go/src/cmd/compile/internal/noder/stmt.go

317 lines
8 KiB
Go
Raw Normal View History

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) stmts(stmts []syntax.Stmt) []ir.Node {
var nodes []ir.Node
for _, stmt := range stmts {
switch s := g.stmt(stmt).(type) {
case nil: // EmptyStmt
case *ir.BlockStmt:
nodes = append(nodes, s.List...)
default:
nodes = append(nodes, s)
}
}
return nodes
}
func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
// TODO(mdempsky): Remove dependency on typecheck.
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := g.stmt0(stmt)
if n != nil {
n.SetTypecheck(1)
}
return n
}
func (g *irgen) stmt0(stmt syntax.Stmt) ir.Node {
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return g.labeledStmt(stmt)
case *syntax.BlockStmt:
return ir.NewBlockStmt(g.pos(stmt), g.blockStmt(stmt))
case *syntax.ExprStmt:
x := g.expr(stmt.X)
if call, ok := x.(*ir.CallExpr); ok {
call.Use = ir.CallUseStmt
}
return x
case *syntax.SendStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value))
// Need to do the AssignConv() in tcSend().
return typecheck.Stmt(n)
case *syntax.DeclStmt:
return ir.NewBlockStmt(g.pos(stmt), g.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Op != 0 && stmt.Op != syntax.Def {
op := g.op(stmt.Op, binOps[:])
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
// May need to insert ConvExpr nodes on the args in tcArith
if stmt.Rhs == nil {
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
return typecheck.Stmt(IncDec(g.pos(stmt), op, g.expr(stmt.Lhs)))
}
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
return typecheck.Stmt(ir.NewAssignOpStmt(g.pos(stmt), op, g.expr(stmt.Lhs), g.expr(stmt.Rhs)))
}
names, lhs := g.assignList(stmt.Lhs, stmt.Op == syntax.Def)
rhs := g.exprList(stmt.Rhs)
if len(lhs) == 1 && len(rhs) == 1 {
n := ir.NewAssignStmt(g.pos(stmt), lhs[0], rhs[0])
n.Def = initDefn(n, names)
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
// Need to set Assigned in checkassign for maps
return typecheck.Stmt(n)
}
n := ir.NewAssignListStmt(g.pos(stmt), ir.OAS2, lhs, rhs)
n.Def = initDefn(n, names)
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
// Need to do tcAssignList().
return typecheck.Stmt(n)
case *syntax.BranchStmt:
return ir.NewBranchStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), branchOps[:]), g.name(stmt.Label))
case *syntax.CallStmt:
return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call))
case *syntax.ReturnStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results))
// Need to do typecheckaste() for multiple return values
return typecheck.Stmt(n)
case *syntax.IfStmt:
return g.ifStmt(stmt)
case *syntax.ForStmt:
return g.forStmt(stmt)
case *syntax.SelectStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := g.selectStmt(stmt)
// Need to convert assignments to OSELRECV2 in tcSelect()
return typecheck.Stmt(n)
case *syntax.SwitchStmt:
return g.switchStmt(stmt)
default:
g.unhandled("statement", stmt)
panic("unreachable")
}
}
// TODO(mdempsky): Investigate replacing with switch statements or dense arrays.
var branchOps = [...]ir.Op{
syntax.Break: ir.OBREAK,
syntax.Continue: ir.OCONTINUE,
syntax.Fallthrough: ir.OFALL,
syntax.Goto: ir.OGOTO,
}
var callOps = [...]ir.Op{
syntax.Defer: ir.ODEFER,
syntax.Go: ir.OGO,
}
func (g *irgen) tokOp(tok int, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[tok]
}
func (g *irgen) op(op syntax.Operator, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[op]
}
func (g *irgen) assignList(expr syntax.Expr, def bool) ([]*ir.Name, []ir.Node) {
if !def {
return nil, g.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
var names []*ir.Name
res := make([]ir.Node, len(exprs))
for i, expr := range exprs {
expr := expr.(*syntax.Name)
if expr.Value == "_" {
res[i] = ir.BlankNode
continue
}
if obj, ok := g.info.Uses[expr]; ok {
res[i] = g.obj(obj)
continue
}
name, _ := g.def(expr)
names = append(names, name)
res[i] = name
}
return names, res
}
// initDefn marks the given names as declared by defn and populates
// its Init field with ODCL nodes. It then reports whether any names
// were so declared, which can be used to initialize defn.Def.
