go/src/strings/strings.go

778 lines
20 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package strings implements simple functions to manipulate UTF-8 encoded strings.
//
// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
package strings
import (
"unicode"
"unicode/utf8"
)
// explode splits s into a slice of UTF-8 strings,
// one string per Unicode character up to a maximum of n (n < 0 means no limit).
// Invalid UTF-8 sequences become correct encodings of U+FFFD.
func explode(s string, n int) []string {
l := utf8.RuneCountInString(s)
if n < 0 || n > l {
n = l
}
a := make([]string, n)
for i := 0; i < n-1; i++ {
ch, size := utf8.DecodeRuneInString(s)
a[i] = s[:size]
s = s[size:]
if ch == utf8.RuneError {
a[i] = string(utf8.RuneError)
}
}
if n > 0 {
a[n-1] = s
}
return a
}
// primeRK is the prime base used in Rabin-Karp algorithm.
const primeRK = 16777619
// hashStr returns the hash and the appropriate multiplicative
// factor for use in Rabin-Karp algorithm.
func hashStr(sep string) (uint32, uint32) {
hash := uint32(0)
for i := 0; i < len(sep); i++ {
hash = hash*primeRK + uint32(sep[i])
}
var pow, sq uint32 = 1, primeRK
for i := len(sep); i > 0; i >>= 1 {
if i&1 != 0 {
pow *= sq
}
sq *= sq
}
return hash, pow
}
// hashStrRev returns the hash of the reverse of sep and the
// appropriate multiplicative factor for use in Rabin-Karp algorithm.
func hashStrRev(sep string) (uint32, uint32) {
hash := uint32(0)
for i := len(sep) - 1; i >= 0; i-- {
hash = hash*primeRK + uint32(sep[i])
}
var pow, sq uint32 = 1, primeRK
for i := len(sep); i > 0; i >>= 1 {
if i&1 != 0 {
pow *= sq
}
sq *= sq
}
return hash, pow
}
// Count counts the number of non-overlapping instances of sep in s.
// If sep is an empty string, Count returns 1 + the number of Unicode code points in s.
2009-01-20 14:40:40 -08:00
func Count(s, sep string) int {
n := 0
bytes: use Index in Count Similar to https://go-review.googlesource.com/28586, but for package bytes instead of strings. This provides simpler code and some performance gain. Also update strings.Count to use the same code. On AMD64 with heavily optimized Index I see: name old time/op new time/op delta Count/10-6 47.3ns ± 0% 36.8ns ± 0% -22.35% (p=0.000 n=10+10) Count/32-6 286ns ± 0% 38ns ± 0% -86.71% (p=0.000 n=10+10) Count/4K-6 50.1µs ± 0% 4.4µs ± 0% -91.18% (p=0.000 n=10+10) Count/4M-6 48.1ms ± 1% 4.5ms ± 0% -90.56% (p=0.000 n=10+9) Count/64M-6 784ms ± 0% 73ms ± 0% -90.73% (p=0.000 n=10+10) CountEasy/10-6 28.4ns ± 0% 31.0ns ± 0% +9.23% (p=0.000 n=10+10) CountEasy/32-6 30.6ns ± 0% 37.0ns ± 0% +20.92% (p=0.000 n=10+10) CountEasy/4K-6 186ns ± 0% 198ns ± 0% +6.45% (p=0.000 n=9+10) CountEasy/4M-6 233µs ± 2% 234µs ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 6.70ms ± 0% 6.68ms ± 1% ~ (p=0.762 n=8+10) name old speed new speed delta Count/10-6 211MB/s ± 0% 272MB/s ± 0% +28.77% (p=0.000 n=10+9) Count/32-6 112MB/s ± 0% 842MB/s ± 0% +652.84% (p=0.000 n=10+10) Count/4K-6 81.8MB/s ± 0% 927.6MB/s ± 0% +1033.63% (p=0.000 n=10+9) Count/4M-6 87.2MB/s ± 1% 924.0MB/s ± 0% +959.25% (p=0.000 n=10+9) Count/64M-6 85.6MB/s ± 0% 922.9MB/s ± 0% +978.31% (p=0.000 n=10+10) CountEasy/10-6 352MB/s ± 0% 322MB/s ± 0% -8.41% (p=0.000 n=10+10) CountEasy/32-6 1.05GB/s ± 0% 0.87GB/s ± 0% -17.35% (p=0.000 n=9+10) CountEasy/4K-6 22.0GB/s ± 0% 20.6GB/s ± 0% -6.33% (p=0.000 n=10+10) CountEasy/4M-6 18.0GB/s ± 2% 18.0GB/s ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 10.0GB/s ± 0% 10.0GB/s ± 1% ~ (p=0.762 n=8+10) On 386, without asm version of Index: Count/10-6 57.0ns ± 0% 56.9ns ± 0% -0.11% (p=0.006 n=10+9) Count/32-6 340ns ± 0% 274ns ± 0% -19.48% (p=0.000 n=10+9) Count/4K-6 49.5µs ± 0% 37.1µs ± 0% -24.96% (p=0.000 n=10+10) Count/4M-6 51.1ms ± 0% 38.2ms ± 0% -25.21% (p=0.000 n=10+10) Count/64M-6 818ms ± 0% 613ms ± 0% -25.07% (p=0.000 