go/src/cmd/compile/internal/devirtualize/pgo.go

533 lines
14 KiB
Go
Raw Normal View History

cmd/compile: enable PGO-driven call devirtualization This CL is originally based on CL 484838 from rajbarik@uber.com. Add a new PGO-based devirtualize pass. This pass conditionally devirtualizes interface calls for the hottest callee. That is, it performs a transformation like: type Iface interface { Foo() } type Concrete struct{} func (Concrete) Foo() {} func foo(i Iface) { i.Foo() } to: func foo(i Iface) { if c, ok := i.(Concrete); ok { c.Foo() } else { i.Foo() } } The primary benefit of this transformation is enabling inlining of the direct calls. Today this change has no impact on the escape behavior, as the fallback interface always forces an escape. But improving escape analysis to take advantage of this is an area of potential work. This CL is the bare minimum of a devirtualization implementation. There are still numerous limitations: * Callees not directly referenced in the current package can be missed (even if they are in the transitive dependences). * Callees not in the transitive dependencies of the current package are missed. * Only interface method calls are supported, not other indirect function calls. * Multiple calls to compatible interfaces on the same line cannot be distinguished and will use the same callee target. * Callees that only partially implement an interface (they are embedded in another type that completes the interface) cannot be devirtualized. * Others, mentioned in TODOs. Fixes #59959 Change-Id: I8bedb516139695ee4069650b099d05957b7ce5ee Reviewed-on: https://go-review.googlesource.com/c/go/+/492436 Reviewed-by: Cherry Mui <cherryyz@google.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Michael Pratt <mpratt@google.com> Auto-Submit: Michael Pratt <mpratt@google.com> TryBot-Result: Gopher Robot <gobot@golang.org>
2023-05-12 16:39:43 -04:00
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package devirtualize
import (
"cmd/compile/internal/base"
"cmd/compile/internal/inline"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/pgo"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"encoding/json"
"fmt"
"os"
)
// CallStat summarizes a single call site.
//
// This is used only for debug logging.
type CallStat struct {
Pkg string // base.Ctxt.Pkgpath
Pos string // file:line:col of call.
Caller string // Linker symbol name of calling function.
// Direct or indirect call.
Direct bool
// For indirect calls, interface call or other indirect function call.
Interface bool
// Total edge weight from this call site.
Weight int64
// Hottest callee from this call site, regardless of type
// compatibility.
Hottest string
HottestWeight int64
// Devirtualized callee if != "".
//
// Note that this may be different than Hottest because we apply
// type-check restrictions, which helps distinguish multiple calls on
// the same line.
Devirtualized string
DevirtualizedWeight int64
}
// ProfileGuided performs call devirtualization of indirect calls based on
// profile information.
//
// Specifically, it performs conditional devirtualization of interface calls
// for the hottest callee. That is, it performs a transformation like:
//
// type Iface interface {
// Foo()
// }
//
// type Concrete struct{}
//
// func (Concrete) Foo() {}
//
// func foo(i Iface) {
// i.Foo()
// }
//
// to:
//
// func foo(i Iface) {
// if c, ok := i.(Concrete); ok {
// c.Foo()
// } else {
// i.Foo()
// }
// }
//
// The primary benefit of this transformation is enabling inlining of the
// direct call.
func ProfileGuided(fn *ir.Func, p *pgo.Profile) {
ir.CurFunc = fn
name := ir.LinkFuncName(fn)
// Can't devirtualize go/defer calls. See comment in Static.
goDeferCall := make(map[*ir.CallExpr]bool)
var jsonW *json.Encoder
if base.Debug.PGODebug >= 3 {
jsonW = json.NewEncoder(os.Stdout)
}
var edit func(n ir.Node) ir.Node
edit = func(n ir.Node) ir.Node {
if n == nil {
return n
}
if gds, ok := n.(*ir.GoDeferStmt); ok {
if call, ok := gds.Call.(*ir.CallExpr); ok {
goDeferCall[call] = true
}
}
ir.EditChildren(n, edit)
call, ok := n.(*ir.CallExpr)
if !ok {
return n
}
var stat *CallStat
if base.Debug.PGODebug >= 3 {
// Statistics about every single call. Handy for external data analysis.
