go/src/cmd/compile/internal/wasm/ssa.go

515 lines
13 KiB
Go
Raw Normal View History

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package wasm
import (
"cmd/compile/internal/base"
[dev.regabi] cmd/compile: introduce cmd/compile/internal/ir [generated] If we want to break up package gc at all, we will need to move the compiler IR it defines into a separate package that can be imported by packages that gc itself imports. This CL does that. It also removes the TINT8 etc aliases so that all code is clear about which package things are coming from. This CL is automatically generated by the script below. See the comments in the script for details about the changes. [git-generate] cd src/cmd/compile/internal/gc rf ' # These names were never fully qualified # when the types package was added. # Do it now, to avoid confusion about where they live. inline -rm \ Txxx \ TINT8 \ TUINT8 \ TINT16 \ TUINT16 \ TINT32 \ TUINT32 \ TINT64 \ TUINT64 \ TINT \ TUINT \ TUINTPTR \ TCOMPLEX64 \ TCOMPLEX128 \ TFLOAT32 \ TFLOAT64 \ TBOOL \ TPTR \ TFUNC \ TSLICE \ TARRAY \ TSTRUCT \ TCHAN \ TMAP \ TINTER \ TFORW \ TANY \ TSTRING \ TUNSAFEPTR \ TIDEAL \ TNIL \ TBLANK \ TFUNCARGS \ TCHANARGS \ NTYPE \ BADWIDTH # esc.go and escape.go do not need to be split. # Append esc.go onto the end of escape.go. mv esc.go escape.go # Pull out the type format installation from func Main, # so it can be carried into package ir. mv Main:/Sconv.=/-0,/TypeLinkSym/-1 InstallTypeFormats # Names that need to be exported for use by code left in gc. mv Isconst IsConst mv asNode AsNode mv asNodes AsNodes mv asTypesNode AsTypesNode mv basicnames BasicTypeNames mv builtinpkg BuiltinPkg mv consttype ConstType mv dumplist DumpList mv fdumplist FDumpList mv fmtMode FmtMode mv goopnames OpNames mv inspect Inspect mv inspectList InspectList mv localpkg LocalPkg mv nblank BlankNode mv numImport NumImport mv opprec OpPrec mv origSym OrigSym mv stmtwithinit StmtWithInit mv dump DumpAny mv fdump FDumpAny mv nod Nod mv nodl NodAt mv newname NewName mv newnamel NewNameAt mv assertRepresents AssertValidTypeForConst mv represents ValidTypeForConst mv nodlit NewLiteral # Types and fields that need to be exported for use by gc. mv nowritebarrierrecCallSym SymAndPos mv SymAndPos.lineno SymAndPos.Pos mv SymAndPos.target SymAndPos.Sym mv Func.lsym Func.LSym mv Func.setWBPos Func.SetWBPos mv Func.numReturns Func.NumReturns mv Func.numDefers Func.NumDefers mv Func.nwbrCalls Func.NWBRCalls # initLSym is an algorithm left behind in gc, # not an operation on Func itself. mv Func.initLSym initLSym mv nodeQueue NodeQueue mv NodeQueue.empty NodeQueue.Empty mv NodeQueue.popLeft NodeQueue.PopLeft mv NodeQueue.pushRight NodeQueue.PushRight # Many methods on Node are actually algorithms that # would apply to any node implementation. # Those become plain functions. mv Node.funcname FuncName mv Node.isBlank IsBlank mv Node.isGoConst isGoConst mv Node.isNil IsNil mv Node.isParamHeapCopy isParamHeapCopy mv Node.isParamStackCopy isParamStackCopy mv Node.isSimpleName isSimpleName mv Node.mayBeShared MayBeShared mv Node.pkgFuncName PkgFuncName mv Node.backingArrayPtrLen backingArrayPtrLen mv Node.isterminating isTermNode mv Node.labeledControl labeledControl mv Nodes.isterminating isTermNodes mv Nodes.sigerr fmtSignature mv Node.MethodName methodExprName mv Node.MethodFunc methodExprFunc mv Node.IsMethod IsMethod # Every node will need to implement RawCopy; # Copy and SepCopy algorithms will use it. mv Node.rawcopy Node.RawCopy mv Node.copy Copy mv Node.sepcopy SepCopy # Extract Node.Format method body into func FmtNode, # but leave method wrapper behind. mv Node.Format:0,$ FmtNode # Formatting helpers that will apply to all node implementations. mv Node.Line Line mv Node.exprfmt exprFmt mv Node.jconv jconvFmt mv Node.modeString modeString mv Node.nconv nconvFmt mv Node.nodedump nodeDumpFmt mv Node.nodefmt nodeFmt mv Node.stmtfmt stmtFmt # Constant support needed for code moving to ir. mv okforconst OKForConst mv vconv FmtConst mv int64Val Int64Val mv float64Val Float64Val mv Node.ValueInterface ConstValue # Organize code into files. mv LocalPkg BuiltinPkg ir.go mv NumImport InstallTypeFormats Line fmt.go mv syntax.go Nod NodAt NewNameAt Class Pxxx PragmaFlag Nointerface SymAndPos \ AsNode AsTypesNode BlankNode OrigSym \ Node.SliceBounds Node.SetSliceBounds Op.IsSlice3 \ IsConst Node.Int64Val Node.CanInt64 Node.Uint64Val Node.BoolVal Node.StringVal \ Node.RawCopy SepCopy Copy \ IsNil IsBlank IsMethod \ Node.Typ Node.StorageClass node.go mv ConstType ConstValue Int64Val Float64Val AssertValidTypeForConst ValidTypeForConst NewLiteral idealType OKForConst val.go # Move files to new ir package. mv bitset.go class_string.go dump.go fmt.go \ ir.go node.go op_string.go val.go \ sizeof_test.go cmd/compile/internal/ir ' : # fix mkbuiltin.go to generate the changes made to builtin.go during rf sed -i '' ' s/\[T/[types.T/g s/\*Node/*ir.Node/g /internal\/types/c \ fmt.Fprintln(&b, `import (`) \ fmt.Fprintln(&b, ` "cmd/compile/internal/ir"`) \ fmt.Fprintln(&b, ` "cmd/compile/internal/types"`) \ fmt.Fprintln(&b, `)`) ' mkbuiltin.go gofmt -w mkbuiltin.go : # update cmd/dist to add internal/ir cd ../../../dist sed -i '' '/compile.internal.gc/a\ "cmd/compile/internal/ir", ' buildtool.go gofmt -w buildtool.go : # update cmd/compile TestFormats cd ../.. go install std cmd cd cmd/compile go test -u || go test # first one updates but fails; second passes Change-Id: I5f7caf6b20629b51970279e81231a3574d5b51db Reviewed-on: https://go-review.googlesource.com/c/go/+/273008 Trust: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-11-19 21:09:22 -05:00
