|
|
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
|
2015-02-06 16:51:00 -08:00
|
|
|
|
z.exp = int32(exp) // always fits
|
|
|
|
|
|
if z.prec < 53 {
|
|
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// fnorm normalizes mantissa m by shifting it to the left
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// such that the msb of the most-significant word (msw) is 1.
|
|
|
|
|
|
// It returns the shift amount. It assumes that len(m) != 0.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func fnorm(m nat) uint {
|
|
|
|
|
|
if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
|
|
|
|
|
|
panic("msw of mantissa is 0")
|
|
|
|
|
|
}
|
|
|
|
|
|
s := nlz(m[len(m)-1])
|
|
|
|
|
|
if s > 0 {
|
|
|
|
|
|
c := shlVU(m, m, s)
|
|
|
|
|
|
if debugFloat && c != 0 {
|
|
|
|
|
|
panic("nlz or shlVU incorrect")
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
return s
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// SetInt sets z to the (possibly rounded) value of x and returns z.
|
|
|
|
|
|
// If z's precision is 0, it is changed to x.BitLen() (and rounding will have
|
|
|
|
|
|
// no effect).
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) SetInt(x *Int) *Float {
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) can be more efficient if z.prec > 0
|
|
|
|
|
|
// but small compared to the size of x, or if there
|
|
|
|
|
|
// are many trailing 0's.
|
|
|
|
|
|
bits := uint(x.BitLen())
|
|
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = bits
|
|
|
|
|
|
}
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
z.neg = x.neg
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if len(x.abs) == 0 {
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
// x != 0
|
|
|
|
|
|
z.mant = z.mant.set(x.abs)
|
2015-02-06 16:51:00 -08:00
|
|
|
|
fnorm(z.mant)
|
|
|
|
|
|
z.setExp(int64(bits))
|
|
|
|
|
|
if z.prec < bits {
|
|
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// SetRat sets z to the (possibly rounded) value of x and returns z.
|
|
|
|
|
|
// If z's precision is 0, it is changed to the larger of a.BitLen()
|
|
|
|
|
|
// and b.BitLen(), where a and b are the numerator and denominator
|
|
|
|
|
|
// of x, respectively (x = a/b).
|
|
|
|
|
|
func (z *Float) SetRat(x *Rat) *Float {
|
|
|
|
|
|
// TODO(gri) can be more efficient if x is an integer
|
|
|
|
|
|
var a, b Float
|
|
|
|
|
|
a.SetInt(x.Num())
|
|
|
|
|
|
b.SetInt(x.Denom())
|
|
|
|
|
|
if z.prec == 0 {
|
2015-02-09 11:26:56 -08:00
|
|
|
|
z.prec = umax(a.prec, b.prec)
|
2015-02-06 16:51:00 -08:00
|
|
|
|
}
|
|
|
|
|
|
return z.Quo(&a, &b)
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Set sets z to x, with the same precision as x, and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) adjust this to match precision semantics.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Set(x *Float) *Float {
|
|
|
|
|
|
if z != x {
|
|
|
|
|
|
z.neg = x.neg
|
|
|
|
|
|
z.exp = x.exp
|
|
|
|
|
|
z.mant = z.mant.set(x.mant)
|
|
|
|
|
|
z.prec = x.prec
|
|
|
|
|
|
}
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func high64(x nat) uint64 {
|
2015-01-28 17:11:15 -08:00
|
|
|
|
i := len(x)
|
|
|
|
|
|
if i == 0 {
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return 0
|
|
|
|
|
|
}
|
2015-01-28 17:11:15 -08:00
|
|
|
|
// i > 0
|
|
|
|
|
|
v := uint64(x[i-1])
|
2015-01-26 16:08:51 -08:00
|
|
|
|
if _W == 32 {
|
|
|
|
|
|
v <<= 32
|
2015-01-28 17:11:15 -08:00
|
|
|
|
if i > 1 {
|
|
|
|
|
|
v |= uint64(x[i-2])
|
2015-01-26 16:08:51 -08:00
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
|
|
|
|
|
return v
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) FIX THIS (Inf, rounding mode, errors, accuracy, etc.)
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (x *Float) Uint64() uint64 {
|
|
|
|
|
|
m := high64(x.mant)
|
|
|
|
|
|
s := x.exp
|
|
|
|
|
|
if s >= 0 {
|
|
|
|
|
|
return m >> (64 - uint(s))
|
|
|
|
|
|
}
|
|
|
|
|
|
return 0 // imprecise
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) FIX THIS (inf, rounding mode, errors, etc.)
