go/src/cmd/compile/internal/ir/expr.go

886 lines
24 KiB
Go
Raw Normal View History

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
import (
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
[dev.regabi] cmd/compile: add ConstExpr Currently, we represent constant-folded expressions with Name, which is suboptimal because Name has a lot of fields to support declared names (which are irrelevant to constant-folded expressions), while constant expressions are fairly common. This CL introduces a new lightweight ConstExpr type that simply wraps an existing expression and associates it with a value. Passes buildall w/ toolstash -cmp. name old time/op new time/op delta Template 252ms ± 3% 254ms ± 1% ~ (p=0.821 n=12+10) Unicode 120ms ± 2% 107ms ± 7% -11.09% (p=0.000 n=12+12) GoTypes 918ms ± 2% 918ms ± 1% ~ (p=0.974 n=12+10) Compiler 5.19s ± 1% 5.18s ± 0% ~ (p=0.190 n=12+11) SSA 12.4s ± 1% 12.3s ± 1% ~ (p=0.283 n=10+12) Flate 152ms ± 2% 148ms ± 4% -2.68% (p=0.007 n=10+12) GoParser 212ms ± 1% 211ms ± 2% ~ (p=0.674 n=10+12) Reflect 543ms ± 3% 542ms ± 3% ~ (p=0.799 n=12+12) Tar 224ms ± 2% 225ms ± 2% ~ (p=0.378 n=12+12) XML 292ms ± 1% 299ms ± 3% +2.18% (p=0.006 n=10+12) name old user-time/op new user-time/op delta Template 243ms ± 4% 244ms ± 5% ~ (p=0.887 n=12+12) Unicode 112ms ± 6% 100ms ±10% -10.76% (p=0.000 n=12+12) GoTypes 898ms ± 3% 895ms ± 3% ~ (p=0.671 n=12+12) Compiler 5.10s ± 1% 5.08s ± 1% ~ (p=0.104 n=12+11) SSA 12.2s ± 2% 12.1s ± 1% ~ (p=0.487 n=11+12) Flate 144ms ± 6% 145ms ± 5% ~ (p=0.695 n=12+11) GoParser 205ms ± 5% 204ms ± 3% ~ (p=0.514 n=12+12) Reflect 528ms ± 3% 531ms ± 4% ~ (p=0.630 n=12+12) Tar 218ms ± 4% 219ms ± 3% ~ (p=0.843 n=12+12) XML 284ms ± 5% 291ms ± 5% ~ (p=0.069 n=11+12) name old alloc/op new alloc/op delta Template 37.0MB ± 0% 36.7MB ± 0% -0.72% (p=0.000 n=12+12) Unicode 31.9MB ± 0% 29.5MB ± 0% -7.60% (p=0.000 n=12+12) GoTypes 119MB ± 0% 118MB ± 0% -0.40% (p=0.000 n=12+12) Compiler 629MB ± 0% 626MB ± 0% -0.36% (p=0.000 n=11+12) SSA 1.45GB ± 0% 1.43GB ± 0% -0.78% (p=0.000 n=12+12) Flate 22.2MB ± 0% 21.9MB ± 0% -1.12% (p=0.000 n=12+12) GoParser 29.4MB ± 0% 29.3MB ± 0% -0.36% (p=0.000 n=12+12) Reflect 76.1MB ± 0% 75.8MB ± 0% -0.38% (p=0.000 n=12+12) Tar 33.4MB ± 0% 33.2MB ± 0% -0.61% (p=0.000 n=12+12) XML 43.2MB ± 0% 42.8MB ± 0% -1.03% (p=0.000 n=11+12) name old allocs/op new allocs/op delta Template 375k ± 0% 375k ± 0% ~ (p=0.854 n=12+12) Unicode 300k ± 0% 300k ± 0% ~ (p=0.766 n=12+12) GoTypes 1.30M ± 0% 1.30M ± 0% ~ (p=0.272 n=12+12) Compiler 5.89M ± 0% 5.89M ± 0% ~ (p=0.478 n=12+12) SSA 14.0M ± 0% 14.0M ± 0% ~ (p=0.266 n=12+12) Flate 226k ± 0% 226k ± 0% ~ (p=0.898 n=12+12) GoParser 313k ± 0% 313k ± 0% -0.01% (p=0.042 n=12+11) Reflect 971k ± 0% 971k ± 0% ~ (p=0.080 n=12+12) Tar 342k ± 0% 342k ± 0% ~ (p=0.600 n=12+12) XML 416k ± 0% 416k ± 0% ~ (p=0.217 n=11+12) name old maxRSS/op new maxRSS/op delta Template 43.1M ± 5% 42.5M ± 5% ~ (p=0.086 n=12+12) Unicode 49.4M ± 2% 47.0M ± 2% -4.88% (p=0.000 n=12+12) GoTypes 85.3M ± 2% 84.6M ± 2% -0.84% (p=0.047 n=11+11) Compiler 394M ± 3% 386M ± 2% -1.97% (p=0.000 n=10+11) SSA 847M ± 4% 821M ± 2% -2.98% (p=0.000 n=11+12) Flate 36.0M ± 7% 35.2M ± 7% ~ (p=0.128 n=12+12) GoParser 39.4M ± 7% 39.5M ± 4% ~ (p=0.413 n=12+11) Reflect 64.0M ± 3% 63.6M ± 3% ~ (p=0.413 n=11+12) Tar 43.3M ± 5% 43.3M ± 5% ~ (p=0.503 n=12+12) XML 47.6M ± 4% 46.4M ± 2% -2.46% (p=0.013 n=11+12) Change-Id: If5781be346351c30b2228807211b5e57f777c506 Reviewed-on: https://go-review.googlesource.com/c/go/+/275033 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org> Trust: Matthew Dempsky <mdempsky@google.com>
2020-12-02 19:26:56 -08:00
"go/constant"
)
func maybeDo(x Node, err error, do func(Node) error) error {
if x != nil && err == nil {
err = do(x)
}
return err
}
func maybeDoList(x Nodes, err error, do func(Node) error) error {
if err == nil {
err = DoList(x, do)
}
return err
}
func maybeEdit(x Node, edit func(Node) Node) Node {
if x == nil {
return x
}
return edit(x)
}
// An Expr is a Node that can appear as an expression.
type Expr interface {
Node
isExpr()
}
// A miniExpr is a miniNode with extra fields common to expressions.