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
[dev.regabi] cmd/compile: split out package objw [generated] Object file writing routines are used not just at the end of the compilation but also during static data layout in walk. Split them into their own package. [git-generate] cd src/cmd/compile/internal/gc rf ' # Move bit vector to new package bitvec mv bvec.n bvec.N mv bvec.b bvec.B mv bvec BitVec mv bvalloc New mv bvbulkalloc NewBulk mv bulkBvec.next bulkBvec.Next mv bulkBvec Bulk mv H0 h0 mv Hp hp # Leave bvecSet and bitmap hashes behind - not needed as broadly. mv bvecSet.extractUniqe bvecSet.extractUnique mv h0 bvecSet bvecSet.grow bvecSet.add \ bvecSet.extractUnique hashbitmap bvset.go mv bv.go cmd/compile/internal/bitvec ex . ../arm ../arm64 ../mips ../mips64 ../ppc64 ../s390x ../riscv64 { import "cmd/internal/obj" var a *obj.Addr var i int64 Addrconst(a, i) -> a.SetConst(i) var p, to *obj.Prog Patch(p, to) -> p.To.SetTarget(to) } rm Addrconst Patch # Move object-writing API to new package objw mv duint8 Objw_Uint8 mv duint16 Objw_Uint16 mv duint32 Objw_Uint32 mv duintptr Objw_Uintptr mv duintxx Objw_UintN mv dsymptr Objw_SymPtr mv dsymptrOff Objw_SymPtrOff mv dsymptrWeakOff Objw_SymPtrWeakOff mv ggloblsym Objw_Global mv dbvec Objw_BitVec mv newProgs NewProgs mv Progs.clearp Progs.Clear mv Progs.settext Progs.SetText mv Progs.next Progs.Next mv Progs.pc Progs.PC mv Progs.pos Progs.Pos mv Progs.curfn Progs.CurFunc mv Progs.progcache Progs.Cache mv Progs.cacheidx Progs.CacheIndex mv Progs.nextLive Progs.NextLive mv Progs.prevLive Progs.PrevLive mv Progs.Appendpp Progs.Append mv LivenessIndex.stackMapIndex LivenessIndex.StackMapIndex mv LivenessIndex.isUnsafePoint LivenessIndex.IsUnsafePoint mv Objw_Uint8 Objw_Uint16 Objw_Uint32 Objw_Uintptr Objw_UintN \ Objw_SymPtr Objw_SymPtrOff Objw_SymPtrWeakOff Objw_Global \ Objw_BitVec \ objw.go mv sharedProgArray NewProgs Progs \ LivenessIndex StackMapDontCare \ LivenessDontCare LivenessIndex.StackMapValid \ Progs.NewProg Progs.Flush Progs.Free Progs.Prog Progs.Clear Progs.Append Progs.SetText \ prog.go mv prog.go objw.go cmd/compile/internal/objw # Move ggloblnod to obj with the rest of the non-objw higher-level writing. mv ggloblnod obj.go ' cd ../objw rf ' mv Objw_Uint8 Uint8 mv Objw_Uint16 Uint16 mv Objw_Uint32 Uint32 mv Objw_Uintptr Uintptr mv Objw_UintN UintN mv Objw_SymPtr SymPtr mv Objw_SymPtrOff SymPtrOff mv Objw_SymPtrWeakOff SymPtrWeakOff mv Objw_Global Global mv Objw_BitVec BitVec ' Change-Id: I2b87085aa788564fb322e9c55bddd73347b4d5fd Reviewed-on: https://go-review.googlesource.com/c/go/+/279310 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:46:27 -05:00
"cmd/compile/internal/objw"
"cmd/compile/internal/ssa"
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/wasm"
"internal/buildcfg"
)
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &wasm.Linkwasm
arch.REGSP = wasm.REG_SP
arch.MAXWIDTH = 1 << 50
arch.ZeroRange = zeroRange
arch.Ginsnop = ginsnop
arch.SSAMarkMoves = ssaMarkMoves
arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock
}
[dev.regabi] cmd/compile: split out package objw [generated] Object file writing routines are used not just at the end of the compilation but also during static data layout in walk. Split them into their own package. [git-generate] cd src/cmd/compile/internal/gc rf ' # Move bit vector to new package bitvec mv bvec.n bvec.N mv bvec.b bvec.B mv bvec BitVec mv bvalloc New mv bvbulkalloc NewBulk mv bulkBvec.next bulkBvec.Next mv bulkBvec Bulk mv H0 h0 mv Hp hp # Leave bvecSet and bitmap hashes behind - not needed as broadly. mv bvecSet.extractUniqe bvecSet.extractUnique mv h0 bvecSet bvecSet.grow bvecSet.add \ bvecSet.extractUnique hashbitmap bvset.go mv bv.go cmd/compile/internal/bitvec ex . ../arm ../arm64 ../mips ../mips64 ../ppc64 ../s390x ../riscv64 { import "cmd/internal/obj" var a *obj.Addr var i int64 Addrconst(a, i) -> a.SetConst(i) var p, to *obj.Prog Patch(p, to) -> p.To.SetTarget(to) } rm Addrconst Patch # Move object-writing API to new package objw mv duint8 Objw_Uint8 mv duint16 Objw_Uint16 mv duint32 Objw_Uint32 mv duintptr Objw_Uintptr mv duintxx Objw_UintN mv dsymptr Objw_SymPtr mv dsymptrOff Objw_SymPtrOff mv dsymptrWeakOff Objw_SymPtrWeakOff mv ggloblsym Objw_Global mv dbvec Objw_BitVec mv newProgs NewProgs mv Progs.clearp Progs.Clear mv Progs.settext Progs.SetText mv Progs.next Progs.Next mv Progs.pc Progs.PC mv Progs.pos Progs.Pos mv Progs.curfn Progs.CurFunc mv Progs.progcache Progs.Cache mv Progs.cacheidx Progs.CacheIndex mv Progs.nextLive Progs.NextLive mv Progs.prevLive Progs.PrevLive mv Progs.Appendpp Progs.Append mv LivenessIndex.stackMapIndex