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (x *Float) Int64() int64 {
|
|
|
|
|
|
v := int64(x.Uint64())
|
|
|
|
|
|
if x.neg {
|
|
|
|
|
|
return -v
|
|
|
|
|
|
}
|
|
|
|
|
|
return v
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Float64 returns the closest float64 value of x
|
|
|
|
|
|
// by rounding to nearest with 53 bits precision.
|
|
|
|
|
|
// TODO(gri) implement/document error scenarios.
|
|
|
|
|
|
func (x *Float) Float64() (float64, Accuracy) {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// x == +/-Inf
|
|
|
|
|
|
if x.exp == infExp {
|
|
|
|
|
|
var sign int
|
|
|
|
|
|
if x.neg {
|
|
|
|
|
|
sign = -1
|
|
|
|
|
|
}
|
|
|
|
|
|
return math.Inf(sign), Exact
|
|
|
|
|
|
}
|
|
|
|
|
|
// x == 0
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
return 0, Exact
|
|
|
|
|
|
}
|
|
|
|
|
|
// x != 0
|
|
|
|
|
|
r := new(Float).Round(x, 53, ToNearestEven)
|
|
|
|
|
|
var s uint64
|
|
|
|
|
|
if r.neg {
|
|
|
|
|
|
s = 1 << 63
|
|
|
|
|
|
}
|
|
|
|
|
|
e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
|
|
|
|
|
|
m := high64(r.mant) >> 11 & (1<<52 - 1)
|
|
|
|
|
|
return math.Float64frombits(s | e<<52 | m), r.acc
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func (x *Float) Int() *Int {
|
|
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
return new(Int)
|
|
|
|
|
|
}
|
|
|
|
|
|
panic("unimplemented")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func (x *Float) Rat() *Rat {
|
|
|
|
|
|
panic("unimplemented")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func (x *Float) IsInt() bool {
|
|
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
return true
|
|
|
|
|
|
}
|
|
|
|
|
|
if x.exp <= 0 {
|
|
|
|
|
|
return false
|
|
|
|
|
|
}
|
|
|
|
|
|
if uint(x.exp) >= x.prec {
|
|
|
|
|
|
return true
|
|
|
|
|
|
}
|
|
|
|
|
|
panic("unimplemented")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Abs sets z to |x| (the absolute value of x) and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) adjust this to match precision semantics.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Abs(x *Float) *Float {
|
|
|
|
|
|
z.Set(x)
|
|
|
|
|
|
z.neg = false
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Neg sets z to x with its sign negated, and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// TODO(gri) adjust this to match precision semantics.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Neg(x *Float) *Float {
|
|
|
|
|
|
z.Set(x)
|
|
|
|
|
|
z.neg = !z.neg
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// z = x + y, ignoring signs of x and y.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// x and y must not be 0 or an Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) uadd(x, y *Float) {
|
|
|
|
|
|
// Note: This implementation requires 2 shifts most of the
|
|
|
|
|
|
// time. It is also inefficient if exponents or precisions
|
|
|
|
|
|
// differ by wide margins. The following article describes
|
|
|
|
|
|
// an efficient (but much more complicated) implementation
|
|
|
|
|
|
// compatible with the internal representation used here:
|
|
|
|
|
|
//
|
|
|
|
|
|
// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
|
|
|
|
|
|
// Point Addition With Exact Rounding (as in the MPFR Library)"
|
|
|
|
|
|
// http://www.vinc17.net/research/papers/rnc6.pdf
|
|
|
|
|
|
|
2015-01-27 16:51:59 -08:00
|
|
|
|
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
|
|
|
|
|
panic("uadd called with 0 argument")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// compute exponents ex, ey for mantissa with "binary point"
|
|
|
|
|
|
// on the right (mantissa.0) - use int64 to avoid overflow
|
2015-01-26 16:08:51 -08:00
|
|
|
|
ex := int64(x.exp) - int64(len(x.mant))*_W
|
|
|
|
|
|
ey := int64(y.exp) - int64(len(y.mant))*_W
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-01-27 16:51:59 -08:00
|
|
|
|
// TODO(gri) having a combined add-and-shift primitive
|
|
|
|
|
|
// could make this code significantly faster
|
2015-01-26 16:08:51 -08:00
|
|
|
|
switch {
|
|
|
|
|
|
case ex < ey:
|
|
|
|
|
|
t := z.mant.shl(y.mant, uint(ey-ex))
|
|
|
|
|
|
z.mant = t.add(x.mant, t)
|
|
|
|
|
|
default:
|
2015-01-27 16:51:59 -08:00
|
|
|
|
// ex == ey, no shift needed
|
2015-01-26 16:08:51 -08:00
|
|
|
|
z.mant = z.mant.add(x.mant, y.mant)
|
|
|
|
|
|
case ex > ey:
|
|
|
|
|
|
t := z.mant.shl(x.mant, uint(ex-ey))
|
|
|
|
|
|
z.mant = t.add(t, y.mant)
|
2015-01-27 16:51:59 -08:00
|
|
|
|
ex = ey
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
2015-01-26 16:08:51 -08:00
|
|
|
|
// len(z.mant) > 0
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-01-27 16:51:59 -08:00
|
|
|
|
z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
|
2014-12-08 14:36:39 -08:00
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// z = x - y for x >= y, ignoring signs of x and y.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// x and y must not be 0 or an Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) usub(x, y *Float) {
|
2015-01-27 16:51:59 -08:00
|
|
|
|
// This code is symmetric to uadd.