// TODO(rsc): Once we are sure about the contents, compact the bools
// into a bit field and leave extra bits available for implementations
// embedding miniExpr. Right now there are ~60 unused bits sitting here.
type miniExpr struct {
miniNode
typ *types.Type
init Nodes // TODO(rsc): Don't require every Node to have an init
opt interface{} // TODO(rsc): Don't require every Node to have an opt?
flags bitset8
}
const (
miniExprHasCall = 1 << iota
miniExprNonNil
miniExprTransient
miniExprBounded
miniExprImplicit // for use by implementations; not supported by every Expr
)
func (*miniExpr) isExpr() {}
func (n *miniExpr) Type() *types.Type { return n.typ }
func (n *miniExpr) SetType(x *types.Type) { n.typ = x }
func (n *miniExpr) Opt() interface{} { return n.opt }
func (n *miniExpr) SetOpt(x interface{}) { n.opt = x }
func (n *miniExpr) HasCall() bool { return n.flags&miniExprHasCall != 0 }
func (n *miniExpr) SetHasCall(b bool) { n.flags.set(miniExprHasCall, b) }
func (n *miniExpr) NonNil() bool { return n.flags&miniExprNonNil != 0 }
func (n *miniExpr) MarkNonNil() { n.flags |= miniExprNonNil }
func (n *miniExpr) Transient() bool { return n.flags&miniExprTransient != 0 }
func (n *miniExpr) SetTransient(b bool) { n.flags.set(miniExprTransient, b) }
func (n *miniExpr) Bounded() bool { return n.flags&miniExprBounded != 0 }
func (n *miniExpr) SetBounded(b bool) { n.flags.set(miniExprBounded, b) }
func (n *miniExpr) Init() Nodes { return n.init }
func (n *miniExpr) PtrInit() *Nodes { return &n.init }
func (n *miniExpr) SetInit(x Nodes) { n.init = x }
func toNtype(x Node) Ntype {
if x == nil {
return nil
}
if _, ok := x.(Ntype); !ok {
Dump("not Ntype", x)
}
return x.(Ntype)
}
// An AddStringExpr is a string concatenation Expr[0] + Exprs[1] + ... + Expr[len(Expr)-1].
type AddStringExpr struct {
miniExpr
List_ Nodes
Prealloc *Name
}
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr {
n := &AddStringExpr{}
n.pos = pos
n.op = OADDSTR
n.List_.Set(list)
return n
}
func (n *AddStringExpr) List() Nodes { return n.List_ }
func (n *AddStringExpr) PtrList() *Nodes { return &n.List_ }
func (n *AddStringExpr) SetList(x Nodes) { n.List_ = x }
// An AddrExpr is an address-of expression &X.
// It may end up being a normal address-of or an allocation of a composite literal.
type AddrExpr struct {
miniExpr
X Node
Alloc Node // preallocated storage if any
}
func NewAddrExpr(pos src.XPos, x Node) *AddrExpr {
n := &AddrExpr{X: x}
n.op = OADDR
n.pos = pos
return n
}
func (n *AddrExpr) Left() Node { return n.X }
func (n *AddrExpr) SetLeft(x Node) { n.X = x }
func (n *AddrExpr) Right() Node { return n.Alloc }
func (n *AddrExpr) SetRight(x Node) { n.Alloc = x }
func (n *AddrExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *AddrExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *AddrExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OADDR, OPTRLIT:
n.op = op
}
}
// A BinaryExpr is a binary expression X Op Y,
// or Op(X, Y) for builtin functions that do not become calls.
type BinaryExpr struct {
miniExpr
X Node
Y Node
}
func NewBinaryExpr(pos src.XPos, op Op, x, y Node) *BinaryExpr {
n := &BinaryExpr{X: x, Y: y}
n.pos = pos
n.SetOp(op)
return n
}
func (n *BinaryExpr) Left() Node { return n.X }
func (n *BinaryExpr) SetLeft(x Node) { n.X = x }
func (n *BinaryExpr) Right() Node { return n.Y }
func (n *BinaryExpr) SetRight(y Node) { n.Y = y }
func (n *BinaryExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OADD, OADDSTR, OAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE,
OLSH, OLT, OMOD, OMUL, ONE, OOR, ORSH, OSUB, OXOR,
OCOPY, OCOMPLEX,
OEFACE:
n.op = op
}
}
// A CallUse records how the result of the call is used:
type CallUse int
const (
_ CallUse = iota
CallUseExpr // single expression result is used
CallUseList // list of results are used
CallUseStmt // results not used - call is a statement
)
// A CallExpr is a function call X(Args).
type CallExpr struct {
miniExpr
orig Node
X Node
Args Nodes
Rargs Nodes // TODO(rsc): Delete.
Body_ Nodes // TODO(rsc): Delete.