n=8+10) CountEasy/10-6 60.0ns ± 0% 70.4ns ± 0% +17.34% (p=0.000 n=10+10) CountEasy/32-6 81.1ns ± 0% 94.0ns ± 0% +15.97% (p=0.000 n=9+10) CountEasy/4K-6 4.37µs ± 0% 4.39µs ± 0% +0.30% (p=0.000 n=10+9) CountEasy/4M-6 4.43ms ± 0% 4.43ms ± 0% ~ (p=0.579 n=10+10) CountEasy/64M-6 70.9ms ± 0% 70.9ms ± 0% ~ (p=0.912 n=10+10) name old speed new speed delta Count/10-6 176MB/s ± 0% 176MB/s ± 0% +0.10% (p=0.000 n=10+9) Count/32-6 93.9MB/s ± 0% 116.5MB/s ± 0% +24.06% (p=0.000 n=10+9) Count/4K-6 82.7MB/s ± 0% 110.3MB/s ± 0% +33.26% (p=0.000 n=10+10) Count/4M-6 82.1MB/s ± 0% 109.7MB/s ± 0% +33.70% (p=0.000 n=10+10) Count/64M-6 82.0MB/s ± 0% 109.5MB/s ± 0% +33.46% (p=0.000 n=8+10) CountEasy/10-6 167MB/s ± 0% 142MB/s ± 0% -14.75% (p=0.000 n=9+10) CountEasy/32-6 395MB/s ± 0% 340MB/s ± 0% -13.77% (p=0.000 n=10+10) CountEasy/4K-6 936MB/s ± 0% 934MB/s ± 0% -0.29% (p=0.000 n=10+9) CountEasy/4M-6 947MB/s ± 0% 946MB/s ± 0% ~ (p=0.591 n=10+10) CountEasy/64M-6 947MB/s ± 0% 947MB/s ± 0% ~ (p=0.867 n=10+10) Change-Id: Ia76b247372b6f5b5d23a9f10253a86536a5153b3 Reviewed-on: https://go-review.googlesource.com/36489 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2017-02-07 16:00:39 -06:00
// special case
if len(sep) == 0 {
strings: faster Count, Index Slightly better benchmarks for when string and separator are equivalent and also less branching in inner loops. benchmark old ns/op new ns/op delta BenchmarkGenericNoMatch 3430 3442 +0.35% BenchmarkGenericMatch1 23590 22855 -3.12% BenchmarkGenericMatch2 108031 105025 -2.78% BenchmarkSingleMaxSkipping 2969 2704 -8.93% BenchmarkSingleLongSuffixFail 2826 2572 -8.99% BenchmarkSingleMatch 205268 197832 -3.62% BenchmarkByteByteNoMatch 987 921 -6.69% BenchmarkByteByteMatch 2014 1749 -13.16% BenchmarkByteStringMatch 3083 3050 -1.07% BenchmarkHTMLEscapeNew 922 915 -0.76% BenchmarkHTMLEscapeOld 1654 1570 -5.08% BenchmarkByteByteReplaces 11897 11556 -2.87% BenchmarkByteByteMap 4485 4255 -5.13% BenchmarkIndexRune 174 121 -30.46% BenchmarkIndexRuneFastPath 41 41 -0.24% BenchmarkIndex 45 44 -0.22% BenchmarkMapNoChanges 433 431 -0.46% BenchmarkIndexHard1 4015336 3316490 -17.40% BenchmarkIndexHard2 3976254 3395627 -14.60% BenchmarkIndexHard3 3973158 3378329 -14.97% BenchmarkCountHard1 4403549 3448512 -21.69% BenchmarkCountHard2 4387437 3413059 -22.21% BenchmarkCountHard3 4403891 3382661 -23.19% BenchmarkIndexTorture 28354 25864 -8.78% BenchmarkCountTorture 29625 27463 -7.30% BenchmarkFields 38752040 39169840 +1.08% BenchmarkFieldsFunc 38797765 38888060 +0.23% benchmark old MB/s new MB/s speedup BenchmarkSingleMaxSkipping 3367.07 3697.62 1.10x BenchmarkSingleLongSuffixFail 354.51 389.47 1.10x BenchmarkSingleMatch 73.07 75.82 1.04x BenchmarkFields 27.06 26.77 0.99x BenchmarkFieldsFunc 27.03 26.96 1.00x R=dave, fullung, remyoudompheng, rsc CC=golang-dev https://golang.org/cl/7350045
2013-02-19 10:36:15 -05:00
return utf8.RuneCountInString(s) + 1
}
for {
bytes: use Index in Count Similar to https://go-review.googlesource.com/28586, but for package bytes instead of strings. This provides simpler code and some performance gain. Also update strings.Count to use the same code. On AMD64 with heavily optimized Index I see: name old time/op new time/op delta Count/10-6 47.3ns ± 0% 36.8ns ± 0% -22.35% (p=0.000 n=10+10) Count/32-6 286ns ± 0% 38ns ± 0% -86.71% (p=0.000 n=10+10) Count/4K-6 50.1µs ± 0% 4.4µs ± 0% -91.18% (p=0.000 n=10+10) Count/4M-6 48.1ms ± 1% 4.5ms ± 0% -90.56% (p=0.000 n=10+9) Count/64M-6 784ms ± 0% 73ms ± 0% -90.73% (p=0.000 n=10+10) CountEasy/10-6 28.4ns ± 0% 31.0ns ± 0% +9.23% (p=0.000 n=10+10) CountEasy/32-6 30.6ns ± 0% 37.0ns ± 0% +20.92% (p=0.000 n=10+10) CountEasy/4K-6 186ns ± 0% 198ns ± 0% +6.45% (p=0.000 n=9+10) CountEasy/4M-6 233µs ± 2% 234µs ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 