2014-11-11 17:04:34 -05:00
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
// StackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
stackDebug = 0
stackFromSystem = 0 // allocate stacks from system memory instead of the heap
stackFaultOnFree = 0 // old stacks are mapped noaccess to detect use after free
stackPoisonCopy = 0 // fill stack that should not be accessed with garbage, to detect bad dereferences during copy
stackCache = 1
)
const (
uintptrMask = 1 << ( 8 * ptrSize ) - 1
poisonGC = uintptrMask & 0xf969696969696969
poisonStack = uintptrMask & 0x6868686868686868
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
stackPreempt = uintptrMask & - 1314
// Thread is forking.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
stackFork = uintptrMask & - 1234
)
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
// TODO: one lock per order?
var stackpool [ _NumStackOrders ] mspan
var stackpoolmu mutex
var stackfreequeue stack
func stackinit ( ) {
if _StackCacheSize & _PageMask != 0 {
gothrow ( "cache size must be a multiple of page size" )
}
for i := range stackpool {
mSpanList_Init ( & stackpool [ i ] )
}
}
// Allocates a stack from the free pool. Must be called with
// stackpoolmu held.
func stackpoolalloc ( order uint8 ) * mlink {
list := & stackpool [ order ]
s := list . next
if s == list {
// no free stacks. Allocate another span worth.
s = mHeap_AllocStack ( & mheap_ , _StackCacheSize >> _PageShift )
if s == nil {
gothrow ( "out of memory" )
}
if s . ref != 0 {
gothrow ( "bad ref" )
}
if s . freelist != nil {
gothrow ( "bad freelist" )
}
for i := uintptr ( 0 ) ; i < _StackCacheSize ; i += _FixedStack << order {
x := ( * mlink ) ( unsafe . Pointer ( uintptr ( s . start ) << _PageShift + i ) )
x . next = s . freelist
s . freelist = x
}
mSpanList_Insert ( list , s )
}
x := s . freelist
if x == nil {
gothrow ( "span has no free stacks" )
}
s . freelist = x . next
s . ref ++
if s . freelist == nil {
// all stacks in s are allocated.
mSpanList_Remove ( s )
}
return x
}
// Adds stack x to the free pool. Must be called with stackpoolmu held.
func stackpoolfree ( x * mlink , order uint8 ) {
s := mHeap_Lookup ( & mheap_ , ( unsafe . Pointer ) ( x ) )
if s . state != _MSpanStack {
gothrow ( "freeing stack not in a stack span" )
}
if s . freelist == nil {
// s will now have a free stack
mSpanList_Insert ( & stackpool [ order ] , s )
}
x . next = s . freelist
s . freelist = x
s . ref --
if s . ref == 0 {
// span is completely free - return to heap
mSpanList_Remove ( s )
s . freelist = nil
mHeap_FreeStack ( & mheap_ , s )
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
func stackcacherefill ( c * mcache , order uint8 ) {
if stackDebug >= 1 {
print ( "stackcacherefill order=" , order , "\n" )
}
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
var list * mlink
var size uintptr
lock ( & stackpoolmu )
for size < _StackCacheSize / 2 {
x := stackpoolalloc ( order )
x . next = list
list = x
size += _FixedStack << order
}
unlock ( & stackpoolmu )
c . stackcache [ order ] . list = list
c . stackcache [ order ] . size = size
}
func stackcacherelease ( c * mcache , order uint8 ) {
if stackDebug >= 1 {
print ( "stackcacherelease order=" , order , "\n" )
}
x := c . stackcache [ order ] . list
size := c . stackcache [ order ] . size
lock ( & stackpoolmu )
for size > _StackCacheSize / 2 {
y := x . next