DDD bool
Use CallUse
NoInline_ bool
}
func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr {
n := &CallExpr{X: fun}
n.pos = pos
n.orig = n
n.SetOp(op)
n.Args.Set(args)
return n
}
func (*CallExpr) isStmt() {}
func (n *CallExpr) Orig() Node { return n.orig }
func (n *CallExpr) SetOrig(x Node) { n.orig = x }
func (n *CallExpr) Left() Node { return n.X }
func (n *CallExpr) SetLeft(x Node) { n.X = x }
func (n *CallExpr) List() Nodes { return n.Args }
func (n *CallExpr) PtrList() *Nodes { return &n.Args }
func (n *CallExpr) SetList(x Nodes) { n.Args = x }
func (n *CallExpr) Rlist() Nodes { return n.Rargs }
func (n *CallExpr) PtrRlist() *Nodes { return &n.Rargs }
func (n *CallExpr) SetRlist(x Nodes) { n.Rargs = x }
func (n *CallExpr) IsDDD() bool { return n.DDD }
func (n *CallExpr) SetIsDDD(x bool) { n.DDD = x }
func (n *CallExpr) NoInline() bool { return n.NoInline_ }
func (n *CallExpr) SetNoInline(x bool) { n.NoInline_ = x }
func (n *CallExpr) Body() Nodes { return n.Body_ }
func (n *CallExpr) PtrBody() *Nodes { return &n.Body_ }
func (n *CallExpr) SetBody(x Nodes) { n.Body_ = x }
func (n *CallExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH,
OAPPEND, ODELETE, OGETG, OMAKE, OPRINT, OPRINTN, ORECOVER:
n.op = op
}
}
// A CallPartExpr is a method expression X.Method (uncalled).
type CallPartExpr struct {
miniExpr
Func_ *Func
X Node
Method *types.Field
Prealloc *Name
}
func NewCallPartExpr(pos src.XPos, x Node, method *types.Field, fn *Func) *CallPartExpr {
n := &CallPartExpr{Func_: fn, X: x, Method: method}
n.op = OCALLPART
n.pos = pos
n.typ = fn.Type()
n.Func_ = fn
return n
}
func (n *CallPartExpr) Func() *Func { return n.Func_ }
func (n *CallPartExpr) Left() Node { return n.X }
func (n *CallPartExpr) Sym() *types.Sym { return n.Method.Sym }
func (n *CallPartExpr) SetLeft(x Node) { n.X = x }
// A ClosureExpr is a function literal expression.
type ClosureExpr struct {
miniExpr
Func_ *Func
Prealloc *Name
}
func NewClosureExpr(pos src.XPos, fn *Func) *ClosureExpr {
n := &ClosureExpr{Func_: fn}
n.op = OCLOSURE
n.pos = pos
return n
}
func (n *ClosureExpr) Func() *Func { return n.Func_ }
// A ClosureRead denotes reading a variable stored within a closure struct.
type ClosureReadExpr struct {
miniExpr
Offset_ int64
}
func NewClosureRead(typ *types.Type, offset int64) *ClosureReadExpr {
n := &ClosureReadExpr{Offset_: offset}
n.typ = typ
n.op = OCLOSUREREAD
return n
}
func (n *ClosureReadExpr) Type() *types.Type { return n.typ }
func (n *ClosureReadExpr) Offset() int64 { return n.Offset_ }
// A CompLitExpr is a composite literal Type{Vals}.
// Before type-checking, the type is Ntype.
type CompLitExpr struct {
miniExpr
orig Node
Ntype Ntype
List_ Nodes // initialized values
Prealloc *Name
}
func NewCompLitExpr(pos src.XPos, op Op, typ Ntype, list []Node) *CompLitExpr {
n := &CompLitExpr{Ntype: typ}
n.pos = pos
n.SetOp(op)
n.List_.Set(list)
n.orig = n
return n
}
func (n *CompLitExpr) Orig() Node { return n.orig }
func (n *CompLitExpr) SetOrig(x Node) { n.orig = x }
func (n *CompLitExpr) Right() Node { return n.Ntype }
func (n *CompLitExpr) SetRight(x Node) { n.Ntype = toNtype(x) }
func (n *CompLitExpr) List() Nodes { return n.List_ }
func (n *CompLitExpr) PtrList() *Nodes { return &n.List_ }
func (n *CompLitExpr) SetList(x Nodes) { n.List_ = x }
func (n *CompLitExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *CompLitExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *CompLitExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OARRAYLIT, OCOMPLIT, OMAPLIT, OSTRUCTLIT, OSLICELIT:
n.op = op
}
}