6.70ms ± 0% 6.68ms ± 1% ~ (p=0.762 n=8+10) name old speed new speed delta Count/10-6 211MB/s ± 0% 272MB/s ± 0% +28.77% (p=0.000 n=10+9) Count/32-6 112MB/s ± 0% 842MB/s ± 0% +652.84% (p=0.000 n=10+10) Count/4K-6 81.8MB/s ± 0% 927.6MB/s ± 0% +1033.63% (p=0.000 n=10+9) Count/4M-6 87.2MB/s ± 1% 924.0MB/s ± 0% +959.25% (p=0.000 n=10+9) Count/64M-6 85.6MB/s ± 0% 922.9MB/s ± 0% +978.31% (p=0.000 n=10+10) CountEasy/10-6 352MB/s ± 0% 322MB/s ± 0% -8.41% (p=0.000 n=10+10) CountEasy/32-6 1.05GB/s ± 0% 0.87GB/s ± 0% -17.35% (p=0.000 n=9+10) CountEasy/4K-6 22.0GB/s ± 0% 20.6GB/s ± 0% -6.33% (p=0.000 n=10+10) CountEasy/4M-6 18.0GB/s ± 2% 18.0GB/s ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 10.0GB/s ± 0% 10.0GB/s ± 1% ~ (p=0.762 n=8+10) On 386, without asm version of Index: Count/10-6 57.0ns ± 0% 56.9ns ± 0% -0.11% (p=0.006 n=10+9) Count/32-6 340ns ± 0% 274ns ± 0% -19.48% (p=0.000 n=10+9) Count/4K-6 49.5µs ± 0% 37.1µs ± 0% -24.96% (p=0.000 n=10+10) Count/4M-6 51.1ms ± 0% 38.2ms ± 0% -25.21% (p=0.000 n=10+10) Count/64M-6 818ms ± 0% 613ms ± 0% -25.07% (p=0.000 n=8+10) CountEasy/10-6 60.0ns ± 0% 70.4ns ± 0% +17.34% (p=0.000 n=10+10) CountEasy/32-6 81.1ns ± 0% 94.0ns ± 0% +15.97% (p=0.000 n=9+10) CountEasy/4K-6 4.37µs ± 0% 4.39µs ± 0% +0.30% (p=0.000 n=10+9) CountEasy/4M-6 4.43ms ± 0% 4.43ms ± 0% ~ (p=0.579 n=10+10) CountEasy/64M-6 70.9ms ± 0% 70.9ms ± 0% ~ (p=0.912 n=10+10) name old speed new speed delta Count/10-6 176MB/s ± 0% 176MB/s ± 0% +0.10% (p=0.000 n=10+9) Count/32-6 93.9MB/s ± 0% 116.5MB/s ± 0% +24.06% (p=0.000 n=10+9) Count/4K-6 82.7MB/s ± 0% 110.3MB/s ± 0% +33.26% (p=0.000 n=10+10) Count/4M-6 82.1MB/s ± 0% 109.7MB/s ± 0% +33.70% (p=0.000 n=10+10) Count/64M-6 82.0MB/s ± 0% 109.5MB/s ± 0% +33.46% (p=0.000 n=8+10) CountEasy/10-6 167MB/s ± 0% 142MB/s ± 0% -14.75% (p=0.000 n=9+10) CountEasy/32-6 395MB/s ± 0% 340MB/s ± 0% -13.77% (p=0.000 n=10+10) CountEasy/4K-6 936MB/s ± 0% 934MB/s ± 0% -0.29% (p=0.000 n=10+9) CountEasy/4M-6 947MB/s ± 0% 946MB/s ± 0% ~ (p=0.591 n=10+10) CountEasy/64M-6 947MB/s ± 0% 947MB/s ± 0% ~ (p=0.867 n=10+10) Change-Id: Ia76b247372b6f5b5d23a9f10253a86536a5153b3 Reviewed-on: https://go-review.googlesource.com/36489 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2017-02-07 16:00:39 -06:00
i := Index(s, sep)
if i == -1 {
return n
}
n++
bytes: use Index in Count Similar to https://go-review.googlesource.com/28586, but for package bytes instead of strings. This provides simpler code and some performance gain. Also update strings.Count to use the same code. On AMD64 with heavily optimized Index I see: name old time/op new time/op delta Count/10-6 47.3ns ± 0% 36.8ns ± 0% -22.35% (p=0.000 n=10+10) Count/32-6 286ns ± 0% 38ns ± 0% -86.71% (p=0.000 n=10+10) Count/4K-6 50.1µs ± 0% 4.4µs ± 0% -91.18% (p=0.000 n=10+10) Count/4M-6 48.1ms ± 1% 4.5ms ± 0% -90.56% (p=0.000 n=10+9) Count/64M-6 784ms ± 0% 73ms ± 0% -90.73% (p=0.000 n=10+10) CountEasy/10-6 28.4ns ± 0% 31.0ns ± 0% +9.23% (p=0.000 n=10+10) CountEasy/32-6 30.6ns ± 0% 37.0ns ± 0% +20.92% (p=0.000 n=10+10) CountEasy/4K-6 186ns ± 0% 198ns ± 0% +6.45% (p=0.000 n=9+10) CountEasy/4M-6 233µs ± 2% 234µs ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 6.70ms ± 0% 6.68ms ± 1% ~ (p=0.762 n=8+10) name old speed new speed delta Count/10-6 211MB/s ± 0% 272MB/s ± 0% +28.77% (p=0.000 n=10+9) Count/32-6 112MB/s ± 0% 842MB/s ± 0% +652.84% (p=0.000 n=10+10) Count/4K-6 81.8MB/s ± 0% 927.6MB/s ± 0% +1033.63% (p=0.000 n=10+9) Count/4M-6 87.2MB/s ± 1% 924.0MB/s ± 0% +959.25% (p=0.000 n=10+9) Count/64M-6 85.6MB/s ± 0% 922.9MB/s ± 0% +978.31% (p=0.000 n=10+10) CountEasy/10-6 352MB/s ± 0% 322MB/s ± 0% -8.41% (p=0.000 n=10+10) CountEasy/32-6 1.05GB/s ± 0% 0.87GB/s ± 0% -17.35% (p=0.000 n=9+10) CountEasy/4K-6 22.0GB/s ± 0% 20.6GB/s ± 0% -6.33% (p=0.000 n=10+10) CountEasy/4M-6 18.0GB/s ± 2% 18.0GB/s ± 2% ~ (p=0.912 n=10+10) CountEasy/64M-6 10.0GB/s ± 0% 10.0GB/s ± 1% ~ (p=0.762 n=8+10) On 386, without asm version of Index: Count/10-6 57.0ns ± 0% 56.9ns ± 0% -0.11% (p=0.006 n=10+9) Count/32-6 340ns ± 0% 274ns ± 0% -19.48% (p=0.000 n=10+9) Count/4K-6 49.5µs ± 0% 37.1µs ± 0% -24.96% (p=0.000 n=10+10) Count/4M-6 51.1ms ± 0% 38.2ms ± 0% -25.21% (p=0.000 n=10+10) Count/64M-6 818ms ± 0% 613ms ± 0% -25.07% (p=0.000 n=8+10) CountEasy/10-6 60.0ns ± 0% 70.4ns ± 0% +17.34% (p=0.000 n=10+10) CountEasy/32-6 81.1ns ± 0% 94.0ns ± 0% +15.97% (p=0.000 n=9+10) CountEasy/4K-6 4.37µs ± 0% 4.39µs ± 0% +0.30% (p=0.000 n=10+9) CountEasy/4M-6 4.43ms ± 0% 4.43ms ± 0% ~ (p=0.579 n=10+10) CountEasy/64M-6 70.9ms ± 0% 70.9ms ± 0% ~ (p=0.912 n=10+10) name old speed new speed delta Count/10-6 176MB/s ± 0% 176MB/s ± 0% +0.10% (p=0.000 n=10+9) Count/32-6 93.9MB/s ± 0% 116.5MB/s ± 0% +24.06% (p=0.000 n=10+9) Count/4K-6 82.7MB/s ± 0% 110.3MB/s ± 0% +33.26% (p=0.000 n=10+10) Count/4M-6 82.1MB/s ± 0% 109.7MB/s ± 0% +33.70% (p=0.000 n=10+10) Count/64M-6 82.0MB/s ± 0% 109.5MB/s ± 0% +33.46% (p=0.000 n=8+10) CountEasy/10-6 167MB/s ± 0% 142MB/s ± 0% -14.75% (p=0.000 n=9+10) CountEasy/32-6 395MB/s ± 0% 340MB/s ± 0% -13.77% (p=0.000 n=10+10) CountEasy/4K-6 936MB/s ± 0% 934MB/s ± 0% -0.29% (p=0.000 n=10+9) CountEasy/4M-6 947MB/s ± 0% 946MB/s ± 0% ~ (p=0.591 n=10+10) CountEasy/64M-6 947MB/s ± 0% 947MB/s ± 0% ~ (p=0.867 n=10+10) Change-Id: Ia76b247372b6f5b5d23a9f10253a86536a5153b3 Reviewed-on: https://go-review.googlesource.com/36489 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2017-02-07 16:00:39 -06:00
s = s[i+len(sep):]
}
}
// Contains reports whether substr is within s.
func Contains(s, substr string) bool {
return Index(s, substr) >= 0
}
// ContainsAny reports whether any Unicode code points in chars are within s.
func ContainsAny(s, chars string) bool {
return IndexAny(s, chars) >= 0
}
// ContainsRune reports whether the Unicode code point r is within s.
func ContainsRune(s string, r rune) bool {
return IndexRune(s, r) >= 0
}
// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
func LastIndex(s, sep string) int {
n := len(sep)
switch {
case n == 0:
return len(s)
case n == 1:
return LastIndexByte(s, sep[0])
case n == len(s):
if sep == s {
return 0
}
return -1
case n > len(s):
return -1
}
// Rabin-Karp search from the end of the string
hashsep, pow := hashStrRev(sep)
last := len(s) - n
var h uint32
for i := len(s) - 1; i >= last; i-- {
h = h*primeRK + uint32(s[i])
}
if h == hashsep && s[last:] == sep {
return last
}
for i := last - 1; i >= 0; i-- {
h *= primeRK
h += uint32(s[i])
h -= pow * uint32(s[i+n])
if h == hashsep && s[i:i+n] == sep {
return i
}
}
return -1
}
// IndexRune returns the index of the first instance of the Unicode code point
// r, or -1 if rune is not present in s.
// If r is utf8.RuneError, it returns the first instance of any
// invalid UTF-8 byte sequence.
func IndexRune(s string, r rune) int {
switch {
case 0 <= r && r < utf8.RuneSelf:
return IndexByte(s, byte(r))
case r == utf8.RuneError:
for i, r := range s {
if r == utf8.RuneError {
return i
}
}
return -1
case !utf8.ValidRune(r):
return -1
default:
return Index(s, string(r))
}
}
// IndexAny returns the index of the first instance of any Unicode code point
// from chars in s, or -1 if no Unicode code point from chars is present in s.
func IndexAny(s, chars string) int {
if len(chars) > 0 {
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i := 0; i < len(s); i++ {
if as.contains(s[i]) {
return i
}
}
return -1
}
}
for i, c := range s {
for _, m := range chars {
if c == m {
return i
}
}
}
}
return -1
}
// LastIndexAny returns the index of the last instance of any Unicode code
// point from chars in s, or -1 if no Unicode code point from chars is
// present in s.