|
|
|
|
|
|
// We have not factored the common code out because
|
|
|
|
|
|
// eventually uadd (and usub) should be optimized
|
|
|
|
|
|
// by special-casing, and the code will diverge.
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
|
|
|
|
|
panic("usub called with 0 argument")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2015-01-26 16:08:51 -08:00
|
|
|
|
ex := int64(x.exp) - int64(len(x.mant))*_W
|
|
|
|
|
|
ey := int64(y.exp) - int64(len(y.mant))*_W
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-01-26 16:08:51 -08:00
|
|
|
|
switch {
|
|
|
|
|
|
case ex < ey:
|
|
|
|
|
|
t := z.mant.shl(y.mant, uint(ey-ex))
|
|
|
|
|
|
z.mant = t.sub(x.mant, t)
|
|
|
|
|
|
default:
|
2015-01-27 16:51:59 -08:00
|
|
|
|
// ex == ey, no shift needed
|
2015-01-26 16:08:51 -08:00
|
|
|
|
z.mant = z.mant.sub(x.mant, y.mant)
|
|
|
|
|
|
case ex > ey:
|
|
|
|
|
|
t := z.mant.shl(x.mant, uint(ex-ey))
|
|
|
|
|
|
z.mant = t.sub(t, y.mant)
|
2015-01-27 16:51:59 -08:00
|
|
|
|
ex = ey
|
2015-01-26 16:08:51 -08:00
|
|
|
|
}
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-01-26 16:08:51 -08:00
|
|
|
|
// operands may have cancelled each other out
|
|
|
|
|
|
if len(z.mant) == 0 {
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
z.setExp(0)
|
|
|
|
|
|
return
|
2014-12-08 14:36:39 -08:00
|
|
|
|
}
|
2015-01-26 16:08:51 -08:00
|
|
|
|
// len(z.mant) > 0
|
2014-12-08 14:36:39 -08:00
|
|
|
|
|
2015-01-27 16:51:59 -08:00
|
|
|
|
z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
|
2014-12-08 14:36:39 -08:00
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// z = x * y, ignoring signs of x and y.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// x and y must not be 0 or an Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) umul(x, y *Float) {
|
|
|
|
|
|
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
|
|
|
|
|
panic("umul called with 0 argument")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Note: This is doing too much work if the precision
|
|
|
|
|
|
// of z is less than the sum of the precisions of x
|
|
|
|
|
|
// and y which is often the case (e.g., if all floats
|
|
|
|
|
|
// have the same precision).
|
|
|
|
|
|
// TODO(gri) Optimize this for the common case.
|
|
|
|
|
|
|
|
|
|
|
|
e := int64(x.exp) + int64(y.exp)
|
|
|
|
|
|
z.mant = z.mant.mul(x.mant, y.mant)
|
|
|
|
|
|
|
|
|
|
|
|
// normalize mantissa
|
|
|
|
|
|
z.setExp(e - int64(fnorm(z.mant)))
|
|
|
|
|
|
z.round(0)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// z = x / y, ignoring signs of x and y.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// x and y must not be 0 or an Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) uquo(x, y *Float) {
|
|
|
|
|
|
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
|
|
|
|
|
panic("uquo called with 0 argument")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// mantissa length in words for desired result precision + 1
|
|
|
|
|
|
// (at least one extra bit so we get the rounding bit after
|
|
|
|
|
|
// the division)
|
|
|
|
|
|
n := int(z.prec/_W) + 1
|
|
|
|
|
|
|
|
|
|
|
|
// compute adjusted x.mant such that we get enough result precision
|
|
|
|
|
|
xadj := x.mant
|
|
|
|
|
|
if d := n - len(x.mant) + len(y.mant); d > 0 {
|
|
|
|
|
|
// d extra words needed => add d "0 digits" to x
|
|
|
|
|
|
xadj = make(nat, len(x.mant)+d)
|
|
|
|
|
|
copy(xadj[d:], x.mant)
|
|
|
|
|
|
}
|
|
|
|
|
|
// TODO(gri): If we have too many digits (d < 0), we should be able
|
|
|
|
|
|
// to shorten x for faster division. But we must be extra careful
|
|
|
|
|
|
// with rounding in that case.