//
// TODO(prattmic): Log via logopt?
stat = constructCallStat(p, fn, name, call)
if stat != nil {
defer func() {
jsonW.Encode(&stat)
}()
}
}
if call.Op() != ir.OCALLINTER {
return n
}
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: PGO devirtualize considering call %v\n", ir.Line(call), call)
}
if goDeferCall[call] {
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: can't PGO devirtualize go/defer call %v\n", ir.Line(call), call)
}
return n
}
// Bail if we do not have a hot callee.
callee, weight := findHotConcreteCallee(p, fn, call)
if callee == nil {
return n
}
// Bail if we do not have a Type node for the hot callee.
ctyp := methodRecvType(callee)
if ctyp == nil {
return n
}
// Bail if we know for sure it won't inline.
if !shouldPGODevirt(callee) {
return n
}
if stat != nil {
stat.Devirtualized = ir.LinkFuncName(callee)
stat.DevirtualizedWeight = weight
}
return rewriteCondCall(call, fn, callee, ctyp)
}
ir.EditChildren(fn, edit)
}
// shouldPGODevirt checks if we should perform PGO devirtualization to the
// target function.
//
// PGO devirtualization is most valuable when the callee is inlined, so if it
// won't inline we can skip devirtualizing.
func shouldPGODevirt(fn *ir.Func) bool {
var reason string
if base.Flag.LowerM > 1 || logopt.Enabled() {
defer func() {
if reason != "" {
if base.Flag.LowerM > 1 {
fmt.Printf("%v: should not PGO devirtualize %v: %s\n", ir.Line(fn), ir.FuncName(fn), reason)
}
if logopt.Enabled() {
logopt.LogOpt(fn.Pos(), ": should not PGO devirtualize function", "pgo-devirtualize", ir.FuncName(fn), reason)
}
}
}()
}
reason = inline.InlineImpossible(fn)
if reason != "" {
return false
}
// TODO(prattmic): checking only InlineImpossible is very conservative,
// primarily excluding only functions with pragmas. We probably want to
// move in either direction. Either:
//
// 1. Don't even bother to check InlineImpossible, as it affects so few
// functions.
//
// 2. Or consider the function body (notably cost) to better determine
// if the function will actually inline.
return true
}
// constructCallStat builds an initial CallStat describing this call, for
// logging. If the call is devirtualized, the devirtualization fields should be
// updated.
func constructCallStat(p *pgo.Profile, fn *ir.Func, name string, call *ir.CallExpr) *CallStat {
switch call.Op() {
case ir.OCALLFUNC, ir.OCALLINTER, ir.OCALLMETH:
default:
// We don't care about logging builtin functions.
return nil
}
stat := CallStat{
Pkg: base.Ctxt.Pkgpath,
Pos: ir.Line(call),
Caller: name,
}
offset := pgo.NodeLineOffset(call, fn)
// Sum of all edges from this callsite, regardless of callee.
// For direct calls, this should be the same as the single edge
// weight (except for multiple calls on one line, which we
// can't distinguish).
callerNode := p.WeightedCG.IRNodes[name]
for _, edge := range callerNode.OutEdges {
if edge.CallSiteOffset != offset {
continue
}
stat.Weight += edge.Weight
if edge.Weight > stat.HottestWeight {
stat.HottestWeight = edge.Weight
stat.Hottest = edge.Dst.Name()
}
}
switch call.Op() {
case ir.OCALLFUNC:
stat.Interface = false
callee := pgo.DirectCallee(call.X)
if callee != nil {
stat.Direct = true
if stat.Hottest == "" {
stat.Hottest = ir.LinkFuncName(callee)
}
} else {
stat.Direct = false
}
case ir.OCALLINTER:
stat.Direct = false
stat.Interface = true
case ir.OCALLMETH:
base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
}
return &stat
}
// rewriteCondCall devirtualizes the given call using a direct method call to
// concretetyp.
func rewriteCondCall(call *ir.CallExpr, curfn, callee *ir.Func, concretetyp *types.Type) ir.Node {
if base.Flag.LowerM != 0 {
fmt.Printf("%v: PGO devirtualizing call to %v\n", ir.Line(call), callee)
}
// We generate an OINCALL of:
//
// var recv Iface
//
// var arg1 A1
// var argN AN
//
// var ret1 R1
// var retN RN
//
// recv, arg1, argN = recv expr, arg1 expr, argN expr
//
// t, ok := recv.(Concrete)
// if ok {
// ret1, retN = t.Method(arg1, ... argN)
// } else {
// ret1, retN = recv.Method(arg1, ... argN)
// }
//
// OINCALL retvars: ret1, ... retN
//
// This isn't really an inlined call of course, but InlinedCallExpr
// makes handling reassignment of return values easier.