stackpoolfree ( x , order )
x = y
size -= _FixedStack << order
}
unlock ( & stackpoolmu )
c . stackcache [ order ] . list = x
c . stackcache [ order ] . size = size
}
func stackcache_clear ( c * mcache ) {
if stackDebug >= 1 {
print ( "stackcache clear\n" )
}
lock ( & stackpoolmu )
for order := uint8 ( 0 ) ; order < _NumStackOrders ; order ++ {
x := c . stackcache [ order ] . list
for x != nil {
y := x . next
stackpoolfree ( x , order )
x = y
}
c . stackcache [ order ] . list = nil
c . stackcache [ order ] . size = 0
}
unlock ( & stackpoolmu )
}
func stackalloc ( n uint32 ) stack {
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
thisg := getg ( )
if thisg != thisg . m . g0 {
gothrow ( "stackalloc not on scheduler stack" )
}
if n & ( n - 1 ) != 0 {
gothrow ( "stack size not a power of 2" )
}
if stackDebug >= 1 {
print ( "stackalloc " , n , "\n" )
}
if debug . efence != 0 || stackFromSystem != 0 {
v := sysAlloc ( round ( uintptr ( n ) , _PageSize ) , & memstats . stacks_sys )
if v == nil {
gothrow ( "out of memory (stackalloc)" )
}
return stack { uintptr ( v ) , uintptr ( v ) + uintptr ( n ) }
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
var v unsafe . Pointer
if stackCache != 0 && n < _FixedStack << _NumStackOrders && n < _StackCacheSize {
order := uint8 ( 0 )
n2 := n
for n2 > _FixedStack {
order ++
n2 >>= 1
}
var x * mlink
c := thisg . m . mcache
if c == nil || thisg . m . gcing != 0 || thisg . m . helpgc != 0 {
// c == nil can happen in the guts of exitsyscall or
// procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
lock ( & stackpoolmu )
x = stackpoolalloc ( order )
unlock ( & stackpoolmu )
} else {
x = c . stackcache [ order ] . list
if x == nil {
stackcacherefill ( c , order )
x = c . stackcache [ order ] . list
}
c . stackcache [ order ] . list = x . next
c . stackcache [ order ] . size -= uintptr ( n )
}
v = ( unsafe . Pointer ) ( x )
} else {
s := mHeap_AllocStack ( & mheap_ , round ( uintptr ( n ) , _PageSize ) >> _PageShift )
if s == nil {
gothrow ( "out of memory" )
}
v = ( unsafe . Pointer ) ( s . start << _PageShift )
}
if raceenabled {
racemalloc ( v , uintptr ( n ) )
}
if stackDebug >= 1 {
print ( " allocated " , v , "\n" )
}
return stack { uintptr ( v ) , uintptr ( v ) + uintptr ( n ) }
}
func stackfree ( stk stack ) {
gp := getg ( )
n := stk . hi - stk . lo
v := ( unsafe . Pointer ) ( stk . lo )
if n & ( n - 1 ) != 0 {
gothrow ( "stack not a power of 2" )
}
if stackDebug >= 1 {
println ( "stackfree" , v , n )
memclr ( v , n ) // for testing, clobber stack data
}
if debug . efence != 0 || stackFromSystem != 0 {
if debug . efence != 0 || stackFaultOnFree != 0 {
sysFault ( v , n )
} else {
sysFree ( v , n , & memstats . stacks_sys )
}
return
}
if stackCache != 0 && n < _FixedStack << _NumStackOrders && n < _StackCacheSize {
order := uint8 ( 0 )
n2 := n
for n2 > _FixedStack {
order ++
n2 >>= 1
}
x := ( * mlink ) ( v )
c := gp . m . mcache
if c == nil || gp . m . gcing != 0 || gp . m . helpgc != 0 {
lock ( & stackpoolmu )
stackpoolfree ( x , order )
unlock ( & stackpoolmu )
} else {
if c . stackcache [ order ] . size >= _StackCacheSize {
stackcacherelease ( c , order )
}
x . next = c . stackcache [ order ] . list
c . stackcache [ order ] . list = x
c . stackcache [ order ] . size += n
}
} else {
s := mHeap_Lookup ( & mheap_ , v )
if s . state != _MSpanStack {
println ( hex ( s . start << _PageShift ) , v )