func LastIndexAny(s, chars string) int {
if len(chars) > 0 {
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i := len(s) - 1; i >= 0; i-- {
if as.contains(s[i]) {
return i
}
}
return -1
}
}
for i := len(s); i > 0; {
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
r, size := utf8.DecodeLastRuneInString(s[:i])
i -= size
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
for _, c := range chars {
if r == c {
return i
}
}
}
}
return -1
}
// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
func LastIndexByte(s string, c byte) int {
for i := len(s) - 1; i >= 0; i-- {
if s[i] == c {
return i
}
}
return -1
}
// Generic split: splits after each instance of sep,
// including sepSave bytes of sep in the subarrays.
func genSplit(s, sep string, sepSave, n int) []string {
if n == 0 {
return nil
}
if sep == "" {
return explode(s, n)
}
if n < 0 {
n = Count(s, sep) + 1
}
a := make([]string, n)
n--
i := 0
for i < n {
m := Index(s, sep)
if m < 0 {
break
}
a[i] = s[:m+sepSave]
s = s[m+len(sep):]
i++
}
a[i] = s
return a[:i+1]
}
// SplitN slices s into substrings separated by sep and returns a slice of
// the substrings between those separators.
// If sep is empty, SplitN splits after each UTF-8 sequence.
// The count determines the number of substrings to return:
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
// n == 0: the result is nil (zero substrings)
// n < 0: all substrings
func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
// SplitAfterN slices s into substrings after each instance of sep and
// returns a slice of those substrings.
// If sep is empty, SplitAfterN splits after each UTF-8 sequence.
// The count determines the number of substrings to return:
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
// n == 0: the result is nil (zero substrings)
// n < 0: all substrings
func SplitAfterN(s, sep string, n int) []string {
return genSplit(s, sep, len(sep), n)
}
// Split slices s into all substrings separated by sep and returns a slice of
// the substrings between those separators.
// If sep is empty, Split splits after each UTF-8 sequence.
// It is equivalent to SplitN with a count of -1.
func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
// SplitAfter slices s into all substrings after each instance of sep and
// returns a slice of those substrings.
// If sep is empty, SplitAfter splits after each UTF-8 sequence.
// It is equivalent to SplitAfterN with a count of -1.
func SplitAfter(s, sep string) []string {
return genSplit(s, sep, len(sep), -1)
}
// Fields splits the string s around each instance of one or more consecutive white space
// characters, as defined by unicode.IsSpace, returning an array of substrings of s or an
// empty list if s contains only white space.
func Fields(s string) []string {
return FieldsFunc(s, unicode.IsSpace)
}
// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
// and returns an array of slices of s. If all code points in s satisfy f(c) or the
// string is empty, an empty slice is returned.
// FieldsFunc makes no guarantees about the order in which it calls f(c).
// If f does not return consistent results for a given c, FieldsFunc may crash.
func FieldsFunc(s string, f func(rune) bool) []string {
// First count the fields.
n := 0
inField := false
for _, rune := range s {
wasInField := inField
inField = !f(rune)
if inField && !wasInField {
n++
}
}
// Now create them.
a := make([]string, n)
na := 0
fieldStart := -1 // Set to -1 when looking for start of field.
for i, rune := range s {
if f(rune) {
if fieldStart >= 0 {
a[na] = s[fieldStart:i]
na++
fieldStart = -1
}
} else if fieldStart == -1 {
fieldStart = i
}
}
if fieldStart >= 0 { // Last field might end at EOF.
a[na] = s[fieldStart:]
}
return a
}
// Join concatenates the elements of a to create a single string. The separator string
// sep is placed between elements in the resulting string.
2009-01-20 14:40:40 -08:00
func Join(a []string, sep string) string {
switch len(a) {
case 0:
return ""
case 1:
return a[0]
case 2:
// Special case for common small values.
// Remove if golang.org/issue/6714 is fixed
return a[0] + sep + a[1]
case 3:
// Special case for common small values.
// Remove if golang.org/issue/6714 is fixed
return a[0] + sep + a[1] + sep + a[2]
}
n := len(sep) * (len(a) - 1)
for i := 0; i < len(a); i++ {
n += len(a[i])
}
b := make([]byte, n)
bp := copy(b, a[0])
for _, s := range a[1:] {
bp += copy(b[bp:], sep)
bp += copy(b[bp:], s)
}
return string(b)
}
// HasPrefix tests whether the string s begins with prefix.
func HasPrefix(s, prefix string) bool {
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
}
// HasSuffix tests whether the string s ends with suffix.
func HasSuffix(s, suffix string) bool {
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}
// Map returns a copy of the string s with all its characters modified
// according to the mapping function. If mapping returns a negative value, the character is
// dropped from the string with no replacement.
func Map(mapping func(rune) rune, s string) string {
// In the worst case, the string can grow when mapped, making
// things unpleasant. But it's so rare we barge in assuming it's
// fine. It could also shrink but that falls out naturally.
maxbytes := len(s) // length of b
nbytes := 0 // number of bytes encoded in b
// The output buffer b is initialized on demand, the first
// time a character differs.
var b []byte
for i, c := range s {
r := mapping(c)
if b == nil {
if r == c {
continue
}
b = make([]byte, maxbytes)
nbytes = copy(b, s[:i])
}
if r >= 0 {
wid := 1
if r >= utf8.RuneSelf {
wid = utf8.RuneLen(r)
}
if nbytes+wid > maxbytes {
// Grow the buffer.
maxbytes = maxbytes*2 + utf8.UTFMax
nb := make([]byte, maxbytes)
copy(nb, b[0:nbytes])
b = nb
}
nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)
}
}
if b == nil {
return s
}
return string(b[0:nbytes])
}
// Repeat returns a new string consisting of count copies of the string s.