//
// TODO(prattmic): This increases the size of the AST in the caller,
// making it less like to inline. We may want to compensate for this
// somehow.
var retvars []ir.Node
sig := call.X.Type()
for _, ret := range sig.Results().FieldSlice() {
retvars = append(retvars, typecheck.Temp(ret.Type))
}
sel := call.X.(*ir.SelectorExpr)
method := sel.Sel
pos := call.Pos()
init := ir.TakeInit(call)
// Evaluate receiver and argument expressions. The receiver is used
// twice but we don't want to cause side effects twice. The arguments
// are used in two different calls and we can't trivially copy them.
//
// recv must be first in the assignment list as its side effects must
// be ordered before argument side effects.
var lhs, rhs []ir.Node
recv := typecheck.Temp(sel.X.Type())
lhs = append(lhs, recv)
rhs = append(rhs, sel.X)
// Move arguments to assignments prior to the if statement. We cannot
// simply copy the args' IR, as some IR constructs cannot be copied,
// such as labels (possible in InlinedCall nodes).
args := call.Args.Take()
for _, arg := range args {
argvar := typecheck.Temp(arg.Type())
lhs = append(lhs, argvar)
rhs = append(rhs, arg)
}
asList := ir.NewAssignListStmt(pos, ir.OAS2, lhs, rhs)
init.Append(typecheck.Stmt(asList))
// Copy slice so edits in one location don't affect another.
argvars := append([]ir.Node(nil), lhs[1:]...)
call.Args = argvars
tmpnode := typecheck.Temp(concretetyp)
tmpok := typecheck.Temp(types.Types[types.TBOOL])
assert := ir.NewTypeAssertExpr(pos, recv, concretetyp)
assertAsList := ir.NewAssignListStmt(pos, ir.OAS2, []ir.Node{tmpnode, tmpok}, []ir.Node{typecheck.Expr(assert)})
init.Append(typecheck.Stmt(assertAsList))
concreteCallee := typecheck.Callee(ir.NewSelectorExpr(pos, ir.OXDOT, tmpnode, method))
// Copy slice so edits in one location don't affect another.
argvars = append([]ir.Node(nil), argvars...)
concreteCall := typecheck.Call(pos, concreteCallee, argvars, call.IsDDD)
var thenBlock, elseBlock ir.Nodes
if len(retvars) == 0 {
thenBlock.Append(concreteCall)
elseBlock.Append(call)
} else {
// Copy slice so edits in one location don't affect another.
thenRet := append([]ir.Node(nil), retvars...)
thenAsList := ir.NewAssignListStmt(pos, ir.OAS2, thenRet, []ir.Node{concreteCall})
thenBlock.Append(typecheck.Stmt(thenAsList))
elseRet := append([]ir.Node(nil), retvars...)
elseAsList := ir.NewAssignListStmt(pos, ir.OAS2, elseRet, []ir.Node{call})
elseBlock.Append(typecheck.Stmt(elseAsList))
}
cond := ir.NewIfStmt(pos, nil, nil, nil)
cond.SetInit(init)
cond.Cond = tmpok
cond.Body = thenBlock
cond.Else = elseBlock
cond.Likely = true
body := []ir.Node{typecheck.Stmt(cond)}
res := ir.NewInlinedCallExpr(pos, body, retvars)
res.SetType(call.Type())
res.SetTypecheck(1)
if base.Debug.PGODebug >= 3 {
fmt.Printf("PGO devirtualizing call to %+v. After: %+v\n", concretetyp, res)
}
return res
}
// methodRecvType returns the type containing method fn. Returns nil if fn
// is not a method.
func methodRecvType(fn *ir.Func) *types.Type {
recv := fn.Nname.Type().Recv()
if recv == nil {
return nil
}
return recv.Type
}
// interfaceCallRecvType returns the type of the interface used in an interface
// call.