gothrow ( "bad span state" )
}
mHeap_FreeStack ( & mheap_ , s )
}
}
var maxstacksize uintptr = 1 << 20 // enough until runtime.main sets it for real
var mapnames = [ ] string {
_BitsDead : "---" ,
_BitsScalar : "scalar" ,
_BitsPointer : "ptr" ,
}
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+
// | return address |
// +------------------+ <- frame->sp
type adjustinfo struct {
old stack
delta uintptr // ptr distance from old to new stack (newbase - oldbase)
}
// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
func adjustpointer ( adjinfo * adjustinfo , vpp unsafe . Pointer ) {
pp := ( * unsafe . Pointer ) ( vpp )
p := * pp
if stackDebug >= 4 {
print ( " " , pp , ":" , p , "\n" )
}
if adjinfo . old . lo <= uintptr ( p ) && uintptr ( p ) < adjinfo . old . hi {
* pp = add ( p , adjinfo . delta )
if stackDebug >= 3 {
print ( " adjust ptr " , pp , ":" , p , " -> " , * pp , "\n" )
}
}
}
type gobitvector struct {
n uintptr
bytedata [ ] uint8
}
func gobv ( bv bitvector ) gobitvector {
return gobitvector {
uintptr ( bv . n ) ,
( * [ 1 << 30 ] byte ) ( unsafe . Pointer ( bv . bytedata ) ) [ : ( bv . n + 7 ) / 8 ] ,
}
}
func ptrbits ( bv * gobitvector , i uintptr ) uint8 {
return ( bv . bytedata [ i / 4 ] >> ( ( i & 3 ) * 2 ) ) & 3
}
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
func adjustpointers ( scanp unsafe . Pointer , cbv * bitvector , adjinfo * adjustinfo , f * _func ) {
bv := gobv ( * cbv )
minp := adjinfo . old . lo
maxp := adjinfo . old . hi
delta := adjinfo . delta
num := uintptr ( bv . n / _BitsPerPointer )
for i := uintptr ( 0 ) ; i < num ; i ++ {
if stackDebug >= 4 {
print ( " " , add ( scanp , i * ptrSize ) , ":" , mapnames [ ptrbits ( & bv , i ) ] , ":" , hex ( * ( * uintptr ) ( add ( scanp , i * ptrSize ) ) ) , " # " , i , " " , bv . bytedata [ i / 4 ] , "\n" )
}
switch ptrbits ( & bv , i ) {
default :
gothrow ( "unexpected pointer bits" )
case _BitsDead :
if debug . gcdead != 0 {
* ( * unsafe . Pointer ) ( add ( scanp , i * ptrSize ) ) = unsafe . Pointer ( uintptr ( poisonStack ) )
}
case _BitsScalar :
// ok
case _BitsPointer :
p := * ( * unsafe . Pointer ) ( add ( scanp , i * ptrSize ) )
up := uintptr ( p )
if f != nil && 0 < up && up < _PageSize && invalidptr != 0 || up == poisonGC || up == poisonStack {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
getg ( ) . m . traceback = 2
print ( "runtime: bad pointer in frame " , gofuncname ( f ) , " at " , add ( scanp , i * ptrSize ) , ": " , p , "\n" )
gothrow ( "invalid stack pointer" )
}
if minp <= up && up < maxp {
if stackDebug >= 3 {
print ( "adjust ptr " , p , " " , gofuncname ( f ) , "\n" )
}
* ( * unsafe . Pointer ) ( add ( scanp , i * ptrSize ) ) = unsafe . Pointer ( up + delta )
}
}
}
}
// Note: the argument/return area is adjusted by the callee.
func adjustframe ( frame * stkframe , arg unsafe . Pointer ) bool {
adjinfo := ( * adjustinfo ) ( arg )
targetpc := frame . continpc
if targetpc == 0 {
// Frame is dead.
return true
}
f := frame . fn
if stackDebug >= 2 {
print ( " adjusting " , funcname ( f ) , " frame=[" , hex ( frame . sp ) , "," , hex ( frame . fp ) , "] pc=" , hex ( frame . pc ) , " continpc=" , hex ( frame . continpc ) , "\n" )
}
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
if f . entry == systemstack_switchPC {
// A special routine at the bottom of stack of a goroutine that does an systemstack call.