//
// It panics if count is negative or if
// the result of (len(s) * count) overflows.
func Repeat(s string, count int) string {
// Since we cannot return an error on overflow,
// we should panic if the repeat will generate
// an overflow.
// See Issue golang.org/issue/16237
if count < 0 {
panic("strings: negative Repeat count")
} else if count > 0 && len(s)*count/count != len(s) {
panic("strings: Repeat count causes overflow")
}
b := make([]byte, len(s)*count)
bp := copy(b, s)
for bp < len(b) {
copy(b[bp:], b[:bp])
bp *= 2
}
return string(b)
}
// ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
func ToUpper(s string) string { return Map(unicode.ToUpper, s) }
// ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
func ToLower(s string) string { return Map(unicode.ToLower, s) }
// ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
// upper case, giving priority to the special casing rules.
func ToUpperSpecial(c unicode.SpecialCase, s string) string {
return Map(func(r rune) rune { return c.ToUpper(r) }, s)
}
// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
// lower case, giving priority to the special casing rules.
func ToLowerSpecial(c unicode.SpecialCase, s string) string {
return Map(func(r rune) rune { return c.ToLower(r) }, s)
}
// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
// title case, giving priority to the special casing rules.
func ToTitleSpecial(c unicode.SpecialCase, s string) string {
return Map(func(r rune) rune { return c.ToTitle(r) }, s)
}
// isSeparator reports whether the rune could mark a word boundary.
// TODO: update when package unicode captures more of the properties.
func isSeparator(r rune) bool {
// ASCII alphanumerics and underscore are not separators
if r <= 0x7F {
switch {
case '0' <= r && r <= '9':
return false
case 'a' <= r && r <= 'z':
return false
case 'A' <= r && r <= 'Z':
return false
case r == '_':
return false
}
return true
}
// Letters and digits are not separators
if unicode.IsLetter(r) || unicode.IsDigit(r) {
return false
}
// Otherwise, all we can do for now is treat spaces as separators.
return unicode.IsSpace(r)
}
// Title returns a copy of the string s with all Unicode letters that begin words
// mapped to their title case.
//
// BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
func Title(s string) string {
// Use a closure here to remember state.
// Hackish but effective. Depends on Map scanning in order and calling
// the closure once per rune.
prev := ' '
return Map(
func(r rune) rune {
if isSeparator(prev) {
prev = r
return unicode.ToTitle(r)
}
prev = r
return r
},
s)
}
// TrimLeftFunc returns a slice of the string s with all leading
// Unicode code points c satisfying f(c) removed.
func TrimLeftFunc(s string, f func(rune) bool) string {
i := indexFunc(s, f, false)
if i == -1 {
return ""
}
return s[i:]
}
// TrimRightFunc returns a slice of the string s with all trailing
// Unicode code points c satisfying f(c) removed.
func TrimRightFunc(s string, f func(rune) bool) string {
i := lastIndexFunc(s, f, false)
if i >= 0 && s[i] >= utf8.RuneSelf {
_, wid := utf8.DecodeRuneInString(s[i:])
i += wid
} else {
i++
}
return s[0:i]
}
// TrimFunc returns a slice of the string s with all leading
// and trailing Unicode code points c satisfying f(c) removed.
func TrimFunc(s string, f func(rune) bool) string {
return TrimRightFunc(TrimLeftFunc(s, f), f)
}
// IndexFunc returns the index into s of the first Unicode
// code point satisfying f(c), or -1 if none do.
func IndexFunc(s string, f func(rune) bool) int {
return indexFunc(s, f, true)
}
// LastIndexFunc returns the index into s of the last
// Unicode code point satisfying f(c), or -1 if none do.
func LastIndexFunc(s string, f func(rune) bool) int {
return lastIndexFunc(s, f, true)
}
// indexFunc is the same as IndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func indexFunc(s string, f func(rune) bool, truth bool) int {
start := 0
for start < len(s) {
wid := 1
r := rune(s[start])
if r >= utf8.RuneSelf {
r, wid = utf8.DecodeRuneInString(s[start:])
}
if f(r) == truth {
return start
}
start += wid
}
return -1
}
// lastIndexFunc is the same as LastIndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
for i := len(s); i > 0; {
r, size := utf8.DecodeLastRuneInString(s[0:i])
i -= size
if f(r) == truth {
return i
}
}
return -1
}
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
// asciiSet is a 32-byte value, where each bit represents the presence of a
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
// starting with the least-significant bit of the lowest word to the
// most-significant bit of the highest word, map to the full range of all
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
// ensuring that any non-ASCII character will be reported as not in the set.
type asciiSet [8]uint32
// makeASCIISet creates a set of ASCII characters and reports whether all
// characters in chars are ASCII.
func makeASCIISet(chars string) (as asciiSet, ok bool) {
for i := 0; i < len(chars); i++ {
c := chars[i]
if c >= utf8.RuneSelf {
return as, false
}
as[c>>5] |= 1 << uint(c&31)
}
return as, true
}
// contains reports whether c is inside the set.