|
|
|
|
|
|
|
|
|
|
|
|
// divide
|
|
|
|
|
|
var r nat
|
|
|
|
|
|
z.mant, r = z.mant.div(nil, xadj, y.mant)
|
|
|
|
|
|
|
|
|
|
|
|
// determine exponent
|
|
|
|
|
|
e := int64(x.exp) - int64(y.exp) - int64(len(xadj)-len(y.mant)-len(z.mant))*_W
|
|
|
|
|
|
|
|
|
|
|
|
// normalize mantissa
|
|
|
|
|
|
z.setExp(e - int64(fnorm(z.mant)))
|
|
|
|
|
|
|
|
|
|
|
|
// The result is long enough to include (at least) the rounding bit.
|
|
|
|
|
|
// If there's a non-zero remainder, the corresponding fractional part
|
|
|
|
|
|
// (if it were computed), would have a non-zero sticky bit (if it were
|
|
|
|
|
|
// zero, it couldn't have a non-zero remainder).
|
|
|
|
|
|
var sbit uint
|
|
|
|
|
|
if len(r) > 0 {
|
|
|
|
|
|
sbit = 1
|
|
|
|
|
|
}
|
|
|
|
|
|
z.round(sbit)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y,
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// while ignoring the signs of x and y. x and y must not be 0 or an Inf.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (x *Float) ucmp(y *Float) int {
|
|
|
|
|
|
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
|
|
|
|
|
panic("ucmp called with 0 argument")
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
switch {
|
|
|
|
|
|
case x.exp < y.exp:
|
|
|
|
|
|
return -1
|
|
|
|
|
|
case x.exp > y.exp:
|
|
|
|
|
|
return 1
|
|
|
|
|
|
}
|
|
|
|
|
|
// x.exp == y.exp
|
|
|
|
|
|
|
|
|
|
|
|
// compare mantissas
|
|
|
|
|
|
i := len(x.mant)
|
|
|
|
|
|
j := len(y.mant)
|
|
|
|
|
|
for i > 0 || j > 0 {
|
|
|
|
|
|
var xm, ym Word
|
|
|
|
|
|
if i > 0 {
|
|
|
|
|
|
i--
|
|
|
|
|
|
xm = x.mant[i]
|
|
|
|
|
|
}
|
|
|
|
|
|
if j > 0 {
|
|
|
|
|
|
j--
|
|
|
|
|
|
ym = y.mant[j]
|
|
|
|
|
|
}
|
|
|
|
|
|
switch {
|
|
|
|
|
|
case xm < ym:
|
|
|
|
|
|
return -1
|
|
|
|
|
|
case xm > ym:
|
|
|
|
|
|
return 1
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return 0
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Handling of sign bit as defined by IEEE 754-2008,
|
|
|
|
|
|
// section 6.3 (note that there are no NaN Floats):
|
|
|
|
|
|
//
|
|
|
|
|
|
// When neither the inputs nor result are NaN, the sign of a product or
|
|
|
|
|
|
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
|
|
|
|
|
|
// or of a difference x−y regarded as a sum x+(−y), differs from at most
|
|
|
|
|
|
// one of the addends’ signs; and the sign of the result of conversions,
|
|
|
|
|
|
// the quantize operation, the roundToIntegral operations, and the
|
|
|
|
|
|
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
|
|
|
|
|
|
// These rules shall apply even when operands or results are zero or infinite.
|
|
|
|
|
|
//
|
|
|
|
|
|
// When the sum of two operands with opposite signs (or the difference of
|
|
|
|
|
|
// two operands with like signs) is exactly zero, the sign of that sum (or
|
|
|
|
|
|
// difference) shall be +0 in all rounding-direction attributes except
|
|
|
|
|
|
// roundTowardNegative; under that attribute, the sign of an exact zero
|
|
|
|
|
|
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
|
|
|
|
|
|
// sign as x even when x is zero.