func interfaceCallRecvType(call *ir.CallExpr) *types.Type {
if call.Op() != ir.OCALLINTER {
base.Fatalf("Call isn't OCALLINTER: %+v", call)
}
sel, ok := call.X.(*ir.SelectorExpr)
if !ok {
base.Fatalf("OCALLINTER doesn't contain SelectorExpr: %+v", call)
}
return sel.X.Type()
}
// findHotConcreteCallee returns the *ir.Func of the hottest callee of an
// indirect call, if available, and its edge weight.
func findHotConcreteCallee(p *pgo.Profile, caller *ir.Func, call *ir.CallExpr) (*ir.Func, int64) {
callerName := ir.LinkFuncName(caller)
callerNode := p.WeightedCG.IRNodes[callerName]
callOffset := pgo.NodeLineOffset(call, caller)
inter := interfaceCallRecvType(call)
var hottest *pgo.IREdge
// Returns true if e is hotter than hottest.
//
// Naively this is just e.Weight > hottest.Weight, but because OutEdges
// has arbitrary iteration order, we need to apply additional sort
// criteria when e.Weight == hottest.Weight to ensure we have stable
// selection.
hotter := func(e *pgo.IREdge) bool {
if hottest == nil {
return true
}
if e.Weight != hottest.Weight {
return e.Weight > hottest.Weight
}
// Now e.Weight == hottest.Weight, we must select on other
// criteria.
if hottest.Dst.AST == nil && e.Dst.AST != nil {
// Prefer the edge with IR available.
return true
}
// Arbitrary, but the callee names will always differ. Select
// the lexicographically first callee.
return e.Dst.Name() < hottest.Dst.Name()
}
for _, e := range callerNode.OutEdges {
if e.CallSiteOffset != callOffset {
continue
}
if !hotter(e) {
// TODO(prattmic): consider total caller weight? i.e.,
// if the hottest callee is only 10% of the weight,
// maybe don't devirtualize? Similarly, if this is call
// is globally very cold, there is not much value in
// devirtualizing.
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: edge %s:%d -> %s (weight %d): too cold (hottest %d)\n", ir.Line(call), callerName, callOffset, e.Dst.Name(), e.Weight, hottest.Weight)
}
continue
}
if e.Dst.AST == nil {
// Destination isn't visible from this package
// compilation.
//
// We must assume it implements the interface.
//
// We still record this as the hottest callee so far
// because we only want to return the #1 hottest
// callee. If we skip this then we'd return the #2
// hottest callee.
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: edge %s:%d -> %s (weight %d) (missing IR): hottest so far\n", ir.Line(call), callerName, callOffset, e.Dst.Name(), e.Weight)
}
hottest = e
continue
}
ctyp := methodRecvType(e.Dst.AST)
if ctyp == nil {
// Not a method.
// TODO(prattmic): Support non-interface indirect calls.
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: edge %s:%d -> %s (weight %d): callee not a method\n", ir.Line(call), callerName, callOffset, e.Dst.Name(), e.Weight)
}
continue
}
// If ctyp doesn't implement inter it is most likely from a
// different call on the same line
if !typecheck.Implements(ctyp, inter) {
// TODO(prattmic): this is overly strict. Consider if
// ctyp is a partial implementation of an interface
// that gets embedded in types that complete the
// interface. It would still be OK to devirtualize a
// call to this method.
//
// What we'd need to do is check that the function
// pointer in the itab matches the method we want,
// rather than doing a full type assertion.
if base.Debug.PGODebug >= 2 {
why := typecheck.ImplementsExplain(ctyp, inter)
fmt.Printf("%v: edge %s:%d -> %s (weight %d): %v doesn't implement %v (%s)\n", ir.Line(call), callerName, callOffset, e.Dst.Name(), e.Weight, ctyp, inter, why)
}
continue
}
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: edge %s:%d -> %s (weight %d): hottest so far\n", ir.Line(call), callerName, callOffset, e.Dst.Name(), e.Weight)
}
hottest = e
}
if hottest == nil {
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v: call %s:%d: no hot callee\n", ir.Line(call), callerName, callOffset)
}
return nil, 0
}
if base.Debug.PGODebug >= 2 {
fmt.Printf("%v call %s:%d: hottest callee %s (weight %d)\n", ir.Line(call), callerName, callOffset, hottest.Dst.Name(), hottest.Weight)
}
return hottest.Dst.AST, hottest.Weight
}