2014-11-11 17:04:34 -05:00
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
return true
}
if targetpc != f . entry {
targetpc --
}
pcdata := pcdatavalue ( f , _PCDATA_StackMapIndex , targetpc )
if pcdata == - 1 {
pcdata = 0 // in prologue
}
// Adjust local variables if stack frame has been allocated.
size := frame . varp - frame . sp
var minsize uintptr
if thechar != '6' && thechar != '8' {
minsize = ptrSize
} else {
minsize = 0
}
if size > minsize {
var bv bitvector
stackmap := ( * stackmap ) ( funcdata ( f , _FUNCDATA_LocalsPointerMaps ) )
if stackmap == nil || stackmap . n <= 0 {
print ( "runtime: frame " , funcname ( f ) , " untyped locals " , hex ( frame . varp - size ) , "+" , hex ( size ) , "\n" )
gothrow ( "missing stackmap" )
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stackmap . n {
// don't know where we are
print ( "runtime: pcdata is " , pcdata , " and " , stackmap . n , " locals stack map entries for " , funcname ( f ) , " (targetpc=" , targetpc , ")\n" )
gothrow ( "bad symbol table" )
}
bv = stackmapdata ( stackmap , pcdata )
size = ( uintptr ( bv . n ) * ptrSize ) / _BitsPerPointer
if stackDebug >= 3 {
print ( " locals " , pcdata , "/" , stackmap . n , " " , size / ptrSize , " words " , bv . bytedata , "\n" )
}
adjustpointers ( unsafe . Pointer ( frame . varp - size ) , & bv , adjinfo , f )
}
// Adjust arguments.
if frame . arglen > 0 {
var bv bitvector
if frame . argmap != nil {
bv = * frame . argmap
} else {
stackmap := ( * stackmap ) ( funcdata ( f , _FUNCDATA_ArgsPointerMaps ) )
if stackmap == nil || stackmap . n <= 0 {
print ( "runtime: frame " , funcname ( f ) , " untyped args " , frame . argp , "+" , uintptr ( frame . arglen ) , "\n" )
gothrow ( "missing stackmap" )
}
if pcdata < 0 || pcdata >= stackmap . n {
// don't know where we are
print ( "runtime: pcdata is " , pcdata , " and " , stackmap . n , " args stack map entries for " , funcname ( f ) , " (targetpc=" , targetpc , ")\n" )
gothrow ( "bad symbol table" )
}
bv = stackmapdata ( stackmap , pcdata )
}
if stackDebug >= 3 {
print ( " args\n" )
}
adjustpointers ( unsafe . Pointer ( frame . argp ) , & bv , adjinfo , nil )
}
return true
}
func adjustctxt ( gp * g , adjinfo * adjustinfo ) {
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & gp . sched . ctxt ) )
}
func adjustdefers ( gp * g , adjinfo * adjustinfo ) {
// Adjust defer argument blocks the same way we adjust active stack frames.
tracebackdefers ( gp , adjustframe , noescape ( unsafe . Pointer ( adjinfo ) ) )
// Adjust pointers in the Defer structs.
// Defer structs themselves are never on the stack.
for d := gp . _defer ; d != nil ; d = d . link {
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & d . fn ) )
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & d . argp ) )
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & d . _panic ) )
}
}
func adjustpanics ( gp * g , adjinfo * adjustinfo ) {
// Panics are on stack and already adjusted.
// Update pointer to head of list in G.
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & gp . _panic ) )
}
func adjustsudogs ( gp * g , adjinfo * adjustinfo ) {
// the data elements pointed to by a SudoG structure
// might be in the stack.
for s := gp . waiting ; s != nil ; s = s . waitlink {
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & s . elem ) )
adjustpointer ( adjinfo , ( unsafe . Pointer ) ( & s . selectdone ) )
}
}
func fillstack ( stk stack , b byte ) {
for p := stk . lo ; p < stk . hi ; p ++ {
* ( * byte ) ( unsafe . Pointer ( p ) ) = b
}
}
// Copies gp's stack to a new stack of a different size.
