go/src/cmd/compile/internal/gc/phi.go

531 lines
14 KiB
Go
Raw Normal View History

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/internal/src"
"container/heap"
"fmt"
)
// This file contains the algorithm to place phi nodes in a function.
// For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau.
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf
const smallBlocks = 500
const debugPhi = false
// insertPhis finds all the places in the function where a phi is
// necessary and inserts them.
// Uses FwdRef ops to find all uses of variables, and s.defvars to find
// all definitions.
// Phi values are inserted, and all FwdRefs are changed to a Copy
// of the appropriate phi or definition.
// TODO: make this part of cmd/compile/internal/ssa somehow?
func (s *state) insertPhis() {
if len(s.f.Blocks) <= smallBlocks {
sps := simplePhiState{s: s, f: s.f, defvars: s.defvars}
sps.insertPhis()
return
}
ps := phiState{s: s, f: s.f, defvars: s.defvars}
ps.insertPhis()
}
type phiState struct {
s *state // SSA state
f *ssa.Func // function to work on
defvars []map[*Node]*ssa.Value // defined variables at end of each block
varnum map[*Node]int32 // variable numbering
// properties of the dominator tree
idom []*ssa.Block // dominator parents
tree []domBlock // dominator child+sibling
level []int32 // level in dominator tree (0 = root or unreachable, 1 = children of root, ...)
// scratch locations
priq blockHeap // priority queue of blocks, higher level (toward leaves) = higher priority
q []*ssa.Block // inner loop queue
queued *sparseSet // has been put in q
hasPhi *sparseSet // has a phi
hasDef *sparseSet // has a write of the variable we're processing
// miscellaneous
placeholder *ssa.Value // dummy value to use as a "not set yet" placeholder.
}
func (s *phiState) insertPhis() {
if debugPhi {
fmt.Println(s.f.String())
}
// Find all the variables for which we need to match up reads & writes.
// This step prunes any basic-block-only variables from consideration.
// Generate a numbering for these variables.
s.varnum = map[*Node]int32{}
var vars []*Node
var vartypes []ssa.Type
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
var_ := v.Aux.(*Node)
// Optimization: look back 1 block for the definition.
if len(b.Preds) == 1 {
c := b.Preds[0].Block()
if w := s.defvars[c.ID][var_]; w != nil {
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(w)
continue
}
}
if _, ok := s.varnum[var_]; ok {
continue
}
s.varnum[var_] = int32(len(vartypes))
if debugPhi {
fmt.Printf("var%d = %v\n", len(vartypes), var_)
}
vars = append(vars, var_)
vartypes = append(vartypes, v.Type)
}
}
if len(vartypes) == 0 {
return
}
// Find all definitions of the variables we need to process.
// defs[n] contains all the blocks in which variable number n is assigned.
defs := make([][]*ssa.Block, len(vartypes))
for _, b := range s.f.Blocks {
for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map.
if n, ok := s.varnum[var_]; ok {
defs[n] = append(defs[n], b)
}
}
}
// Make dominator tree.
s.idom = s.f.Idom()
s.tree = make([]domBlock, s.f.NumBlocks())
for _, b := range s.f.Blocks {
p := s.idom[b.ID]
if p != nil {
s.tree[b.ID].sibling = s.tree[p.ID].firstChild
s.tree[p.ID].firstChild = b
}
}
// Compute levels in dominator tree.
// With parent pointers we can do a depth-first walk without
// any auxiliary storage.
s.level = make([]int32, s.f.NumBlocks())
b := s.f.Entry
levels:
for {
if p := s.idom[b.ID]; p != nil {
s.level[b.ID] = s.level[p.ID] + 1
if debugPhi {
fmt.Printf("level %s = %d\n", b, s.level[b.ID])
}
}
if c := s.tree[b.ID].firstChild; c != nil {
b = c
continue
}
for {
if c := s.tree[b.ID].sibling; c != nil {
b = c
continue levels
}
b = s.idom[b.ID]
if b == nil {
break levels
}
}
}
// Allocate scratch locations.
s.priq.level = s.level
s.q = make([]*ssa.Block, 0, s.f.NumBlocks())
s.queued = newSparseSet(s.f.NumBlocks())
s.hasPhi = newSparseSet(s.f.NumBlocks())
s.hasDef = newSparseSet(s.f.NumBlocks())
s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, ssa.TypeInvalid)
// Generate phi ops for each variable.
for n := range vartypes {
s.insertVarPhis(n, vars[n], defs[n], vartypes[n])
}
// Resolve FwdRefs to the correct write or phi.
s.resolveFwdRefs()
// Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed.