[dev.regabi] cmd/compile: add ConstExpr Currently, we represent constant-folded expressions with Name, which is suboptimal because Name has a lot of fields to support declared names (which are irrelevant to constant-folded expressions), while constant expressions are fairly common. This CL introduces a new lightweight ConstExpr type that simply wraps an existing expression and associates it with a value. Passes buildall w/ toolstash -cmp. name old time/op new time/op delta Template 252ms ± 3% 254ms ± 1% ~ (p=0.821 n=12+10) Unicode 120ms ± 2% 107ms ± 7% -11.09% (p=0.000 n=12+12) GoTypes 918ms ± 2% 918ms ± 1% ~ (p=0.974 n=12+10) Compiler 5.19s ± 1% 5.18s ± 0% ~ (p=0.190 n=12+11) SSA 12.4s ± 1% 12.3s ± 1% ~ (p=0.283 n=10+12) Flate 152ms ± 2% 148ms ± 4% -2.68% (p=0.007 n=10+12) GoParser 212ms ± 1% 211ms ± 2% ~ (p=0.674 n=10+12) Reflect 543ms ± 3% 542ms ± 3% ~ (p=0.799 n=12+12) Tar 224ms ± 2% 225ms ± 2% ~ (p=0.378 n=12+12) XML 292ms ± 1% 299ms ± 3% +2.18% (p=0.006 n=10+12) name old user-time/op new user-time/op delta Template 243ms ± 4% 244ms ± 5% ~ (p=0.887 n=12+12) Unicode 112ms ± 6% 100ms ±10% -10.76% (p=0.000 n=12+12) GoTypes 898ms ± 3% 895ms ± 3% ~ (p=0.671 n=12+12) Compiler 5.10s ± 1% 5.08s ± 1% ~ (p=0.104 n=12+11) SSA 12.2s ± 2% 12.1s ± 1% ~ (p=0.487 n=11+12) Flate 144ms ± 6% 145ms ± 5% ~ (p=0.695 n=12+11) GoParser 205ms ± 5% 204ms ± 3% ~ (p=0.514 n=12+12) Reflect 528ms ± 3% 531ms ± 4% ~ (p=0.630 n=12+12) Tar 218ms ± 4% 219ms ± 3% ~ (p=0.843 n=12+12) XML 284ms ± 5% 291ms ± 5% ~ (p=0.069 n=11+12) name old alloc/op new alloc/op delta Template 37.0MB ± 0% 36.7MB ± 0% -0.72% (p=0.000 n=12+12) Unicode 31.9MB ± 0% 29.5MB ± 0% -7.60% (p=0.000 n=12+12) GoTypes 119MB ± 0% 118MB ± 0% -0.40% (p=0.000 n=12+12) Compiler 629MB ± 0% 626MB ± 0% -0.36% (p=0.000 n=11+12) SSA 1.45GB ± 0% 1.43GB ± 0% -0.78% (p=0.000 n=12+12) Flate 22.2MB ± 0% 21.9MB ± 0% -1.12% (p=0.000 n=12+12) GoParser 29.4MB ± 0% 29.3MB ± 0% -0.36% (p=0.000 n=12+12) Reflect 76.1MB ± 0% 75.8MB ± 0% -0.38% (p=0.000 n=12+12) Tar 33.4MB ± 0% 33.2MB ± 0% -0.61% (p=0.000 n=12+12) XML 43.2MB ± 0% 42.8MB ± 0% -1.03% (p=0.000 n=11+12) name old allocs/op new allocs/op delta Template 375k ± 0% 375k ± 0% ~ (p=0.854 n=12+12) Unicode 300k ± 0% 300k ± 0% ~ (p=0.766 n=12+12) GoTypes 1.30M ± 0% 1.30M ± 0% ~ (p=0.272 n=12+12) Compiler 5.89M ± 0% 5.89M ± 0% ~ (p=0.478 n=12+12) SSA 14.0M ± 0% 14.0M ± 0% ~ (p=0.266 n=12+12) Flate 226k ± 0% 226k ± 0% ~ (p=0.898 n=12+12) GoParser 313k ± 0% 313k ± 0% -0.01% (p=0.042 n=12+11) Reflect 971k ± 0% 971k ± 0% ~ (p=0.080 n=12+12) Tar 342k ± 0% 342k ± 0% ~ (p=0.600 n=12+12) XML 416k ± 0% 416k ± 0% ~ (p=0.217 n=11+12) name old maxRSS/op new maxRSS/op delta Template 43.1M ± 5% 42.5M ± 5% ~ (p=0.086 n=12+12) Unicode 49.4M ± 2% 47.0M ± 2% -4.88% (p=0.000 n=12+12) GoTypes 85.3M ± 2% 84.6M ± 2% -0.84% (p=0.047 n=11+11) Compiler 394M ± 3% 386M ± 2% -1.97% (p=0.000 n=10+11) SSA 847M ± 4% 821M ± 2% -2.98% (p=0.000 n=11+12) Flate 36.0M ± 7% 35.2M ± 7% ~ (p=0.128 n=12+12) GoParser 39.4M ± 7% 39.5M ± 4% ~ (p=0.413 n=12+11) Reflect 64.0M ± 3% 63.6M ± 3% ~ (p=0.413 n=11+12) Tar 43.3M ± 5% 43.3M ± 5% ~ (p=0.503 n=12+12) XML 47.6M ± 4% 46.4M ± 2% -2.46% (p=0.013 n=11+12) Change-Id: If5781be346351c30b2228807211b5e57f777c506 Reviewed-on: https://go-review.googlesource.com/c/go/+/275033 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org> Trust: Matthew Dempsky <mdempsky@google.com>
2020-12-02 19:26:56 -08:00
type ConstExpr struct {
miniExpr
val constant.Value
orig Node
}
func NewConstExpr(val constant.Value, orig Node) Node {
n := &ConstExpr{orig: orig, val: val}
n.op = OLITERAL
n.pos = orig.Pos()
n.SetType(orig.Type())
n.SetTypecheck(orig.Typecheck())
n.SetDiag(orig.Diag())
return n
}
func (n *ConstExpr) Sym() *types.Sym { return n.orig.Sym() }