func (as *asciiSet) contains(c byte) bool {
return (as[c>>5] & (1 << uint(c&31))) != 0
}
func makeCutsetFunc(cutset string) func(rune) bool {
bytes, strings: optimize for ASCII sets In a large codebase within Google, there are thousands of uses of: ContainsAny|IndexAny|LastIndexAny|Trim|TrimLeft|TrimRight An analysis of their usage shows that over 97% of them only use character sets consisting of only ASCII symbols. Uses of ContainsAny|IndexAny|LastIndexAny: 6% are 1 character (e.g., "\n" or " ") 58% are 2-4 characters (e.g., "<>" or "\r\n\t ") 24% are 5-9 characters (e.g., "()[]*^$") 10% are 10+ characters (e.g., "+-=&|><!(){}[]^\"~*?:\\/ ") We optimize for ASCII sets, which are commonly used to search for "control" characters in some string. We don't optimize for the single character scenario since IndexRune or IndexByte could be used. Uses of Trim|TrimLeft|TrimRight: 71% are 1 character (e.g., "\n" or " ") 14% are 2 characters (e.g., "\r\n") 10% are 3-4 characters (e.g., " \t\r\n") 5% are 10+ characters (e.g., "0123456789abcdefABCDEF") We optimize for the single character case with a simple closured function that only checks for that character's value. We optimize for the medium and larger sets using a 16-byte bit-map representing a set of ASCII characters. The benchmarks below have the following suffix name "%d:%d" where the first number is the length of the input and the second number is the length of the charset. == bytes package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.09 5.23 +2.75% BenchmarkIndexAnyASCII/1:2-4 5.81 5.85 +0.69% BenchmarkIndexAnyASCII/1:4-4 7.22 7.50 +3.88% BenchmarkIndexAnyASCII/1:8-4 11.0 11.1 +0.91% BenchmarkIndexAnyASCII/1:16-4 17.5 17.8 +1.71% BenchmarkIndexAnyASCII/16:1-4 36.0 34.0 -5.56% BenchmarkIndexAnyASCII/16:2-4 46.6 36.5 -21.67% BenchmarkIndexAnyASCII/16:4-4 78.0 40.4 -48.21% BenchmarkIndexAnyASCII/16:8-4 136 47.4 -65.15% BenchmarkIndexAnyASCII/16:16-4 254 61.5 -75.79% BenchmarkIndexAnyASCII/256:1-4 542 388 -28.41% BenchmarkIndexAnyASCII/256:2-4 705 382 -45.82% BenchmarkIndexAnyASCII/256:4-4 1089 386 -64.55% BenchmarkIndexAnyASCII/256:8-4 1994 394 -80.24% BenchmarkIndexAnyASCII/256:16-4 3843 411 -89.31% BenchmarkIndexAnyASCII/4096:1-4 8522 5873 -31.08% BenchmarkIndexAnyASCII/4096:2-4 11253 5861 -47.92% BenchmarkIndexAnyASCII/4096:4-4 17824 5883 -66.99% BenchmarkIndexAnyASCII/4096:8-4 32053 5871 -81.68% BenchmarkIndexAnyASCII/4096:16-4 60512 5888 -90.27% BenchmarkTrimASCII/1:1-4 79.5 70.8 -10.94% BenchmarkTrimASCII/1:2-4 79.0 105 +32.91% BenchmarkTrimASCII/1:4-4 79.6 109 +36.93% BenchmarkTrimASCII/1:8-4 78.8 118 +49.75% BenchmarkTrimASCII/1:16-4 80.2 132 +64.59% BenchmarkTrimASCII/16:1-4 243 116 -52.26% BenchmarkTrimASCII/16:2-4 243 171 -29.63% BenchmarkTrimASCII/16:4-4 243 176 -27.57% BenchmarkTrimASCII/16:8-4 241 184 -23.65% BenchmarkTrimASCII/16:16-4 238 199 -16.39% BenchmarkTrimASCII/256:1-4 2580 840 -67.44% BenchmarkTrimASCII/256:2-4 2603 1175 -54.86% BenchmarkTrimASCII/256:4-4 2572 1188 -53.81% BenchmarkTrimASCII/256:8-4 2550 1191 -53.29% BenchmarkTrimASCII/256:16-4 2585 1208 -53.27% BenchmarkTrimASCII/4096:1-4 39773 12181 -69.37% BenchmarkTrimASCII/4096:2-4 39946 17231 -56.86% BenchmarkTrimASCII/4096:4-4 39641 17179 -56.66% BenchmarkTrimASCII/4096:8-4 39835 17175 -56.88% BenchmarkTrimASCII/4096:16-4 40229 17215 -57.21% == strings package == benchmark old ns/op new ns/op delta BenchmarkIndexAnyASCII/1:1-4 5.94 4.97 -16.33% BenchmarkIndexAnyASCII/1:2-4 5.94 5.55 -6.57% BenchmarkIndexAnyASCII/1:4-4 7.45 7.21 -3.22% BenchmarkIndexAnyASCII/1:8-4 10.8 10.6 -1.85% BenchmarkIndexAnyASCII/1:16-4 17.4 17.2 -1.15% BenchmarkIndexAnyASCII/16:1-4 36.4 32.2 -11.54% BenchmarkIndexAnyASCII/16:2-4 49.6 34.6 -30.24% BenchmarkIndexAnyASCII/16:4-4 77.5 37.9 -51.10% BenchmarkIndexAnyASCII/16:8-4 138 45.5 -67.03% BenchmarkIndexAnyASCII/16:16-4 241 59.1 -75.48% BenchmarkIndexAnyASCII/256:1-4 509 378 -25.74% BenchmarkIndexAnyASCII/256:2-4 720 381 -47.08% BenchmarkIndexAnyASCII/256:4-4 1142 384 -66.37% BenchmarkIndexAnyASCII/256:8-4 1999 391 -80.44% BenchmarkIndexAnyASCII/256:16-4 3735 403 -89.21% BenchmarkIndexAnyASCII/4096:1-4 7973 5824 -26.95% BenchmarkIndexAnyASCII/4096:2-4 11432 5809 -49.19% BenchmarkIndexAnyASCII/4096:4-4 18327 5819 -68.25% BenchmarkIndexAnyASCII/4096:8-4 33059 5828 -82.37% BenchmarkIndexAnyASCII/4096:16-4 59703 5817 -90.26% BenchmarkTrimASCII/1:1-4 71.9 71.8 -0.14% BenchmarkTrimASCII/1:2-4 73.3 103 +40.52% BenchmarkTrimASCII/1:4-4 71.8 106 +47.63% BenchmarkTrimASCII/1:8-4 71.2 113 +58.71% BenchmarkTrimASCII/1:16-4 71.6 128 +78.77% BenchmarkTrimASCII/16:1-4 152 116 -23.68% BenchmarkTrimASCII/16:2-4 160 168 +5.00% BenchmarkTrimASCII/16:4-4 