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op == ssa.OpPhi {
v.AuxInt = 0
}
}
}
}
func (s *phiState) insertVarPhis(n int, var_ *Node, defs []*ssa.Block, typ ssa.Type) {
priq := &s.priq
q := s.q
queued := s.queued
queued.clear()
hasPhi := s.hasPhi
hasPhi.clear()
hasDef := s.hasDef
hasDef.clear()
// Add defining blocks to priority queue.
for _, b := range defs {
priq.a = append(priq.a, b)
hasDef.add(b.ID)
if debugPhi {
fmt.Printf("def of var%d in %s\n", n, b)
}
}
heap.Init(priq)
// Visit blocks defining variable n, from deepest to shallowest.
for len(priq.a) > 0 {
currentRoot := heap.Pop(priq).(*ssa.Block)
if debugPhi {
fmt.Printf("currentRoot %s\n", currentRoot)
}
// Walk subtree below definition.
// Skip subtrees we've done in previous iterations.
// Find edges exiting tree dominated by definition (the dominance frontier).
// Insert phis at target blocks.
if queued.contains(currentRoot.ID) {
s.s.Fatalf("root already in queue")
}
q = append(q, currentRoot)
queued.add(currentRoot.ID)
for len(q) > 0 {
b := q[len(q)-1]
q = q[:len(q)-1]
if debugPhi {
fmt.Printf(" processing %s\n", b)
}
currentRootLevel := s.level[currentRoot.ID]
for _, e := range b.Succs {
c := e.Block()
// TODO: if the variable is dead at c, skip it.
if s.level[c.ID] > currentRootLevel {
// a D-edge, or an edge whose target is in currentRoot's subtree.
continue
}
if !hasPhi.contains(c.ID) {
// Add a phi to block c for variable n.
hasPhi.add(c.ID)
v := c.NewValue0I(currentRoot.Pos, ssa.OpPhi, typ, int64(n)) // TODO: line number right?
// Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building.
s.s.addNamedValue(var_, v)
for i := 0; i < len(c.Preds); i++ {
v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs.
}
if debugPhi {
fmt.Printf("new phi for var%d in %s: %s\n", n, c, v)
}
if !hasDef.contains(c.ID) {
// There's now a new definition of this variable in block c.
// Add it to the priority queue to explore.
heap.Push(priq, c)
hasDef.add(c.ID)
}
}
}
// Visit children if they have not been visited yet.
for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
if !queued.contains(c.ID) {
q = append(q, c)
queued.add(c.ID)
}
}
}
}
}
// resolveFwdRefs links all FwdRef uses up to their nearest dominating definition.
func (s *phiState) resolveFwdRefs() {
// Do a depth-first walk of the dominator tree, keeping track
// of the most-recently-seen value for each variable.
// Map from variable ID to SSA value at the current point of the walk.
values := make([]*ssa.Value, len(s.varnum))
for i := range values {
values[i] = s.placeholder
}
// Stack of work to do.
type stackEntry struct {
b *ssa.Block // block to explore
// variable/value pair to reinstate on exit
n int32 // variable ID
v *ssa.Value
// Note: only one of b or n,v will be set.
}
var stk []stackEntry
stk = append(stk, stackEntry{b: s.f.Entry})
for len(stk) > 0 {
work := stk[len(stk)-1]
stk = stk[:len(stk)-1]
b := work.b
if b == nil {
// On exit from a block, this case will undo any assignments done below.
values[work.n] = work.v
continue
}
// Process phis as new defs. They come before FwdRefs in this block.
for _, v := range b.Values {
if v.Op != ssa.OpPhi {
continue
}
n := int32(v.AuxInt)
// Remember the old assignment so we can undo it when we exit b.
stk = append(stk, stackEntry{n: n, v: values[n]})
// Record the new assignment.
values[n] = v
}
// Replace a FwdRef op with the current incoming value for its variable.