func (n *ConstExpr) Orig() Node { return n.orig }
func (n *ConstExpr) SetOrig(orig Node) { panic(n.no("SetOrig")) }
func (n *ConstExpr) Val() constant.Value { return n.val }
[dev.regabi] cmd/compile: add ConstExpr Currently, we represent constant-folded expressions with Name, which is suboptimal because Name has a lot of fields to support declared names (which are irrelevant to constant-folded expressions), while constant expressions are fairly common. This CL introduces a new lightweight ConstExpr type that simply wraps an existing expression and associates it with a value. Passes buildall w/ toolstash -cmp. name old time/op new time/op delta Template 252ms ± 3% 254ms ± 1% ~ (p=0.821 n=12+10) Unicode 120ms ± 2% 107ms ± 7% -11.09% (p=0.000 n=12+12) GoTypes 918ms ± 2% 918ms ± 1% ~ (p=0.974 n=12+10) Compiler 5.19s ± 1% 5.18s ± 0% ~ (p=0.190 n=12+11) SSA 12.4s ± 1% 12.3s ± 1% ~ (p=0.283 n=10+12) Flate 152ms ± 2% 148ms ± 4% -2.68% (p=0.007 n=10+12) GoParser 212ms ± 1% 211ms ± 2% ~ (p=0.674 n=10+12) Reflect 543ms ± 3% 542ms ± 3% ~ (p=0.799 n=12+12) Tar 224ms ± 2% 225ms ± 2% ~ (p=0.378 n=12+12) XML 292ms ± 1% 299ms ± 3% +2.18% (p=0.006 n=10+12) name old user-time/op new user-time/op delta Template 243ms ± 4% 244ms ± 5% ~ (p=0.887 n=12+12) Unicode 112ms ± 6% 100ms ±10% -10.76% (p=0.000 n=12+12) GoTypes 898ms ± 3% 895ms ± 3% ~ (p=0.671 n=12+12) Compiler 5.10s ± 1% 5.08s ± 1% ~ (p=0.104 n=12+11) SSA 12.2s ± 2% 12.1s ± 1% ~ (p=0.487 n=11+12) Flate 144ms ± 6% 145ms ± 5% ~ (p=0.695 n=12+11) GoParser 205ms ± 5% 204ms ± 3% ~ (p=0.514 n=12+12) Reflect 528ms ± 3% 531ms ± 4% ~ (p=0.630 n=12+12) Tar 218ms ± 4% 219ms ± 3% ~ (p=0.843 n=12+12) XML 284ms ± 5% 291ms ± 5% ~ (p=0.069 n=11+12) name old alloc/op new alloc/op delta Template 37.0MB ± 0% 36.7MB ± 0% -0.72% (p=0.000 n=12+12) Unicode 31.9MB ± 0% 29.5MB ± 0% -7.60% (p=0.000 n=12+12) GoTypes 119MB ± 0% 118MB ± 0% -0.40% (p=0.000 n=12+12) Compiler 629MB ± 0% 626MB ± 0% -0.36% (p=0.000 n=11+12) SSA 1.45GB ± 0% 1.43GB ± 0% -0.78% (p=0.000 n=12+12) Flate 22.2MB ± 0% 21.9MB ± 0% -1.12% (p=0.000 n=12+12) GoParser 29.4MB ± 0% 29.3MB ± 0% -0.36% (p=0.000 n=12+12) Reflect 76.1MB ± 0% 75.8MB ± 0% -0.38% (p=0.000 n=12+12) Tar 33.4MB ± 0% 33.2MB ± 0% -0.61% (p=0.000 n=12+12) XML 43.2MB ± 0% 42.8MB ± 0% -1.03% (p=0.000 n=11+12) name old allocs/op new allocs/op delta Template 375k ± 0% 375k ± 0% ~ (p=0.854 n=12+12) Unicode 300k ± 0% 300k ± 0% ~ (p=0.766 n=12+12) GoTypes 1.30M ± 0% 1.30M ± 0% ~ (p=0.272 n=12+12) Compiler 5.89M ± 0% 5.89M ± 0% ~ (p=0.478 n=12+12) SSA 14.0M ± 0% 14.0M ± 0% ~ (p=0.266 n=12+12) Flate 226k ± 0% 226k ± 0% ~ (p=0.898 n=12+12) GoParser 313k ± 0% 313k ± 0% -0.01% (p=0.042 n=12+11) Reflect 971k ± 0% 971k ± 0% ~ (p=0.080 n=12+12) Tar 342k ± 0% 342k ± 0% ~ (p=0.600 n=12+12) XML 416k ± 0% 416k ± 0% ~ (p=0.217 n=11+12) name old maxRSS/op new maxRSS/op delta Template 43.1M ± 5% 42.5M ± 5% ~ (p=0.086 n=12+12) Unicode 49.4M ± 2% 47.0M ± 2% -4.88% (p=0.000 n=12+12) GoTypes 85.3M ± 2% 84.6M ± 2% -0.84% (p=0.047 n=11+11) Compiler 394M ± 3% 386M ± 2% -1.97% (p=0.000 n=10+11) SSA 847M ± 4% 821M ± 2% -2.98% (p=0.000 n=11+12) Flate 36.0M ± 7% 35.2M ± 7% ~ (p=0.128 n=12+12) GoParser 39.4M ± 7% 39.5M ± 4% ~ (p=0.413 n=12+11) Reflect 64.0M ± 3% 63.6M ± 3% ~ (p=0.413 n=11+12) Tar 43.3M ± 5% 43.3M ± 5% ~ (p=0.503 n=12+12) XML 47.6M ± 4% 46.4M ± 2% -2.46% (p=0.013 n=11+12) Change-Id: If5781be346351c30b2228807211b5e57f777c506 Reviewed-on: https://go-review.googlesource.com/c/go/+/275033 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org> Trust: Matthew Dempsky <mdempsky@google.com>
2020-12-02 19:26:56 -08:00
// A ConvExpr is a conversion Type(X).