2014-11-15 08:00:38 -05:00
// Caller must have changed gp status to Gcopystack.
2014-11-11 17:04:34 -05:00
func copystack ( gp * g , newsize uintptr ) {
if gp . syscallsp != 0 {
gothrow ( "stack growth not allowed in system call" )
}
old := gp . stack
if old . lo == 0 {
gothrow ( "nil stackbase" )
}
used := old . hi - gp . sched . sp
// allocate new stack
new := stackalloc ( uint32 ( newsize ) )
if stackPoisonCopy != 0 {
fillstack ( new , 0xfd )
}
if stackDebug >= 1 {
print ( "copystack gp=" , gp , " [" , hex ( old . lo ) , " " , hex ( old . hi - used ) , " " , hex ( old . hi ) , "]/" , old . hi - old . lo , " -> [" , hex ( new . lo ) , " " , hex ( new . hi - used ) , " " , hex ( new . hi ) , "]/" , newsize , "\n" )
}
// adjust pointers in the to-be-copied frames
var adjinfo adjustinfo
adjinfo . old = old
adjinfo . delta = new . hi - old . hi
gentraceback ( ^ uintptr ( 0 ) , ^ uintptr ( 0 ) , 0 , gp , 0 , nil , 0x7fffffff , adjustframe , noescape ( unsafe . Pointer ( & adjinfo ) ) , 0 )
// adjust other miscellaneous things that have pointers into stacks.
adjustctxt ( gp , & adjinfo )
adjustdefers ( gp , & adjinfo )
adjustpanics ( gp , & adjinfo )
adjustsudogs ( gp , & adjinfo )
// copy the stack to the new location
if stackPoisonCopy != 0 {
fillstack ( new , 0xfb )
}
memmove ( unsafe . Pointer ( new . hi - used ) , unsafe . Pointer ( old . hi - used ) , used )
// Swap out old stack for new one
gp . stack = new
gp . stackguard0 = new . lo + _StackGuard // NOTE: might clobber a preempt request
gp . sched . sp = new . hi - used
// free old stack
if stackPoisonCopy != 0 {
fillstack ( old , 0xfc )
}
if newsize > old . hi - old . lo {
// growing, free stack immediately
stackfree ( old )
} else {
// shrinking, queue up free operation. We can't actually free the stack
// just yet because we might run into the following situation:
// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
// 2) The stack that pointer points to is shrunk
// 3) The old stack is freed
// 4) The containing span is marked free
// 5) GC attempts to mark the SudoG.elem pointer. The marking fails because
// the pointer looks like a pointer into a free span.
// By not freeing, we prevent step #4 until GC is done.
lock ( & stackpoolmu )
* ( * stack ) ( unsafe . Pointer ( old . lo ) ) = stackfreequeue
stackfreequeue = old
unlock ( & stackpoolmu )
}
}
// round x up to a power of 2.
func round2 ( x int32 ) int32 {
s := uint ( 0 )
for 1 << s < x {
s ++
}
return 1 << s
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
func newstack ( ) {
thisg := getg ( )
// TODO: double check all gp. shouldn't be getg().
if thisg . m . morebuf . g . stackguard0 == stackFork {
gothrow ( "stack growth after fork" )
}
if thisg . m . morebuf . g != thisg . m . curg {
print ( "runtime: newstack called from g=" , thisg . m . morebuf . g , "\n" + "\tm=" , thisg . m , " m->curg=" , thisg . m . curg , " m->g0=" , thisg . m . g0 , " m->gsignal=" , thisg . m . gsignal , "\n" )
morebuf := thisg . m . morebuf
traceback ( morebuf . pc , morebuf . sp , morebuf . lr , morebuf . g )
gothrow ( "runtime: wrong goroutine in newstack" )
}
if thisg . m . curg . throwsplit {
gp := thisg . m . curg
// Update syscallsp, syscallpc in case traceback uses them.