LivenessIndex.StackMapIndex mv LivenessIndex.isUnsafePoint LivenessIndex.IsUnsafePoint mv Objw_Uint8 Objw_Uint16 Objw_Uint32 Objw_Uintptr Objw_UintN \ Objw_SymPtr Objw_SymPtrOff Objw_SymPtrWeakOff Objw_Global \ Objw_BitVec \ objw.go mv sharedProgArray NewProgs Progs \ LivenessIndex StackMapDontCare \ LivenessDontCare LivenessIndex.StackMapValid \ Progs.NewProg Progs.Flush Progs.Free Progs.Prog Progs.Clear Progs.Append Progs.SetText \ prog.go mv prog.go objw.go cmd/compile/internal/objw # Move ggloblnod to obj with the rest of the non-objw higher-level writing. mv ggloblnod obj.go ' cd ../objw rf ' mv Objw_Uint8 Uint8 mv Objw_Uint16 Uint16 mv Objw_Uint32 Uint32 mv Objw_Uintptr Uintptr mv Objw_UintN UintN mv Objw_SymPtr SymPtr mv Objw_SymPtrOff SymPtrOff mv Objw_SymPtrWeakOff SymPtrWeakOff mv Objw_Global Global mv Objw_BitVec BitVec ' Change-Id: I2b87085aa788564fb322e9c55bddd73347b4d5fd Reviewed-on: https://go-review.googlesource.com/c/go/+/279310 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:46:27 -05:00
func zeroRange(pp *objw.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog {
if cnt == 0 {
return p
}
if cnt%8 != 0 {
base.Fatalf("zerorange count not a multiple of widthptr %d", cnt)
}
for i := int64(0); i < cnt; i += 8 {
[dev.regabi] cmd/compile: split out package objw [generated] Object file writing routines are used not just at the end of the compilation but also during static data layout in walk. Split them into their own package. [git-generate] cd src/cmd/compile/internal/gc rf ' # Move bit vector to new package bitvec mv bvec.n bvec.N mv bvec.b bvec.B mv bvec BitVec mv bvalloc New mv bvbulkalloc NewBulk mv bulkBvec.next bulkBvec.Next mv bulkBvec Bulk mv H0 h0 mv Hp hp # Leave bvecSet and bitmap hashes behind - not needed as broadly. mv bvecSet.extractUniqe bvecSet.extractUnique mv h0 bvecSet bvecSet.grow bvecSet.add \ bvecSet.extractUnique hashbitmap bvset.go mv bv.go cmd/compile/internal/bitvec ex . ../arm ../arm64 ../mips ../mips64 ../ppc64 ../s390x ../riscv64 { import "cmd/internal/obj" var a *obj.Addr var i int64 Addrconst(a, i) -> a.SetConst(i) var p, to *obj.Prog Patch(p, to) -> p.To.SetTarget(to) } rm Addrconst Patch # Move object-writing API to new package objw mv duint8 Objw_Uint8 mv duint16 Objw_Uint16 mv duint32 Objw_Uint32 mv duintptr Objw_Uintptr mv duintxx Objw_UintN mv dsymptr Objw_SymPtr mv dsymptrOff Objw_SymPtrOff mv dsymptrWeakOff Objw_SymPtrWeakOff mv ggloblsym Objw_Global mv dbvec Objw_BitVec mv newProgs NewProgs mv Progs.clearp Progs.Clear mv Progs.settext Progs.SetText mv Progs.next Progs.Next mv Progs.pc Progs.PC mv Progs.pos Progs.Pos mv Progs.curfn Progs.CurFunc mv Progs.progcache Progs.Cache mv Progs.cacheidx Progs.CacheIndex mv Progs.nextLive Progs.NextLive mv Progs.prevLive Progs.PrevLive mv Progs.Appendpp Progs.Append mv LivenessIndex.stackMapIndex LivenessIndex.StackMapIndex mv LivenessIndex.isUnsafePoint LivenessIndex.IsUnsafePoint mv Objw_Uint8 Objw_Uint16 Objw_Uint32 Objw_Uintptr Objw_UintN \ Objw_SymPtr Objw_SymPtrOff Objw_SymPtrWeakOff Objw_Global \ Objw_BitVec \ objw.go mv sharedProgArray NewProgs Progs \ LivenessIndex StackMapDontCare \ LivenessDontCare LivenessIndex.StackMapValid \ Progs.NewProg Progs.Flush Progs.Free Progs.Prog Progs.Clear Progs.Append Progs.SetText \ prog.go mv prog.go objw.go cmd/compile/internal/objw # Move ggloblnod to obj with the rest of the non-objw higher-level writing. mv ggloblnod obj.go ' cd ../objw rf ' mv Objw_Uint8 Uint8 mv Objw_Uint16 Uint16 mv Objw_Uint32 Uint32 mv Objw_Uintptr Uintptr mv Objw_UintN UintN mv Objw_SymPtr SymPtr mv Objw_SymPtrOff SymPtrOff mv Objw_SymPtrWeakOff SymPtrWeakOff mv Objw_Global Global mv Objw_BitVec BitVec ' Change-Id: I2b87085aa788564fb322e9c55bddd73347b4d5fd Reviewed-on: https://go-review.googlesource.com/c/go/+/279310 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:46:27 -05:00
p = pp.Append(p, wasm.AGet, obj.TYPE_REG, wasm.REG_SP, 0, 0, 0, 0)
p = pp.Append(p, wasm.AI64Const, obj.TYPE_CONST, 0, 0, 0, 0, 0)
p = pp.Append(p, wasm.AI64Store, 0, 0, 0, obj.TYPE_CONST, 0, off+i)
}
return p
}
[dev.regabi] cmd/compile: split out package objw [generated] Object file writing routines are used not just at the end of the compilation but also during static data layout in walk. Split them into their own package. [git-generate] cd src/cmd/compile/internal/gc rf ' # Move bit vector to new package bitvec mv bvec.n bvec.N mv bvec.b bvec.B mv bvec BitVec mv bvalloc New mv bvbulkalloc NewBulk mv bulkBvec.next bulkBvec.Next mv bulkBvec Bulk mv H0 h0 mv Hp hp # Leave bvecSet and bitmap hashes behind - not needed as broadly. mv bvecSet.extractUniqe bvecSet.extractUnique mv h0 bvecSet bvecSet.grow bvecSet.add \ bvecSet.extractUnique hashbitmap bvset.go mv bv.go cmd/compile/internal/bitvec ex . ../arm ../arm64 ../mips ../mips64 ../ppc64 ../s390x ../riscv64 { import "cmd/internal/obj" var a *obj.Addr var i int64 Addrconst(a, i) -> a.SetConst(i) var p, to *obj.Prog Patch(p, to) -> p.To.SetTarget(to) } rm Addrconst Patch # Move object-writing API to new package objw mv duint8 Objw_Uint8 mv duint16 Objw_Uint16 mv duint32 Objw_Uint32 mv duintptr Objw_Uintptr mv duintxx