func initDefn(defn ir.InitNode, names []*ir.Name) bool {
if len(names) == 0 {
return false
}
init := make([]ir.Node, len(names))
for i, name := range names {
name.Defn = defn
init[i] = ir.NewDecl(name.Pos(), ir.ODCL, name)
}
defn.SetInit(init)
return true
}
func (g *irgen) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
return g.stmts(stmt.List)
}
func (g *irgen) ifStmt(stmt *syntax.IfStmt) ir.Node {
init := g.stmt(stmt.Init)
n := ir.NewIfStmt(g.pos(stmt), g.expr(stmt.Cond), g.blockStmt(stmt.Then), nil)
if stmt.Else != nil {
e := g.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
return g.init(init, n)
}
// unpackTwo returns the first two nodes in list. If list has fewer
// than 2 nodes, then the missing nodes are replaced with nils.
func unpackTwo(list []ir.Node) (fst, snd ir.Node) {
switch len(list) {
case 0:
return nil, nil
case 1:
return list[0], nil
default:
return list[0], list[1]
}
}
func (g *irgen) forStmt(stmt *syntax.ForStmt) ir.Node {
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
names, lhs := g.assignList(r.Lhs, r.Def)
key, value := unpackTwo(lhs)
n := ir.NewRangeStmt(g.pos(r), key, value, g.expr(r.X), g.blockStmt(stmt.Body))
n.Def = initDefn(n, names)
return n
}
return ir.NewForStmt(g.pos(stmt), g.stmt(stmt.Init), g.expr(stmt.Cond), g.stmt(stmt.Post), g.blockStmt(stmt.Body))
}
func (g *irgen) selectStmt(stmt *syntax.SelectStmt) ir.Node {
body := make([]*ir.CommClause, len(stmt.Body))
for i, clause := range stmt.Body {
body[i] = ir.NewCommStmt(g.pos(clause), g.stmt(clause.Comm), g.stmts(clause.Body))
}
return ir.NewSelectStmt(g.pos(stmt), body)
}
func (g *irgen) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
pos := g.pos(stmt)
init := g.stmt(stmt.Init)
var expr ir.Node
switch tag := stmt.Tag.(type) {
case *syntax.TypeSwitchGuard:
var ident *ir.Ident
if tag.Lhs != nil {
ident = ir.NewIdent(g.pos(tag.Lhs), g.name(tag.Lhs))
}
expr = ir.NewTypeSwitchGuard(pos, ident, g.expr(tag.X))
default:
expr = g.expr(tag)
}
body := make([]*ir.CaseClause, len(stmt.Body))
for i, clause := range stmt.Body {
// Check for an implicit clause variable before
// visiting body, because it may contain function
// literals that reference it, and then it'll be
// associated to the wrong function.
//
// Also, override its position to the clause's colon, so that
// dwarfgen can find the right scope for it later.
// TODO(mdempsky): We should probably just store the scope
// directly in the ir.Name.
var cv *ir.Name
if obj, ok := g.info.Implicits[clause]; ok {
cv = g.obj(obj)
cv.SetPos(g.makeXPos(clause.Colon))
}
body[i] = ir.NewCaseStmt(g.pos(clause), g.exprList(clause.Cases), g.stmts(clause.Body))
body[i].Var = cv
}
return g.init(init, ir.NewSwitchStmt(pos, expr, body))
}
func (g *irgen) labeledStmt(label *syntax.LabeledStmt) ir.Node {
sym := g.name(label.Label)
lhs := ir.NewLabelStmt(g.pos(label), sym)
ls := g.stmt(label.Stmt)
// Attach label directly to control statement too.
switch ls := ls.(type) {
case *ir.ForStmt:
ls.Label = sym
case *ir.RangeStmt:
ls.Label = sym
case *ir.SelectStmt:
ls.Label = sym
case *ir.SwitchStmt:
ls.Label = sym
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
func (g *irgen) init(init ir.Node, stmt ir.InitNode) ir.InitNode {
if init != nil {
stmt.SetInit([]ir.Node{init})
}
return stmt
}
func (g *irgen) name(name *syntax.Name) *types.Sym {
if name == nil {
return nil
}
return typecheck.Lookup(name.Value)
}