morebuf := thisg . m . morebuf
gp . syscallsp = morebuf . sp
gp . syscallpc = morebuf . pc
print ( "runtime: newstack sp=" , hex ( gp . sched . sp ) , " stack=[" , hex ( gp . stack . lo ) , ", " , hex ( gp . stack . hi ) , "]\n" ,
"\tmorebuf={pc:" , hex ( morebuf . pc ) , " sp:" , hex ( morebuf . sp ) , " lr:" , hex ( morebuf . lr ) , "}\n" ,
"\tsched={pc:" , hex ( gp . sched . pc ) , " sp:" , hex ( gp . sched . sp ) , " lr:" , hex ( gp . sched . lr ) , " ctxt:" , gp . sched . ctxt , "}\n" )
gothrow ( "runtime: stack split at bad time" )
}
// The goroutine must be executing in order to call newstack,
// so it must be Grunning or Gscanrunning.
gp := thisg . m . curg
morebuf := thisg . m . morebuf
thisg . m . morebuf . pc = 0
thisg . m . morebuf . lr = 0
thisg . m . morebuf . sp = 0
thisg . m . morebuf . g = nil
casgstatus ( gp , _Grunning , _Gwaiting )
gp . waitreason = "stack growth"
rewindmorestack ( & gp . sched )
if gp . stack . lo == 0 {
gothrow ( "missing stack in newstack" )
}
sp := gp . sched . sp
if thechar == '6' || thechar == '8' {
// The call to morestack cost a word.
sp -= ptrSize
}
if stackDebug >= 1 || sp < gp . stack . lo {
print ( "runtime: newstack sp=" , hex ( sp ) , " stack=[" , hex ( gp . stack . lo ) , ", " , hex ( gp . stack . hi ) , "]\n" ,
"\tmorebuf={pc:" , hex ( morebuf . pc ) , " sp:" , hex ( morebuf . sp ) , " lr:" , hex ( morebuf . lr ) , "}\n" ,
"\tsched={pc:" , hex ( gp . sched . pc ) , " sp:" , hex ( gp . sched . sp ) , " lr:" , hex ( gp . sched . lr ) , " ctxt:" , gp . sched . ctxt , "}\n" )
}
if sp < gp . stack . lo {
print ( "runtime: gp=" , gp , ", gp->status=" , hex ( readgstatus ( gp ) ) , "\n " )
print ( "runtime: split stack overflow: " , hex ( sp ) , " < " , hex ( gp . stack . lo ) , "\n" )
gothrow ( "runtime: split stack overflow" )
}
2014-11-15 08:00:38 -05:00
if gp . sched . ctxt != nil {
// morestack wrote sched.ctxt on its way in here,
// without a write barrier. Run the write barrier now.
// It is not possible to be preempted between then
// and now, so it's okay.
writebarrierptr_nostore ( ( * uintptr ) ( unsafe . Pointer ( & gp . sched . ctxt ) ) , uintptr ( gp . sched . ctxt ) )
}
2014-11-11 17:04:34 -05:00
if gp . stackguard0 == stackPreempt {
if gp == thisg . m . g0 {
gothrow ( "runtime: preempt g0" )
}
if thisg . m . p == nil && thisg . m . locks == 0 {
gothrow ( "runtime: g is running but p is not" )
}
if gp . preemptscan {
gcphasework ( gp )
casgstatus ( gp , _Gwaiting , _Grunning )
gp . stackguard0 = gp . stack . lo + _StackGuard
gp . preempt = false
gp . preemptscan = false // Tells the GC premption was successful.
gogo ( & gp . sched ) // never return
}
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
if thisg . m . locks != 0 || thisg . m . mallocing != 0 || thisg . m . gcing != 0 || thisg . m . p . status != _Prunning {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp . stackguard0 = gp . stack . lo + _StackGuard
casgstatus ( gp , _Gwaiting , _Grunning )
gogo ( & gp . sched ) // never return
}
// Act like goroutine called runtime.Gosched.