Objw_UintN mv dsymptr Objw_SymPtr mv dsymptrOff Objw_SymPtrOff mv dsymptrWeakOff Objw_SymPtrWeakOff mv ggloblsym Objw_Global mv dbvec Objw_BitVec mv newProgs NewProgs mv Progs.clearp Progs.Clear mv Progs.settext Progs.SetText mv Progs.next Progs.Next mv Progs.pc Progs.PC mv Progs.pos Progs.Pos mv Progs.curfn Progs.CurFunc mv Progs.progcache Progs.Cache mv Progs.cacheidx Progs.CacheIndex mv Progs.nextLive Progs.NextLive mv Progs.prevLive Progs.PrevLive mv Progs.Appendpp Progs.Append mv LivenessIndex.stackMapIndex LivenessIndex.StackMapIndex mv LivenessIndex.isUnsafePoint LivenessIndex.IsUnsafePoint mv Objw_Uint8 Objw_Uint16 Objw_Uint32 Objw_Uintptr Objw_UintN \ Objw_SymPtr Objw_SymPtrOff Objw_SymPtrWeakOff Objw_Global \ Objw_BitVec \ objw.go mv sharedProgArray NewProgs Progs \ LivenessIndex StackMapDontCare \ LivenessDontCare LivenessIndex.StackMapValid \ Progs.NewProg Progs.Flush Progs.Free Progs.Prog Progs.Clear Progs.Append Progs.SetText \ prog.go mv prog.go objw.go cmd/compile/internal/objw # Move ggloblnod to obj with the rest of the non-objw higher-level writing. mv ggloblnod obj.go ' cd ../objw rf ' mv Objw_Uint8 Uint8 mv Objw_Uint16 Uint16 mv Objw_Uint32 Uint32 mv Objw_Uintptr Uintptr mv Objw_UintN UintN mv Objw_SymPtr SymPtr mv Objw_SymPtrOff SymPtrOff mv Objw_SymPtrWeakOff SymPtrWeakOff mv Objw_Global Global mv Objw_BitVec BitVec ' Change-Id: I2b87085aa788564fb322e9c55bddd73347b4d5fd Reviewed-on: https://go-review.googlesource.com/c/go/+/279310 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:46:27 -05:00
func ginsnop(pp *objw.Progs) *obj.Prog {
return pp.Prog(wasm.ANop)
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain:
if next != b.Succs[0].Block() {
s.Br(obj.AJMP, b.Succs[0].Block())
}
case ssa.BlockIf:
switch next {
case b.Succs[0].Block():
// if false, jump to b.Succs[1]
cmd/compile: allow multiple SSA block control values Control values are used to choose which successor of a block is jumped to. Typically a control value takes the form of a 'flags' value that represents the result of a comparison. Some architectures however use a variable in a register as a control value. Up until now we have managed with a single control value per block. However some architectures (e.g. s390x and riscv64) have combined compare-and-branch instructions that take two variables in registers as parameters. To generate these instructions we need to support 2 control values per block. This CL allows up to 2 control values to be used in a block in order to support the addition of compare-and-branch instructions. I have implemented s390x compare-and-branch instructions in a different CL. Passes toolstash-check -all. Results of compilebench: name old time/op new time/op delta Template 208ms ± 1% 209ms ± 1% ~ (p=0.289 n=20+20) Unicode 83.7ms ± 1% 83.3ms ± 3% -0.49% (p=0.017 n=18+18) GoTypes 748ms ± 1% 748ms ± 0% ~ (p=0.460 n=20+18) Compiler 3.47s ± 1% 3.48s ± 1% ~ (p=0.070 n=19+18) SSA 11.5s ± 1% 11.7s ± 1% +1.64% (p=0.000 n=19+18) Flate 130ms ± 1% 130ms ± 1% ~ (p=0.588 n=19+20) GoParser 160ms ± 1% 161ms ± 1% ~ (p=0.211 n=20+20) Reflect 465ms ± 1% 467ms ± 1% +0.42% (p=0.007 n=20+20) Tar 184ms ± 1% 185ms ± 2% ~ (p=0.087 n=18+20) XML 253ms ± 1% 253ms ± 1% ~ (p=0.377 n=20+18) LinkCompiler 769ms ± 2% 774ms ± 2% ~ (p=0.070 n=19+19) ExternalLinkCompiler 3.59s ±11% 3.68s ± 6% ~ (p=0.072 n=20+20) LinkWithoutDebugCompiler 446ms ± 5% 454ms ± 3% +1.79% (p=0.002 n=19+20) StdCmd 26.0s ± 2% 26.0s ± 2% ~ (p=0.799 n=20+20) name old user-time/op new user-time/op delta Template 238ms ± 5% 240ms ± 5% ~ (p=0.142 n=20+20) Unicode 105ms ±11% 106ms ±10% ~ (p=0.512 n=20+20) GoTypes 876ms ± 2% 873ms ± 4% ~ (p=0.647 n=20+19) Compiler 4.17s ± 2% 4.19s ± 1% ~ (p=0.093 n=20+18) SSA 13.9s ± 1% 14.1s ± 1% +1.45% (p=0.000 n=18+18) Flate 145ms ±13% 146ms ± 5% ~ (p=0.851 n=20+18) GoParser 185ms ± 5% 188ms ± 7% ~ (p=0.174 n=20+20) Reflect 534ms ± 3% 538ms ± 2% ~ (p=0.105 n=20+18) Tar 215ms ± 4% 211ms ± 9% ~ (p=0.079 n=19+20) XML 295ms ± 6% 295ms ± 5% ~ (p=0.968 n=20+20) LinkCompiler 832ms ± 4% 837ms ± 7% ~ (p=0.707 n=17+20) ExternalLinkCompiler 1.58s ± 8% 1.60s ± 4% ~ (p=0.296 n=20+19) LinkWithoutDebugCompiler 478ms ±12% 489ms ±10% ~ (p=0.429 n=20+20) name old object-bytes new object-bytes delta Template 559kB ± 0% 559kB ± 0% ~ (all equal) Unicode 216kB ± 0% 216kB ± 0% ~ (all equal) GoTypes 2.03MB ± 0% 2.03MB ± 0% ~ (all equal) Compiler 8.07MB ± 0% 8.07MB ± 0% -0.06% (p=0.000 n=20+20) SSA 27.1MB ± 0% 27.3MB ± 0% +0.89% (p=0.000 n=20+20) Flate 343kB ± 0% 343kB ± 0% ~ (all equal) GoParser 441kB ± 0% 441kB ± 0% ~ (all equal) Reflect 1.36MB ± 0% 1.36MB ± 0% ~ (all equal) Tar 487kB ± 0% 487kB ± 0% ~ (all equal) XML 632kB ± 0% 632kB ± 0% ~ (all equal) name old export-bytes new export-bytes delta Template 18.5kB ± 0% 18.5kB ± 0% ~ (all equal) Unicode 7.92kB ± 0% 7.92kB ± 0% ~ (all equal) GoTypes 35.0kB ± 0% 35.0kB ± 0% ~ (all equal) Compiler 109kB ± 0% 110kB ± 0% +0.72% (p=0.000 n=20+20) SSA 137kB ± 0% 138kB ± 0% +0.58% (p=0.000 n=20+20) Flate 4.89kB ± 0% 4.89kB ± 0% ~ (all equal) GoParser 8.49kB ± 0% 8.49kB ± 0% ~ (all equal) Reflect 11.4kB ± 0% 11.4kB ± 0% ~ (all equal) Tar 10.5kB ± 0% 10.5kB ± 0% ~ (all