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
n := s.varnum[v.Aux.(*Node)]
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(values[n])
}
// Establish values for variables defined in b.
for var_, v := range s.defvars[b.ID] {
n, ok := s.varnum[var_]
if !ok {
// some variable not live across a basic block boundary.
continue
}
// Remember the old assignment so we can undo it when we exit b.
stk = append(stk, stackEntry{n: n, v: values[n]})
// Record the new assignment.
values[n] = v
}
// Replace phi args in successors with the current incoming value.
for _, e := range b.Succs {
c, i := e.Block(), e.Index()
for j := len(c.Values) - 1; j >= 0; j-- {
v := c.Values[j]
if v.Op != ssa.OpPhi {
break // All phis will be at the end of the block during phi building.
}
cmd/compile: speed up hot phi insertion code This speeds up compilation of the code in #8225 by 25%-30%. The complexity of the algorithm is unchanged, but this shrinks the constant factor so much that it doesn't matter, even the size of the giant type switch gets scaled up dramatically. name old time/op new time/op delta Template 218ms ± 5% 217ms ±10% ~ (p=0.163 n=27+30) Unicode 98.2ms ± 6% 97.7ms ±10% ~ (p=0.150 n=27+29) GoTypes 654ms ± 5% 650ms ± 5% ~ (p=0.350 n=30+30) Compiler 2.70s ± 4% 2.68s ± 3% ~ (p=0.128 n=30+29) name old user-ns/op new user-ns/op delta Template 276user-ms ± 6% 271user-ms ± 7% -1.83% (p=0.003 n=29+28) Unicode 138user-ms ± 5% 137user-ms ± 4% ~ (p=0.071 n=27+27) GoTypes 881user-ms ± 4% 877user-ms ± 4% ~ (p=0.423 n=30+30) Compiler 3.76user-s ± 4% 3.72user-s ± 2% -0.84% (p=0.028 n=30+29) name old alloc/op new alloc/op delta Template 40.7MB ± 0% 40.7MB ± 0% ~ (p=0.936 n=30+30) Unicode 30.8MB ± 0% 30.8MB ± 0% ~ (p=0.859 n=28+30) GoTypes 123MB ± 0% 123MB ± 0% ~ (p=0.273 n=30+30) Compiler 472MB ± 0% 472MB ± 0% ~ (p=0.432 n=30+30) name old allocs/op new allocs/op delta Template 401k ± 1% 401k ± 1% ~ (p=0.859 n=30+30) Unicode 331k ± 0% 331k ± 1% ~ (p=0.823 n=28+30) GoTypes 1.24M ± 0% 1.24M ± 0% ~ (p=0.286 n=30+30) Compiler 4.26M ± 0% 4.26M ± 0% ~ (p=0.359 n=30+30) Change-Id: Ia850065a9a84c07a5b0b4e23c1758b5679498da7 Reviewed-on: https://go-review.googlesource.com/36112 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
2017-01-19 14:22:26 -08:00
// Only set arguments that have been resolved.
// For very wide CFGs, this significantly speeds up phi resolution.
// See golang.org/issue/8225.
if w := values[v.AuxInt]; w.Op != ssa.OpUnknown {
v.SetArg(i, w)
}
}
}
// Walk children in dominator tree.
for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
stk = append(stk, stackEntry{b: c})
}
}
}
// domBlock contains extra per-block information to record the dominator tree.
type domBlock struct {
firstChild *ssa.Block // first child of block in dominator tree
sibling *ssa.Block // next child of parent in dominator tree
}
// A block heap is used as a priority queue to implement the PiggyBank
// from Sreedhar and Gao. That paper uses an array which is better
// asymptotically but worse in the common case when the PiggyBank
// holds a sparse set of blocks.