// It may end up being a value or a type.
type ConvExpr struct {
miniExpr
X Node
}
func NewConvExpr(pos src.XPos, op Op, typ *types.Type, x Node) *ConvExpr {
n := &ConvExpr{X: x}
n.pos = pos
n.typ = typ
n.SetOp(op)
return n
}
func (n *ConvExpr) Left() Node { return n.X }
func (n *ConvExpr) SetLeft(x Node) { n.X = x }
func (n *ConvExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *ConvExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *ConvExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OCONV, OCONVIFACE, OCONVNOP, OBYTES2STR, OBYTES2STRTMP, ORUNES2STR, OSTR2BYTES, OSTR2BYTESTMP, OSTR2RUNES, ORUNESTR:
n.op = op
}
}
// An IndexExpr is an index expression X[Y].
type IndexExpr struct {
miniExpr
X Node
Index Node
Assigned bool
}
func NewIndexExpr(pos src.XPos, x, index Node) *IndexExpr {
n := &IndexExpr{X: x, Index: index}
n.pos = pos
n.op = OINDEX
return n
}
func (n *IndexExpr) Left() Node { return n.X }
func (n *IndexExpr) SetLeft(x Node) { n.X = x }
func (n *IndexExpr) Right() Node { return n.Index }
func (n *IndexExpr) SetRight(y Node) { n.Index = y }
func (n *IndexExpr) IndexMapLValue() bool { return n.Assigned }
func (n *IndexExpr) SetIndexMapLValue(x bool) { n.Assigned = x }
func (n *IndexExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OINDEX, OINDEXMAP:
n.op = op
}
}
// A KeyExpr is a Key: Value composite literal key.
type KeyExpr struct {
miniExpr
Key Node
Value Node
}
func NewKeyExpr(pos src.XPos, key, value Node) *KeyExpr {
n := &KeyExpr{Key: key, Value: value}
n.pos = pos
n.op = OKEY
return n
}
func (n *KeyExpr) Left() Node { return n.Key }
func (n *KeyExpr) SetLeft(x Node) { n.Key = x }
func (n *KeyExpr) Right() Node { return n.Value }
func (n *KeyExpr) SetRight(y Node) { n.Value = y }
// A StructKeyExpr is an Field: Value composite literal key.
type StructKeyExpr struct {
miniExpr
Field *types.Sym
Value Node
Offset_ int64
}
func NewStructKeyExpr(pos src.XPos, field *types.Sym, value Node) *StructKeyExpr {
n := &StructKeyExpr{Field: field, Value: value}
n.pos = pos
n.op = OSTRUCTKEY
n.Offset_ = types.BADWIDTH
return n
}
func (n *StructKeyExpr) Sym() *types.Sym { return n.Field }
func (n *StructKeyExpr) SetSym(x *types.Sym) { n.Field = x }
func (n *StructKeyExpr) Left() Node { return n.Value }
func (n *StructKeyExpr) SetLeft(x Node) { n.Value = x }
func (n *StructKeyExpr) Offset() int64 { return n.Offset_ }
func (n *StructKeyExpr) SetOffset(x int64) { n.Offset_ = x }
// An InlinedCallExpr is an inlined function call.
type InlinedCallExpr struct {
miniExpr
Body_ Nodes
ReturnVars Nodes
}
func NewInlinedCallExpr(pos src.XPos, body, retvars []Node) *InlinedCallExpr {
n := &InlinedCallExpr{}
n.pos = pos
n.op = OINLCALL
n.Body_.Set(body)
n.ReturnVars.Set(retvars)
return n
}
func (n *InlinedCallExpr) Body() Nodes { return n.Body_ }
func (n *InlinedCallExpr) PtrBody() *Nodes { return &n.Body_ }
func (n *InlinedCallExpr) SetBody(x Nodes) { n.Body_ = x }
func (n *InlinedCallExpr) Rlist() Nodes { return n.ReturnVars }
func (n *InlinedCallExpr) PtrRlist() *Nodes { return &n.ReturnVars }
func (n *InlinedCallExpr) SetRlist(x Nodes) { n.ReturnVars = x }
// A LogicalExpr is a expression X Op Y where Op is && or ||.
// It is separate from BinaryExpr to make room for statements
// that must be executed before Y but after X.
type LogicalExpr struct {
miniExpr
X Node
Y Node
}
func NewLogicalExpr(pos src.XPos, op Op, x, y Node) *LogicalExpr {
n := &LogicalExpr{X: x, Y: y}
n.pos = pos
n.SetOp(op)
return n
}
func (n *LogicalExpr) Left() Node { return n.X }
func (n *LogicalExpr) SetLeft(x Node) { n.X = x }
func (n *LogicalExpr) Right() Node { return n.Y }
func (n *LogicalExpr) SetRight(y Node) { n.Y = y }
func (n *LogicalExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OANDAND, OOROR:
n.op = op
}
}
// A MakeExpr is a make expression: make(Type[, Len[, Cap]]).