equal) XML 16.7kB ± 0% 16.7kB ± 0% ~ (all equal) name old text-bytes new text-bytes delta HelloSize 761kB ± 0% 761kB ± 0% ~ (all equal) CmdGoSize 10.8MB ± 0% 10.8MB ± 0% ~ (all equal) name old data-bytes new data-bytes delta HelloSize 10.7kB ± 0% 10.7kB ± 0% ~ (all equal) CmdGoSize 312kB ± 0% 312kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 122kB ± 0% 122kB ± 0% ~ (all equal) CmdGoSize 146kB ± 0% 146kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.13MB ± 0% 1.13MB ± 0% ~ (all equal) CmdGoSize 15.1MB ± 0% 15.1MB ± 0% ~ (all equal) Change-Id: I3cc2f9829a109543d9a68be4a21775d2d3e9801f Reviewed-on: https://go-review.googlesource.com/c/go/+/196557 Run-TryBot: Michael Munday <mike.munday@ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Daniel Martí <mvdan@mvdan.cc> Reviewed-by: Keith Randall <khr@golang.org>
2019-08-12 20:19:58 +01:00
getValue32(s, b.Controls[0])
s.Prog(wasm.AI32Eqz)
s.Prog(wasm.AIf)
s.Br(obj.AJMP, b.Succs[1].Block())
s.Prog(wasm.AEnd)
case b.Succs[1].Block():
// if true, jump to b.Succs[0]
cmd/compile: allow multiple SSA block control values Control values are used to choose which successor of a block is jumped to. Typically a control value takes the form of a 'flags' value that represents the result of a comparison. Some architectures however use a variable in a register as a control value. Up until now we have managed with a single control value per block. However some architectures (e.g. s390x and riscv64) have combined compare-and-branch instructions that take two variables in registers as parameters. To generate these instructions we need to support 2 control values per block. This CL allows up to 2 control values to be used in a block in order to support the addition of compare-and-branch instructions. I have implemented s390x compare-and-branch instructions in a different CL. Passes toolstash-check -all. Results of compilebench: name old time/op new time/op delta Template 208ms ± 1% 209ms ± 1% ~ (p=0.289 n=20+20) Unicode 83.7ms ± 1% 83.3ms ± 3% -0.49% (p=0.017 n=18+18) GoTypes 748ms ± 1% 748ms ± 0% ~ (p=0.460 n=20+18) Compiler 3.47s ± 1% 3.48s ± 1% ~ (p=0.070 n=19+18) SSA 11.5s ± 1% 11.7s ± 1% +1.64% (p=0.000 n=19+18) Flate 130ms ± 1% 130ms ± 1% ~ (p=0.588 n=19+20) GoParser 160ms ± 1% 161ms ± 1% ~ (p=0.211 n=20+20) Reflect 465ms ± 1% 467ms ± 1% +0.42% (p=0.007 n=20+20) Tar 184ms ± 1% 185ms ± 2% ~ (p=0.087 n=18+20) XML 253ms ± 1% 253ms ± 1% ~ (p=0.377 n=20+18) LinkCompiler 769ms ± 2% 774ms ± 2% ~ (p=0.070 n=19+19) ExternalLinkCompiler 3.59s ±11% 3.68s ± 6% ~ (p=0.072 n=20+20) LinkWithoutDebugCompiler 446ms ± 5% 454ms ± 3% +1.79% (p=0.002 n=19+20) StdCmd 26.0s ± 2% 26.0s ± 2% ~ (p=0.799 n=20+20) name old user-time/op new user-time/op delta Template 238ms ± 5% 240ms ± 5% ~ (p=0.142 n=20+20) Unicode 105ms ±11% 106ms ±10% ~ (p=0.512 n=20+20) GoTypes 876ms ± 2% 873ms ± 4% ~ (p=0.647 n=20+19) Compiler 4.17s ± 2% 4.19s ± 1% ~ (p=0.093 n=20+18) SSA 13.9s ± 1% 14.1s ± 1% +1.45% (p=0.000 n=18+18) Flate 145ms ±13% 146ms ± 5% ~ (p=0.851 n=20+18) GoParser 185ms ± 5% 188ms ± 7% ~ (p=0.174 n=20+20) Reflect 534ms ± 3% 538ms ± 2% ~ (p=0.105 n=20+18) Tar 215ms ± 4% 211ms ± 9% ~ (p=0.079 n=19+20) XML 295ms ± 6% 295ms ± 5% ~ (p=0.968 n=20+20) LinkCompiler 832ms ± 4% 837ms ± 7% ~ (p=0.707 n=17+20) ExternalLinkCompiler 1.58s ± 8% 1.60s ± 4% ~ (p=0.296 n=20+19) LinkWithoutDebugCompiler 478ms ±12% 489ms ±10% ~ (p=0.429 n=20+20) name old object-bytes new object-bytes delta Template 559kB ± 0% 559kB ± 0% ~ (all equal) Unicode 216kB ± 0% 216kB ± 0% ~ (all equal) GoTypes 2.03MB ± 0% 2.03MB ± 0% ~ (all equal) Compiler 8.07MB ± 0% 8.07MB ± 0% -0.06% (p=0.000 n=20+20) SSA 27.1MB ± 0% 27.3MB ± 0% +0.89% (p=0.000 n=20+20) Flate 343kB ± 0% 343kB ± 0% ~ (all equal) GoParser 441kB ± 0% 441kB ± 0% ~ (all equal) Reflect 1.36MB ± 0% 1.36MB ± 0% ~ (all equal) Tar 487kB ± 0% 487kB ± 0% ~ (all equal) XML 632kB ± 0% 632kB ± 0% ~ (all equal) name old export-bytes new export-bytes delta Template 18.5kB ± 0% 18.5kB ± 0% ~ (all equal) Unicode 7.92kB ± 0% 7.92kB ± 0% ~ (all equal) GoTypes 35.0kB ± 0% 35.0kB ± 0% ~ (all equal) Compiler 109kB ± 0% 110kB ± 0% +0.72% (p=0.000 n=20+20) SSA 137kB ± 0% 138kB ± 0% +0.58% (p=0.000 n=20+20) Flate 4.89kB ± 0% 4.89kB ± 0% ~ (all equal) GoParser 8.49kB ± 0% 8.49kB ± 0% ~ (all equal) Reflect 11.4kB ± 0% 11.4kB ± 0% ~ (all equal) Tar 10.5kB ± 0% 10.5kB ± 0% ~ (all equal) XML 16.7kB ± 0% 16.7kB ± 0% ~ (all equal) name old text-bytes new text-bytes delta HelloSize 761kB ± 0% 761kB ± 0% ~ (all equal) CmdGoSize 10.8MB ± 0% 10.8MB ± 0% ~ (all equal) name old data-bytes new data-bytes delta HelloSize 10.7kB ± 0% 10.7kB ± 0% ~ (all equal) CmdGoSize 312kB ± 0% 312kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 122kB ± 0% 122kB ± 0% ~ (all equal) CmdGoSize 146kB ± 0% 146kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.13MB ± 0% 1.13MB ± 0% ~ (all equal) CmdGoSize 15.1MB ± 0% 15.1MB ± 0% ~ (all equal) Change-Id: I3cc2f9829a109543d9a68be4a21775d2d3e9801f Reviewed-on: https://go-review.googlesource.com/c/go/+/196557 Run-TryBot: Michael Munday <mike.munday@ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Daniel Martí <mvdan@mvdan.cc> Reviewed-by: Keith Randall <khr@golang.org>