casgstatus ( gp , _Gwaiting , _Grunning )
gosched_m ( gp ) // never return
}
// Allocate a bigger segment and move the stack.
oldsize := int ( gp . stack . hi - gp . stack . lo )
newsize := oldsize * 2
if uintptr ( newsize ) > maxstacksize {
print ( "runtime: goroutine stack exceeds " , maxstacksize , "-byte limit\n" )
gothrow ( "stack overflow" )
}
2014-11-15 08:00:38 -05:00
oldstatus := readgstatus ( gp )
oldstatus &^= _Gscan
casgstatus ( gp , oldstatus , _Gcopystack ) // oldstatus is Gwaiting or Grunnable
// The concurrent GC will not scan the stack while we are doing the copy since
// the gp is in a Gcopystack status.
2014-11-11 17:04:34 -05:00
copystack ( gp , uintptr ( newsize ) )
if stackDebug >= 1 {
print ( "stack grow done\n" )
}
2014-11-15 08:00:38 -05:00
casgstatus ( gp , _Gcopystack , _Grunning )
2014-11-11 17:04:34 -05:00
gogo ( & gp . sched )
}
//go:nosplit
func nilfunc ( ) {
* ( * uint8 ) ( nil ) = 0
}
// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
func gostartcallfn ( gobuf * gobuf , fv * funcval ) {
var fn unsafe . Pointer
if fv != nil {
fn = ( unsafe . Pointer ) ( fv . fn )
} else {
fn = unsafe . Pointer ( funcPC ( nilfunc ) )
}
gostartcall ( gobuf , fn , ( unsafe . Pointer ) ( fv ) )
}
// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
func shrinkstack ( gp * g ) {
if readgstatus ( gp ) == _Gdead {
if gp . stack . lo != 0 {
// Free whole stack - it will get reallocated
// if G is used again.
stackfree ( gp . stack )
gp . stack . lo = 0
gp . stack . hi = 0
}
return
}
if gp . stack . lo == 0 {
gothrow ( "missing stack in shrinkstack" )
}
oldsize := gp . stack . hi - gp . stack . lo
newsize := oldsize / 2
if newsize < _FixedStack {
return // don't shrink below the minimum-sized stack
}
used := gp . stack . hi - gp . sched . sp
if used >= oldsize / 4 {
return // still using at least 1/4 of the segment.
}
// We can't copy the stack if we're in a syscall.
// The syscall might have pointers into the stack.
if gp . syscallsp != 0 {
return
}
2014-11-15 08:00:38 -05:00
if _Windows != 0 && gp . m != nil && gp . m . libcallsp != 0 {
2014-11-11 17:04:34 -05:00
return
}
if stackDebug > 0 {
print ( "shrinking stack " , oldsize , "->" , newsize , "\n" )
}
2014-11-15 08:00:38 -05:00
// This is being done in a Gscan state and was initiated by the GC so no need to move to
// the Gcopystate.
// The world is stopped, so the goroutine must be Gwaiting or Grunnable,
// and what it is is not changing underfoot.
oldstatus := readgstatus ( gp ) &^ _Gscan
if oldstatus != _Gwaiting && oldstatus != _Grunnable {
gothrow ( "status is not Gwaiting or Grunnable" )
}
casgstatus ( gp , oldstatus , _Gcopystack )
2014-11-11 17:04:34 -05:00
copystack ( gp , newsize )
2014-11-15 08:00:38 -05:00
casgstatus ( gp , _Gcopystack , oldstatus )
2014-11-11 17:04:34 -05:00
}
// Do any delayed stack freeing that was queued up during GC.
func shrinkfinish ( ) {
lock ( & stackpoolmu )
s := stackfreequeue
stackfreequeue = stack { }
unlock ( & stackpoolmu )
for s . lo != 0 {
t := * ( * stack ) ( unsafe . Pointer ( s . lo ) )
stackfree ( s )
s = t
}
}
//go:nosplit
func morestackc ( ) {
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
systemstack ( func ( ) {
2014-11-11 17:04:34 -05:00
gothrow ( "attempt to execute C code on Go stack" )
} )
}