// Op is OMAKECHAN, OMAKEMAP, OMAKESLICE, or OMAKESLICECOPY,
// but *not* OMAKE (that's a pre-typechecking CallExpr).
type MakeExpr struct {
miniExpr
Len Node
Cap Node
}
func NewMakeExpr(pos src.XPos, op Op, len, cap Node) *MakeExpr {
n := &MakeExpr{Len: len, Cap: cap}
n.pos = pos
n.SetOp(op)
return n
}
func (n *MakeExpr) Left() Node { return n.Len }
func (n *MakeExpr) SetLeft(x Node) { n.Len = x }
func (n *MakeExpr) Right() Node { return n.Cap }
func (n *MakeExpr) SetRight(x Node) { n.Cap = x }
func (n *MakeExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OMAKECHAN, OMAKEMAP, OMAKESLICE, OMAKESLICECOPY:
n.op = op
}
}
// A MethodExpr is a method expression T.M (where T is a type).
type MethodExpr struct {
miniExpr
T *types.Type
Method *types.Field
FuncName_ *Name
}
func NewMethodExpr(pos src.XPos, t *types.Type, method *types.Field) *MethodExpr {
n := &MethodExpr{T: t, Method: method}
n.pos = pos
n.op = OMETHEXPR
return n
}
func (n *MethodExpr) FuncName() *Name { return n.FuncName_ }
func (n *MethodExpr) Left() Node { panic("MethodExpr.Left") }
func (n *MethodExpr) SetLeft(x Node) { panic("MethodExpr.SetLeft") }
func (n *MethodExpr) Right() Node { panic("MethodExpr.Right") }
func (n *MethodExpr) SetRight(x Node) { panic("MethodExpr.SetRight") }
func (n *MethodExpr) Sym() *types.Sym { panic("MethodExpr.Sym") }
func (n *MethodExpr) Offset() int64 { panic("MethodExpr.Offset") }
func (n *MethodExpr) SetOffset(x int64) { panic("MethodExpr.SetOffset") }
func (n *MethodExpr) Class() Class { panic("MethodExpr.Class") }
func (n *MethodExpr) SetClass(x Class) { panic("MethodExpr.SetClass") }
// A NilExpr represents the predefined untyped constant nil.
// (It may be copied and assigned a type, though.)
type NilExpr struct {
miniExpr
Sym_ *types.Sym // TODO: Remove
}
func NewNilExpr(pos src.XPos) *NilExpr {
n := &NilExpr{}
n.pos = pos
n.op = ONIL
return n
}
func (n *NilExpr) Sym() *types.Sym { return n.Sym_ }
func (n *NilExpr) SetSym(x *types.Sym) { n.Sym_ = x }
// A ParenExpr is a parenthesized expression (X).
// It may end up being a value or a type.
type ParenExpr struct {
miniExpr
X Node
}
func NewParenExpr(pos src.XPos, x Node) *ParenExpr {
n := &ParenExpr{X: x}
n.op = OPAREN
n.pos = pos
return n
}
func (n *ParenExpr) Left() Node { return n.X }
func (n *ParenExpr) SetLeft(x Node) { n.X = x }
func (n *ParenExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *ParenExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (*ParenExpr) CanBeNtype() {}
// SetOTYPE changes n to be an OTYPE node returning t,
// like all the type nodes in type.go.
func (n *ParenExpr) SetOTYPE(t *types.Type) {
n.op = OTYPE
n.typ = t
t.SetNod(n)
}
// A ResultExpr represents a direct access to a result slot on the stack frame.
type ResultExpr struct {
miniExpr
Offset_ int64
}
func NewResultExpr(pos src.XPos, typ *types.Type, offset int64) *ResultExpr {
n := &ResultExpr{Offset_: offset}
n.pos = pos
n.op = ORESULT
n.typ = typ
return n
}
func (n *ResultExpr) Offset() int64 { return n.Offset_ }
func (n *ResultExpr) SetOffset(x int64) { n.Offset_ = x }
// A NameOffsetExpr refers to an offset within a variable.
// It is like a SelectorExpr but without the field name.
type NameOffsetExpr struct {
miniExpr
Name_ *Name
Offset_ int64
}
func NewNameOffsetExpr(pos src.XPos, name *Name, offset int64, typ *types.Type) *NameOffsetExpr {
n := &NameOffsetExpr{Name_: name, Offset_: offset}
n.typ = typ
n.op = ONAMEOFFSET
return n
}
// A SelectorExpr is a selector expression X.Sym.
type SelectorExpr struct {
miniExpr
X Node
Sel *types.Sym
Offset_ int64
Selection *types.Field
}
func NewSelectorExpr(pos src.XPos, op Op, x Node, sel *types.Sym) *SelectorExpr {
n := &SelectorExpr{X: x, Sel: sel}
n.pos = pos
n.Offset_ = types.BADWIDTH
n.SetOp(op)
return n
}
func (n *SelectorExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case ODOT, ODOTPTR, ODOTMETH, ODOTINTER, OXDOT:
n.op = op
}
}
func (n *SelectorExpr) Left() Node { return n.X }
func (n *SelectorExpr) SetLeft(x Node) { n.X = x }
func (n *SelectorExpr) Sym() *types.Sym { return n.Sel }
func (n *SelectorExpr) SetSym(x *types.Sym) { n.Sel = x }
func (n *SelectorExpr) Offset() int64 { return n.Offset_ }
func (n *SelectorExpr) SetOffset(x int64) { n.Offset_ = x }
func (n *SelectorExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *SelectorExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
// Before type-checking, bytes.Buffer is a SelectorExpr.
// After type-checking it becomes a Name.
func (*SelectorExpr) CanBeNtype() {}
// A SliceExpr is a slice expression X[Low:High] or X[Low:High:Max].
type SliceExpr struct {
miniExpr
X Node
List_ Nodes // TODO(rsc): Use separate Nodes
}
func NewSliceExpr(pos src.XPos, op Op, x Node) *SliceExpr {
n := &SliceExpr{X: x}
n.pos = pos
n.op = op
return n
}
func (n *SliceExpr) Left() Node { return n.X }
func (n *SliceExpr) SetLeft(x Node) { n.X = x }
func (n *SliceExpr) List() Nodes { return n.List_ }
func (n *SliceExpr) PtrList() *Nodes { return &n.List_ }
func (n *SliceExpr) SetList(x Nodes) { n.List_ = x }
func (n *SliceExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
n.op = op
}
}
// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
// n must be a slice expression. max is nil if n is a simple slice expression.
func (n *SliceExpr) SliceBounds() (low, high, max Node) {
if n.List_.Len() == 0 {
return nil, nil, nil
}
switch n.Op() {
case OSLICE, OSLICEARR, OSLICESTR:
s := n.List_.Slice()
return s[0], s[1], nil
case OSLICE3, OSLICE3ARR:
s := n.List_.Slice()
return s[0], s[1], s[2]
}
base.Fatalf("SliceBounds op %v: %v", n.Op(), n)
return nil, nil, nil
}
// SetSliceBounds sets n's slice bounds, where n is a slice expression.