2019-08-12 20:19:58 +01:00
getValue32(s, b.Controls[0])
s.Prog(wasm.AIf)
s.Br(obj.AJMP, b.Succs[0].Block())
s.Prog(wasm.AEnd)
default:
// if true, jump to b.Succs[0], else jump to b.Succs[1]
cmd/compile: allow multiple SSA block control values Control values are used to choose which successor of a block is jumped to. Typically a control value takes the form of a 'flags' value that represents the result of a comparison. Some architectures however use a variable in a register as a control value. Up until now we have managed with a single control value per block. However some architectures (e.g. s390x and riscv64) have combined compare-and-branch instructions that take two variables in registers as parameters. To generate these instructions we need to support 2 control values per block. This CL allows up to 2 control values to be used in a block in order to support the addition of compare-and-branch instructions. I have implemented s390x compare-and-branch instructions in a different CL. Passes toolstash-check -all. Results of compilebench: name old time/op new time/op delta Template 208ms ± 1% 209ms ± 1% ~ (p=0.289 n=20+20) Unicode 83.7ms ± 1% 83.3ms ± 3% -0.49% (p=0.017 n=18+18) GoTypes 748ms ± 1% 748ms ± 0% ~ (p=0.460 n=20+18) Compiler 3.47s ± 1% 3.48s ± 1% ~ (p=0.070 n=19+18) SSA 11.5s ± 1% 11.7s ± 1% +1.64% (p=0.000 n=19+18) Flate 130ms ± 1% 130ms ± 1% ~ (p=0.588 n=19+20) GoParser 160ms ± 1% 161ms ± 1% ~ (p=0.211 n=20+20) Reflect 465ms ± 1% 467ms ± 1% +0.42% (p=0.007 n=20+20) Tar 184ms ± 1% 185ms ± 2% ~ (p=0.087 n=18+20) XML 253ms ± 1% 253ms ± 1% ~ (p=0.377 n=20+18) LinkCompiler 769ms ± 2% 774ms ± 2% ~ (p=0.070 n=19+19) ExternalLinkCompiler 3.59s ±11% 3.68s ± 6% ~ (p=0.072 n=20+20) LinkWithoutDebugCompiler 446ms ± 5% 454ms ± 3% +1.79% (p=0.002 n=19+20) StdCmd 26.0s ± 2% 26.0s ± 2% ~ (p=0.799 n=20+20) name old user-time/op new user-time/op delta Template 238ms ± 5% 240ms ± 5% ~ (p=0.142 n=20+20) Unicode 105ms ±11% 106ms ±10% ~ (p=0.512 n=20+20) GoTypes 876ms ± 2% 873ms ± 4% ~ (p=0.647 n=20+19) Compiler 4.17s ± 2% 4.19s ± 1% ~ (p=0.093 n=20+18) SSA 13.9s ± 1% 14.1s ± 1% +1.45% (p=0.000 n=18+18) Flate 145ms ±13% 146ms ± 5% ~ (p=0.851 n=20+18) GoParser 185ms ± 5% 188ms ± 7% ~ (p=0.174 n=20+20) Reflect 534ms ± 3% 538ms ± 2% ~ (p=0.105 n=20+18) Tar 215ms ± 4% 211ms ± 9% ~ (p=0.079 n=19+20) XML 295ms ± 6% 295ms ± 5% ~ (p=0.968 n=20+20) LinkCompiler 832ms ± 4% 837ms ± 7% ~ (p=0.707 n=17+20) ExternalLinkCompiler 1.58s ± 8% 1.60s ± 4% ~ (p=0.296 n=20+19) LinkWithoutDebugCompiler 478ms ±12% 489ms ±10% ~ (p=0.429 n=20+20) name old object-bytes new object-bytes delta Template 559kB ± 0% 559kB ± 0% ~ (all equal) Unicode 216kB ± 0% 216kB ± 0% ~ (all equal) GoTypes 2.03MB ± 0% 2.03MB ± 0% ~ (all equal) Compiler 8.07MB ± 0% 8.07MB ± 0% -0.06% (p=0.000 n=20+20) SSA 27.1MB ± 0% 27.3MB ± 0% +0.89% (p=0.000 n=20+20) Flate 343kB ± 0% 343kB ± 0% ~ (all equal) GoParser 441kB ± 0% 441kB ± 0% ~ (all equal) Reflect 1.36MB ± 0% 1.36MB ± 0% ~ (all equal) Tar 487kB ± 0% 487kB ± 0% ~ (all equal) XML 632kB ± 0% 632kB ± 0% ~ (all equal) name old export-bytes new export-bytes delta Template 18.5kB ± 0% 18.5kB ± 0% ~ (all equal) Unicode 7.92kB ± 0% 7.92kB ± 0% ~ (all equal) GoTypes 35.0kB ± 0% 35.0kB ± 0% ~ (all equal) Compiler 109kB ± 0% 110kB ± 0% +0.72% (p=0.000 n=20+20) SSA 137kB ± 0% 138kB ± 0% +0.58% (p=0.000 n=20+20) Flate 4.89kB ± 0% 4.89kB ± 0% ~ (all equal) GoParser 8.49kB ± 0% 8.49kB ± 0% ~ (all equal) Reflect 11.4kB ± 0% 11.4kB ± 0% ~ (all equal) Tar 10.5kB ± 0% 10.5kB ± 0% ~ (all equal) XML 16.7kB ± 0% 16.7kB ± 0% ~ (all equal) name old text-bytes new text-bytes delta HelloSize 761kB ± 0% 761kB ± 0% ~ (all equal) CmdGoSize 10.8MB ± 0% 10.8MB ± 0% ~ (all equal) name old data-bytes new data-bytes delta HelloSize 10.7kB ± 0% 10.7kB ± 0% ~ (all equal) CmdGoSize 312kB ± 0% 312kB ± 0% ~ (all equal) name old bss-bytes new bss-bytes delta HelloSize 122kB ± 0% 122kB ± 0% ~ (all equal) CmdGoSize 146kB ± 0% 146kB ± 0% ~ (all equal) name old exe-bytes new exe-bytes delta HelloSize 1.13MB ± 0% 1.13MB ± 0% ~ (all equal) CmdGoSize 15.1MB ± 0% 15.1MB ± 0% ~ (all equal) Change-Id: I3cc2f9829a109543d9a68be4a21775d2d3e9801f Reviewed-on: https://go-review.googlesource.com/c/go/+/196557 Run-TryBot: Michael Munday <mike.munday@ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Daniel Martí <mvdan@mvdan.cc> Reviewed-by: Keith Randall <khr@golang.org>
2019-08-12 20:19:58 +01:00
getValue32(s, b.Controls[0])
s.Prog(wasm.AIf)
s.Br(obj.AJMP, b.Succs[0].Block())
s.Prog(wasm.AEnd)
s.Br(obj.AJMP, b.Succs[1].Block())
}
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := s.Prog(obj.ARET)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = b.Aux.(*obj.LSym)
case ssa.BlockExit:
case ssa.BlockDefer:
p := s.Prog(wasm.AGet)
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: wasm.REG_RET0}
s.Prog(wasm.AI64Eqz)
s.Prog(wasm.AI32Eqz)
s.Prog(wasm.AIf)
s.Br(obj.AJMP, b.Succs[1].Block())
s.Prog(wasm.AEnd)
if next != b.Succs[0].Block() {
s.Br(obj.AJMP, b.Succs[0].Block())
}
default:
panic("unexpected block")
}
// Entry point for the next block. Used by the JMP in goToBlock.