172 170 -1.16% BenchmarkTrimASCII/16:8-4 200 177 -11.50% BenchmarkTrimASCII/16:16-4 254 193 -24.02% BenchmarkTrimASCII/256:1-4 1438 864 -39.92% BenchmarkTrimASCII/256:2-4 1551 1195 -22.95% BenchmarkTrimASCII/256:4-4 1770 1200 -32.20% BenchmarkTrimASCII/256:8-4 2195 1216 -44.60% BenchmarkTrimASCII/256:16-4 3054 1224 -59.92% BenchmarkTrimASCII/4096:1-4 21726 12557 -42.20% BenchmarkTrimASCII/4096:2-4 23586 17508 -25.77% BenchmarkTrimASCII/4096:4-4 26898 17510 -34.90% BenchmarkTrimASCII/4096:8-4 33714 17595 -47.81% BenchmarkTrimASCII/4096:16-4 47429 17700 -62.68% The benchmarks added test the worst case. For IndexAny, that is when the charset matches none of the input. For Trim, it is when the charset matches all of the input. Change-Id: I970874d101a96b33528fc99b165379abe58cf6ea Reviewed-on: https://go-review.googlesource.com/31593 Run-TryBot: Joe Tsai <thebrokentoaster@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Martin Möhrmann <martisch@uos.de>
2016-10-20 03:16:22 -07:00
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return func(r rune) bool {
return r == rune(cutset[0])
}
}
if as, isASCII := makeASCIISet(cutset); isASCII {
return func(r rune) bool {
return r < utf8.RuneSelf && as.contains(byte(r))
}
}
return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
}
// Trim returns a slice of the string s with all leading and
// trailing Unicode code points contained in cutset removed.
func Trim(s string, cutset string) string {
if s == "" || cutset == "" {
return s
}
return TrimFunc(s, makeCutsetFunc(cutset))
}
// TrimLeft returns a slice of the string s with all leading
// Unicode code points contained in cutset removed.
func TrimLeft(s string, cutset string) string {
if s == "" || cutset == "" {
return s
}
return TrimLeftFunc(s, makeCutsetFunc(cutset))
}
// TrimRight returns a slice of the string s, with all trailing
// Unicode code points contained in cutset removed.
func TrimRight(s string, cutset string) string {
if s == "" || cutset == "" {
return s
}
return TrimRightFunc(s, makeCutsetFunc(cutset))
}
// TrimSpace returns a slice of the string s, with all leading
// and trailing white space removed, as defined by Unicode.
func TrimSpace(s string) string {
return TrimFunc(s, unicode.IsSpace)
}
// TrimPrefix returns s without the provided leading prefix string.
// If s doesn't start with prefix, s is returned unchanged.
func TrimPrefix(s, prefix string) string {
if HasPrefix(s, prefix) {
return s[len(prefix):]
}
return s
}
// TrimSuffix returns s without the provided trailing suffix string.
// If s doesn't end with suffix, s is returned unchanged.
func TrimSuffix(s, suffix string) string {
if HasSuffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
// Replace returns a copy of the string s with the first n
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the string
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune string.
// If n < 0, there is no limit on the number of replacements.
func Replace(s, old, new string, n int) string {
if old == new || n == 0 {
return s // avoid allocation
}
// Compute number of replacements.
if m := Count(s, old); m == 0 {
return s // avoid allocation
} else if n < 0 || m < n {
n = m
}
// Apply replacements to buffer.
t := make([]byte, len(s)+n*(len(new)-len(old)))
w := 0
start := 0
for i := 0; i < n; i++ {
j := start
if len(old) == 0 {
if i > 0 {
_, wid := utf8.DecodeRuneInString(s[start:])
j += wid
}
} else {
j += Index(s[start:], old)
}
w += copy(t[w:], s[start:j])
w += copy(t[w:], new)
start = j + len(old)
}
w += copy(t[w:], s[start:])
return string(t[0:w])
}
// EqualFold reports whether s and t, interpreted as UTF-8 strings,
// are equal under Unicode case-folding.
func EqualFold(s, t string) bool {
for s != "" && t != "" {
// Extract first rune from each string.
var sr, tr rune
if s[0] < utf8.RuneSelf {
sr, s = rune(s[0]), s[1:]
} else {
r, size := utf8.DecodeRuneInString(s)
sr, s = r, s[size:]
}
if t[0] < utf8.RuneSelf {
tr, t = rune(t[0]), t[1:]
} else {
r, size := utf8.DecodeRuneInString(t)
tr, t = r, t[size:]
}
// If they match, keep going; if not, return false.
// Easy case.
if tr == sr {
continue
}
// Make sr < tr to simplify what follows.
if tr < sr {
tr, sr = sr, tr
}
// Fast check for ASCII.
if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
// ASCII, and sr is upper case. tr must be lower case.
if tr == sr+'a'-'A' {
continue
}
return false
}
// General case. SimpleFold(x) returns the next equivalent rune > x
// or wraps around to smaller values.
r := unicode.SimpleFold(sr)
for r != sr && r < tr {
r = unicode.SimpleFold(r)
}
if r == tr {
continue
}
return false
}
// One string is empty. Are both?
return s == t
}