|
|
|
|
|
|
|
|
|
|
|
|
// Add sets z to the rounded sum x+y and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// If z's precision is 0, it is changed to the larger
|
|
|
|
|
|
// of x's or y's precision before the operation.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// Rounding is performed according to z's precision
|
|
|
|
|
|
// and rounding mode; and z's accuracy reports the
|
|
|
|
|
|
// result error relative to the exact (not rounded)
|
|
|
|
|
|
// result.
|
|
|
|
|
|
func (z *Float) Add(x, y *Float) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = umax(x.prec, y.prec)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// TODO(gri) what about -0?
|
|
|
|
|
|
if len(y.mant) == 0 {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) handle Inf
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z.Round(x, z.prec, z.mode)
|
|
|
|
|
|
}
|
|
|
|
|
|
if len(x.mant) == 0 {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) handle Inf
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z.Round(y, z.prec, z.mode)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// x, y != 0
|
|
|
|
|
|
neg := x.neg
|
|
|
|
|
|
if x.neg == y.neg {
|
|
|
|
|
|
// x + y == x + y
|
|
|
|
|
|
// (-x) + (-y) == -(x + y)
|
|
|
|
|
|
z.uadd(x, y)
|
|
|
|
|
|
} else {
|
|
|
|
|
|
// x + (-y) == x - y == -(y - x)
|
|
|
|
|
|
// (-x) + y == y - x == -(x - y)
|
|
|
|
|
|
if x.ucmp(y) >= 0 {
|
|
|
|
|
|
z.usub(x, y)
|
|
|
|
|
|
} else {
|
|
|
|
|
|
neg = !neg
|
|
|
|
|
|
z.usub(y, x)
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
z.neg = neg
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Sub sets z to the rounded difference x-y and returns z.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// Precision, rounding, and accuracy reporting are as for Add.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Sub(x, y *Float) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = umax(x.prec, y.prec)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// TODO(gri) what about -0?
|
|
|
|
|
|
if len(y.mant) == 0 {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) handle Inf
|
2014-12-08 14:36:39 -08:00
|
|
|
|
return z.Round(x, z.prec, z.mode)
|
|
|
|
|
|
}
|
|
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
prec := z.prec
|
|
|
|
|
|
mode := z.mode
|
|
|
|
|
|
z.Neg(y)
|
|
|
|
|
|
return z.Round(z, prec, mode)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// x, y != 0
|
|
|
|
|
|
neg := x.neg
|
|
|
|
|
|
if x.neg != y.neg {
|
|
|
|
|
|
// x - (-y) == x + y
|
|
|
|
|
|
// (-x) - y == -(x + y)
|
|
|
|
|
|
z.uadd(x, y)
|
|
|
|
|
|
} else {
|
|
|
|
|
|
// x - y == x - y == -(y - x)
|
|
|
|
|
|
// (-x) - (-y) == y - x == -(x - y)
|
|
|
|
|
|
if x.ucmp(y) >= 0 {
|
|
|
|
|
|
z.usub(x, y)
|
|
|
|
|
|
} else {
|
|
|
|
|
|
neg = !neg
|
|
|
|
|
|
z.usub(y, x)
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
z.neg = neg
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Mul sets z to the rounded product x*y and returns z.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// Precision, rounding, and accuracy reporting are as for Add.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Mul(x, y *Float) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = umax(x.prec, y.prec)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(gri) handle Inf
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// TODO(gri) what about -0?
|
|
|
|
|
|
if len(x.mant) == 0 || len(y.mant) == 0 {
|
|
|
|
|
|
z.neg = false
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// x, y != 0
|
|
|
|
|
|
z.umul(x, y)
|
|
|
|
|
|
z.neg = x.neg != y.neg
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Quo sets z to the rounded quotient x/y and returns z.
|
|
|
|
|
|
// If y == 0, a division-by-zero run-time panic occurs. TODO(gri) this should become Inf
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// Precision, rounding, and accuracy reporting are as for Add.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Quo(x, y *Float) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = umax(x.prec, y.prec)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(gri) handle Inf
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(gri) check that this is correct
|
|
|
|
|
|
z.neg = x.neg != y.neg
|
|
|
|
|
|
|
|
|
|
|
|
if len(y.mant) == 0 {
|
|
|
|
|
|
z.setExp(infExp)
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
z.mant = z.mant[:0]
|
|
|
|
|
|
z.exp = 0
|
|
|
|
|
|
z.acc = Exact
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// x, y != 0
|
|
|
|
|
|
z.uquo(x, y)
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Lsh sets z to the rounded x * (1<<s) and returns z.