s.Prog(wasm.ARESUMEPOINT)
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
if s.OnWasmStackSkipped != 0 {
panic("wasm: bad stack")
}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op {
case ssa.OpWasmLoweredStaticCall, ssa.OpWasmLoweredClosureCall, ssa.OpWasmLoweredInterCall:
s.PrepareCall(v)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
if call, ok := v.Aux.(*ssa.AuxCall); ok && call.Fn == ir.Syms.Deferreturn {
[dev.typeparams] runtime,cmd/compile,cmd/link: replace jmpdefer with a loop Currently, deferreturn runs deferred functions by backing up its return PC to the deferreturn call, and then effectively tail-calling the deferred function (via jmpdefer). The effect of this is that the deferred function appears to be called directly from the deferee, and when it returns, the deferee calls deferreturn again so it can run the next deferred function if necessary. This unusual flow control leads to a large number of special cases and complications all over the tool chain. This used to be necessary because deferreturn copied the deferred function's argument frame directly into its caller's frame and then had to invoke that call as if it had been called from its caller's frame so it could access it arguments. But now that we've simplified defer processing so the runtime only deals with argument-less closures, this approach is no longer necessary. This CL simplifies all of this by making deferreturn simply call deferred functions in a loop. This eliminates the need for jmpdefer, so we can delete a bunch of per-architecture assembly code. This eliminates several special cases on Wasm, since it couldn't support these calling shenanigans directly and thus had to simulate the loop a different way. Now Wasm can largely work the way the other platforms do. This eliminates the per-architecture Ginsnopdefer operation. On PPC64, this was necessary to reload the TOC pointer after the tail call (since TOC pointers in general make tail calls impossible). The tail call is gone, and in the case where we do force a jump to the deferreturn call when recovering from an open-coded defer, we go through gogo (via runtime.recovery), which handles the TOC. On other platforms, we needed a NOP so traceback didn't get confused by seeing the return to the CALL instruction, rather than the usual return to the instruction following the CALL instruction. Now we don't inject a return to the CALL instruction at all, so this NOP is also unnecessary. The one potential effect of this is that deferreturn could now appear in stack traces from deferred functions. However, this could already happen from open-coded defers, so we've long since marked deferreturn as a "wrapper" so it gets elided not only from printed stack traces, but from runtime.Callers*. Change-Id: Ie9f700cd3fb774f498c9edce363772a868407bf7 Reviewed-on: https://go-review.googlesource.com/c/go/+/337652 Trust: Austin Clements <austin@google.com> Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cherry Mui <cherryyz@google.com>
2021-07-26 15:44:22 -04:00
// The runtime needs to inject jumps to
// deferreturn calls using the address in
// _func.deferreturn. Hence, the call to
// deferreturn must itself be a resumption
// point so it gets a target PC.
s.Prog(wasm.ARESUMEPOINT)
}
if v.Op == ssa.OpWasmLoweredClosureCall {
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[1])
setReg(s, wasm.REG_CTXT)
}
if call, ok := v.Aux.(*ssa.AuxCall); ok && call.Fn != nil {
sym := call.Fn
p := s.Prog(obj.ACALL)
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: sym}
p.Pos = v.Pos
} else {
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
p := s.Prog(obj.ACALL)
p.To = obj.Addr{Type: obj.TYPE_NONE}
p.Pos = v.Pos
}
case ssa.OpWasmLoweredMove:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue32(s, v.Args[0])
getValue32(s, v.Args[1])
i32Const(s, int32(v.AuxInt))
p := s.Prog(wasm.ACall)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.WasmMove}
case ssa.OpWasmLoweredZero:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue32(s, v.Args[0])
i32Const(s, int32(v.AuxInt))
p := s.Prog(wasm.ACall)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.WasmZero}
case ssa.OpWasmLoweredNilCheck:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
s.Prog(wasm.AI64Eqz)
s.Prog(wasm.AIf)
p := s.Prog(wasm.ACALLNORESUME)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.SigPanic}
s.Prog(wasm.AEnd)
if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
}
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
base.WarnfAt(v.Pos, "generated nil check")
}
case ssa.OpWasmLoweredWB:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
getValue64(s, v.Args[1])
p := s.Prog(wasm.ACALLNORESUME) // TODO(neelance): If possible, turn this into a simple wasm.ACall).
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: v.Aux.(*obj.LSym)}
case ssa.OpWasmI64Store8, ssa.OpWasmI64Store16, ssa.OpWasmI64Store32, ssa.OpWasmI64Store, ssa.OpWasmF32Store, ssa.OpWasmF64Store:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue32(s, v.Args[0])
getValue64(s, v.Args[1])
p := s.Prog(v.Op.Asm())
p.To = obj.Addr{Type: obj.TYPE_CONST, Offset: v.AuxInt}
case ssa.OpStoreReg:
getReg(s, wasm.REG_SP)
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
p := s.Prog(storeOp(v.Type))
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
ssagen.AddrAuto(&p.To, v)
case ssa.OpClobber, ssa.OpClobberReg:
// TODO: implement for clobberdead experiment. Nop is ok for now.
default:
if v.Type.IsMemory() {
return
}
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
if v.OnWasmStack {
s.OnWasmStackSkipped++
// If a Value is marked OnWasmStack, we don't generate the value and store it to a register now.
// Instead, we delay the generation to when the value is used and then directly generate it on the WebAssembly stack.
return
}
ssaGenValueOnStack(s, v, true)
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
if s.OnWasmStackSkipped != 0 {
panic("wasm: bad stack")
}
setReg(s, v.Reg())
}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func ssaGenValueOnStack(s *ssagen.State, v *ssa.Value, extend bool) {
switch v.Op {
case ssa.OpWasmLoweredGetClosurePtr:
getReg(s, wasm.REG_CTXT)
case ssa.OpWasmLoweredGetCallerPC:
p := s.Prog(wasm.AI64Load)
// Caller PC is stored 8 bytes below first parameter.
p.From = obj.Addr{
Type: obj.TYPE_MEM,
Name: obj.NAME_PARAM,
Offset: -8,
}
case ssa.OpWasmLoweredGetCallerSP:
p := s.Prog(wasm.AGet)
// Caller SP is the address of the first parameter.