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
func (n *SliceExpr) SetSliceBounds(low, high, max Node) {
switch n.Op() {
case OSLICE, OSLICEARR, OSLICESTR:
if max != nil {
base.Fatalf("SetSliceBounds %v given three bounds", n.Op())
}
s := n.List_.Slice()
if s == nil {
if low == nil && high == nil {
return
}
n.List_.Set2(low, high)
return
}
s[0] = low
s[1] = high
return
case OSLICE3, OSLICE3ARR:
s := n.List_.Slice()
if s == nil {
if low == nil && high == nil && max == nil {
return
}
n.List_.Set3(low, high, max)
return
}
s[0] = low
s[1] = high
s[2] = max
return
}
base.Fatalf("SetSliceBounds op %v: %v", n.Op(), n)
}
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
// o must be a slicing op.
func (o Op) IsSlice3() bool {
switch o {
case OSLICE, OSLICEARR, OSLICESTR:
return false
case OSLICE3, OSLICE3ARR:
return true
}
base.Fatalf("IsSlice3 op %v", o)
return false
}
// A SliceHeader expression constructs a slice header from its parts.
type SliceHeaderExpr struct {
miniExpr
Ptr Node
LenCap_ Nodes // TODO(rsc): Split into two Node fields
}
func NewSliceHeaderExpr(pos src.XPos, typ *types.Type, ptr, len, cap Node) *SliceHeaderExpr {
n := &SliceHeaderExpr{Ptr: ptr}
n.pos = pos
n.op = OSLICEHEADER
n.typ = typ
n.LenCap_.Set2(len, cap)
return n
}
func (n *SliceHeaderExpr) Left() Node { return n.Ptr }
func (n *SliceHeaderExpr) SetLeft(x Node) { n.Ptr = x }
func (n *SliceHeaderExpr) List() Nodes { return n.LenCap_ }
func (n *SliceHeaderExpr) PtrList() *Nodes { return &n.LenCap_ }
func (n *SliceHeaderExpr) SetList(x Nodes) { n.LenCap_ = x }
// A StarExpr is a dereference expression *X.
// It may end up being a value or a type.
type StarExpr struct {
miniExpr
X Node
}
func NewStarExpr(pos src.XPos, x Node) *StarExpr {
n := &StarExpr{X: x}
n.op = ODEREF
n.pos = pos
return n
}
func (n *StarExpr) Left() Node { return n.X }
func (n *StarExpr) SetLeft(x Node) { n.X = x }
func (n *StarExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *StarExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (*StarExpr) CanBeNtype() {}
// SetOTYPE changes n to be an OTYPE node returning t,
// like all the type nodes in type.go.
func (n *StarExpr) SetOTYPE(t *types.Type) {
n.op = OTYPE
n.X = nil
n.typ = t
t.SetNod(n)
}
// A TypeAssertionExpr is a selector expression X.(Type).
// Before type-checking, the type is Ntype.
type TypeAssertExpr struct {
miniExpr
X Node
Ntype Node // TODO: Should be Ntype, but reused as address of type structure
Itab Nodes // Itab[0] is itab
}
func NewTypeAssertExpr(pos src.XPos, x Node, typ Ntype) *TypeAssertExpr {
n := &TypeAssertExpr{X: x, Ntype: typ}
n.pos = pos
n.op = ODOTTYPE
return n
}
func (n *TypeAssertExpr) Left() Node { return n.X }
func (n *TypeAssertExpr) SetLeft(x Node) { n.X = x }
func (n *TypeAssertExpr) Right() Node { return n.Ntype }
func (n *TypeAssertExpr) SetRight(x Node) { n.Ntype = x } // TODO: toNtype(x)
func (n *TypeAssertExpr) List() Nodes { return n.Itab }
func (n *TypeAssertExpr) PtrList() *Nodes { return &n.Itab }
func (n *TypeAssertExpr) SetList(x Nodes) { n.Itab = x }
func (n *TypeAssertExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case ODOTTYPE, ODOTTYPE2:
n.op = op
}
}
// A UnaryExpr is a unary expression Op X,
// or Op(X) for a builtin function that does not end up being a call.
type UnaryExpr struct {
miniExpr
X Node
}
func NewUnaryExpr(pos src.XPos, op Op, x Node) *UnaryExpr {
n := &UnaryExpr{X: x}
n.pos = pos
n.SetOp(op)
return n
}
func (n *UnaryExpr) Left() Node { return n.X }
func (n *UnaryExpr) SetLeft(x Node) { n.X = x }
func (n *UnaryExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OBITNOT, ONEG, ONOT, OPLUS, ORECV,
OALIGNOF, OCAP, OCLOSE, OIMAG, OLEN, ONEW,
OOFFSETOF, OPANIC, OREAL, OSIZEOF,
OCHECKNIL, OCFUNC, OIDATA, OITAB, ONEWOBJ, OSPTR, OVARDEF, OVARKILL, OVARLIVE:
n.op = op
}
}