|
2015-02-06 16:51:00 -08:00
|
|
|
|
// If z's precision is 0, it is changed to x's precision.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// Rounding is performed according to z's precision
|
|
|
|
|
|
// and rounding mode; and z's accuracy reports the
|
|
|
|
|
|
// result error relative to the exact (not rounded)
|
|
|
|
|
|
// result.
|
|
|
|
|
|
func (z *Float) Lsh(x *Float, s uint, mode RoundingMode) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = x.prec
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(gri) handle Inf
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
z.Round(x, z.prec, mode)
|
|
|
|
|
|
z.setExp(int64(z.exp) + int64(s))
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Rsh sets z to the rounded x / (1<<s) and returns z.
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// Precision, rounding, and accuracy reporting are as for Lsh.
|
2014-12-08 14:36:39 -08:00
|
|
|
|
func (z *Float) Rsh(x *Float, s uint, mode RoundingMode) *Float {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
if z.prec == 0 {
|
|
|
|
|
|
z.prec = x.prec
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(gri) handle Inf
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
z.Round(x, z.prec, mode)
|
|
|
|
|
|
z.setExp(int64(z.exp) - int64(s))
|
|
|
|
|
|
return z
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Cmp compares x and y and returns:
|
|
|
|
|
|
//
|
|
|
|
|
|
// -1 if x < y
|
|
|
|
|
|
// 0 if x == y (incl. -0 == 0)
|
|
|
|
|
|
// +1 if x > y
|
|
|
|
|
|
//
|
|
|
|
|
|
func (x *Float) Cmp(y *Float) int {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// TODO(gri) handle Inf
|
|
|
|
|
|
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// special cases
|
|
|
|
|
|
switch {
|
|
|
|
|
|
case len(x.mant) == 0:
|
|
|
|
|
|
// 0 cmp y == -sign(y)
|
|
|
|
|
|
return -y.Sign()
|
|
|
|
|
|
case len(y.mant) == 0:
|
|
|
|
|
|
// x cmp 0 == sign(x)
|
|
|
|
|
|
return x.Sign()
|
|
|
|
|
|
}
|
|
|
|
|
|
// x != 0 && y != 0
|
|
|
|
|
|
|
|
|
|
|
|
// x cmp y == x cmp y
|
|
|
|
|
|
// x cmp (-y) == 1
|
|
|
|
|
|
// (-x) cmp y == -1
|
|
|
|
|
|
// (-x) cmp (-y) == -(x cmp y)
|
|
|
|
|
|
switch {
|
|
|
|
|
|
case x.neg == y.neg:
|
|
|
|
|
|
r := x.ucmp(y)
|
|
|
|
|
|
if x.neg {
|
|
|
|
|
|
r = -r
|
|
|
|
|
|
}
|
|
|
|
|
|
return r
|
|
|
|
|
|
case x.neg:
|
|
|
|
|
|
return -1
|
|
|
|
|
|
default:
|
|
|
|
|
|
return 1
|
|
|
|
|
|
}
|
|
|
|
|
|
return 0
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Sign returns:
|
|
|
|
|
|
//
|
|
|
|
|
|
// -1 if x < 0
|
2015-02-05 17:21:48 -08:00
|
|
|
|
// 0 if x == 0 (incl. x == -0) // TODO(gri) is this correct?
|
2014-12-08 14:36:39 -08:00
|
|
|
|
// +1 if x > 0
|
|
|
|
|
|
//
|
|
|
|
|
|
func (x *Float) Sign() int {
|
|
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
|
|
return 0
|
|
|
|
|
|
}
|
|
|
|
|
|
if x.neg {
|
|
|
|
|
|
return -1
|
|
|
|
|
|
}
|
|
|
|
|
|
return 1
|
|
|
|
|
|
}
|
2015-02-05 17:21:48 -08:00
|
|
|
|
|
|
|
|
|
|
func umax(x, y uint) uint {
|
2015-02-09 11:26:56 -08:00
|
|
|
|
if x > y {
|
2015-02-05 17:21:48 -08:00
|
|
|
|
return x
|
|
|
|
|
|
}
|
|
|
|
|
|
return y
|
|
|
|
|
|
}
|