type blockHeap struct {
a []*ssa.Block // block IDs in heap
level []int32 // depth in dominator tree (static, used for determining priority)
}
func (h *blockHeap) Len() int { return len(h.a) }
func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
func (h *blockHeap) Push(x interface{}) {
v := x.(*ssa.Block)
h.a = append(h.a, v)
}
func (h *blockHeap) Pop() interface{} {
old := h.a
n := len(old)
x := old[n-1]
h.a = old[:n-1]
return x
}
func (h *blockHeap) Less(i, j int) bool {
return h.level[h.a[i].ID] > h.level[h.a[j].ID]
}
// TODO: stop walking the iterated domininance frontier when
// the variable is dead. Maybe detect that by checking if the
// node we're on is reverse dominated by all the reads?
// Reverse dominated by the highest common successor of all the reads?
// copy of ../ssa/sparseset.go
// TODO: move this file to ../ssa, then use sparseSet there.
type sparseSet struct {
dense []ssa.ID
sparse []int32
}
// newSparseSet returns a sparseSet that can represent
// integers between 0 and n-1
func newSparseSet(n int) *sparseSet {
return &sparseSet{dense: nil, sparse: make([]int32, n)}
}
func (s *sparseSet) contains(x ssa.ID) bool {
i := s.sparse[x]
return i < int32(len(s.dense)) && s.dense[i] == x
}
func (s *sparseSet) add(x ssa.ID) {
i := s.sparse[x]
if i < int32(len(s.dense)) && s.dense[i] == x {
return
}
s.dense = append(s.dense, x)
s.sparse[x] = int32(len(s.dense)) - 1
}
func (s *sparseSet) clear() {
s.dense = s.dense[:0]
}
// Variant to use for small functions.
type simplePhiState struct {
s *state // SSA state
f *ssa.Func // function to work on
fwdrefs []*ssa.Value // list of FwdRefs to be processed
defvars []map[*Node]*ssa.Value // defined variables at end of each block
}
func (s *simplePhiState) insertPhis() {
reachable := ssa.ReachableBlocks(s.f)
// Find FwdRef ops.
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
s.fwdrefs = append(s.fwdrefs, v)
var_ := v.Aux.(*Node)
if _, ok := s.defvars[b.ID][var_]; !ok {
s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
}
}
}
var args []*ssa.Value
loop:
for len(s.fwdrefs) > 0 {
v := s.fwdrefs[len(s.fwdrefs)-1]
s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
b := v.Block
var_ := v.Aux.(*Node)
if b == s.f.Entry {
// No variable should be live at entry.
s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
}
if !reachable[b.ID] {
// This block is dead.
// It doesn't matter what we use here as long as it is well-formed.
v.Op = ssa.OpUnknown
v.Aux = nil
continue
}
// Find variable value on each predecessor.
args = args[:0]
for _, e := range b.Preds {
args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Pos))
}
// Decide if we need a phi or not. We need a phi if there
// are two different args (which are both not v).
var w *ssa.Value
for _, a := range args {
if a == v {
continue // self-reference
}
if a == w {
continue // already have this witness
}
if w != nil {
// two witnesses, need a phi value
v.Op = ssa.OpPhi
v.AddArgs(args...)
v.Aux = nil
continue loop
}
w = a // save witness
}
if w == nil {
s.s.Fatalf("no witness for reachable phi %s", v)
}
// One witness. Make v a copy of w.
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(w)
}
}
// lookupVarOutgoing finds the variable's value at the end of block b.
2016-12-15 17:17:01 -08:00
func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t ssa.Type, var_ *Node, line src.XPos) *ssa.Value {
for {
if v := s.defvars[b.ID][var_]; v != nil {
return v
}
// The variable is not defined by b and we haven't looked it up yet.
// If b has exactly one predecessor, loop to look it up there.
// Otherwise, give up and insert a new FwdRef and resolve it later.
if len(b.Preds) != 1 {
break
}
b = b.Preds[0].Block()
}
// Generate a FwdRef for the variable and return that.
v := b.NewValue0A(line, ssa.OpFwdRef, t, var_)
s.defvars[b.ID][var_] = v
s.s.addNamedValue(var_, v)
s.fwdrefs = append(s.fwdrefs, v)
return v
}