p.From = obj.Addr{
Type: obj.TYPE_ADDR,
Name: obj.NAME_PARAM,
Reg: wasm.REG_SP,
Offset: 0,
}
case ssa.OpWasmLoweredAddr:
if v.Aux == nil { // address of off(SP), no symbol
getValue64(s, v.Args[0])
i64Const(s, v.AuxInt)
s.Prog(wasm.AI64Add)
break
}
p := s.Prog(wasm.AGet)
cmd/compile: fold offset into address on Wasm On Wasm, the offset was not folded into LoweredAddr, so it was not rematerializeable. This led to the address-taken operation in some cases generated too early, before the local variable becoming live. The liveness code thinks the variable live when the address is taken, then backs it up to live at function entry, then complains about it, because nothing other than arguments should be live on entry. This CL folds the offset into the address operation, so it is rematerializeable and so generated right before use, after the variable actually becomes live. It might be possible to relax the liveness code not to think a variable live when its address being taken, but until the address actually being used. But it would be quite complicated. As we're late in Go 1.11 freeze, it would be better not to do it. Also, I think the address operation is rematerializeable now on all architectures, so this is probably less necessary. This may also be a slight optimization, as the address+offset is now rematerializeable, which can be generated on the Wasm stack, without using any "registers" which are emulated by local variables on Wasm. I don't know how to do benchmarks on Wasm. At least, cmd/go binary size shrinks 9K. Fixes #25966. Change-Id: I01e5869515d6a3942fccdcb857f924a866876e57 Reviewed-on: https://go-review.googlesource.com/120599 Run-TryBot: Cherry Zhang <cherryyz@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Richard Musiol <neelance@gmail.com>
2018-06-23 13:23:52 -04:00
p.From.Type = obj.TYPE_ADDR
switch v.Aux.(type) {
case *obj.LSym:
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
ssagen.AddAux(&p.From, v)
case *ir.Name:
cmd/compile: fold offset into address on Wasm On Wasm, the offset was not folded into LoweredAddr, so it was not rematerializeable. This led to the address-taken operation in some cases generated too early, before the local variable becoming live. The liveness code thinks the variable live when the address is taken, then backs it up to live at function entry, then complains about it, because nothing other than arguments should be live on entry. This CL folds the offset into the address operation, so it is rematerializeable and so generated right before use, after the variable actually becomes live. It might be possible to relax the liveness code not to think a variable live when its address being taken, but until the address actually being used. But it would be quite complicated. As we're late in Go 1.11 freeze, it would be better not to do it. Also, I think the address operation is rematerializeable now on all architectures, so this is probably less necessary. This may also be a slight optimization, as the address+offset is now rematerializeable, which can be generated on the Wasm stack, without using any "registers" which are emulated by local variables on Wasm. I don't know how to do benchmarks on Wasm. At least, cmd/go binary size shrinks 9K. Fixes #25966. Change-Id: I01e5869515d6a3942fccdcb857f924a866876e57 Reviewed-on: https://go-review.googlesource.com/120599 Run-TryBot: Cherry Zhang <cherryyz@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Richard Musiol <neelance@gmail.com>
2018-06-23 13:23:52 -04:00
p.From.Reg = v.Args[0].Reg()
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
ssagen.AddAux(&p.From, v)
default:
panic("wasm: bad LoweredAddr")
}
case ssa.OpWasmLoweredConvert:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
case ssa.OpWasmSelect:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
getValue64(s, v.Args[1])
getValue32(s, v.Args[2])
s.Prog(v.Op.Asm())
case ssa.OpWasmI64AddConst:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
i64Const(s, v.AuxInt)
s.Prog(v.Op.Asm())
case ssa.OpWasmI64Const:
i64Const(s, v.AuxInt)
case ssa.OpWasmF32Const:
f32Const(s, v.AuxFloat())
case ssa.OpWasmF64Const:
f64Const(s, v.AuxFloat())
case ssa.OpWasmI64Load8U, ssa.OpWasmI64Load8S, ssa.OpWasmI64Load16U, ssa.OpWasmI64Load16S, ssa.OpWasmI64Load32U, ssa.OpWasmI64Load32S, ssa.OpWasmI64Load, ssa.OpWasmF32Load, ssa.OpWasmF64Load:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue32(s, v.Args[0])
p := s.Prog(v.Op.Asm())
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: v.AuxInt}
case ssa.OpWasmI64Eqz:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
s.Prog(v.Op.Asm())
if extend {
s.Prog(wasm.AI64ExtendI32U)
}
case ssa.OpWasmI64Eq, ssa.OpWasmI64Ne, ssa.OpWasmI64LtS, ssa.OpWasmI64LtU, ssa.OpWasmI64GtS, ssa.OpWasmI64GtU, ssa.OpWasmI64LeS, ssa.OpWasmI64LeU, ssa.OpWasmI64GeS, ssa.OpWasmI64GeU,
ssa.OpWasmF32Eq, ssa.OpWasmF32Ne, ssa.OpWasmF32Lt, ssa.OpWasmF32Gt, ssa.OpWasmF32Le, ssa.OpWasmF32Ge,
ssa.OpWasmF64Eq, ssa.OpWasmF64Ne, ssa.OpWasmF64Lt, ssa.OpWasmF64Gt, ssa.OpWasmF64Le, ssa.OpWasmF64Ge:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
getValue64(s, v.Args[1])
s.Prog(v.Op.Asm())
if extend {
s.Prog(wasm.AI64ExtendI32U)
}
case ssa.OpWasmI64Add, ssa.OpWasmI64Sub, ssa.OpWasmI64Mul, ssa.OpWasmI64DivU, ssa.OpWasmI64RemS, ssa.OpWasmI64RemU, ssa.OpWasmI64And, ssa.OpWasmI64Or, ssa.OpWasmI64Xor, ssa.OpWasmI64Shl, ssa.OpWasmI64ShrS, ssa.OpWasmI64ShrU, ssa.OpWasmI64Rotl,
ssa.OpWasmF32Add, ssa.OpWasmF32Sub, ssa.OpWasmF32Mul, ssa.OpWasmF32Div, ssa.OpWasmF32Copysign,
ssa.OpWasmF64Add, ssa.OpWasmF64Sub, ssa.OpWasmF64Mul, ssa.OpWasmF64Div, ssa.OpWasmF64Copysign:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
getValue64(s, v.Args[1])
s.Prog(v.Op.Asm())
case ssa.OpWasmI32Rotl:
getValue32(s, v.Args[0])
getValue32(s, v.Args[1])
s.Prog(wasm.AI32Rotl)
s.Prog(wasm.AI64ExtendI32U)
case ssa.OpWasmI64DivS:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
getValue64(s, v.Args[1])
if v.Type.Size() == 8 {
// Division of int64 needs helper function wasmDiv to handle the MinInt64 / -1 case.
p := s.Prog(wasm.ACall)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.WasmDiv}
break
}
s.Prog(wasm.AI64DivS)
case ssa.OpWasmI64TruncSatF32S, ssa.OpWasmI64TruncSatF64S:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
if buildcfg.GOWASM.SatConv {
s.Prog(v.Op.Asm())
} else {
if v.Op == ssa.OpWasmI64TruncSatF32S {
s.Prog(wasm.AF64PromoteF32)
}
p := s.Prog(wasm.ACall)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.WasmTruncS}
}
case ssa.OpWasmI64TruncSatF32U, ssa.OpWasmI64TruncSatF64U:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
if buildcfg.GOWASM.SatConv {
s.Prog(v.Op.Asm())
} else {
if v.Op == ssa.OpWasmI64TruncSatF32U {
s.Prog(wasm.AF64PromoteF32)
}
p := s.Prog(wasm.ACall)
[dev.regabi] cmd/compile: group known symbols, packages, names [generated] There are a handful of pre-computed magic symbols known by package gc, and we need a place to store them. If we keep them together, the need for type *ir.Name means that package ir is the lowest package in the import hierarchy that they can go in. And package ir needs gopkg for methodSymSuffix (in a later CL), so they can't go any higher either, at least not all together. So package ir it is. Rather than dump them all into the top-level package ir namespace, however, we introduce global structs, Syms, Pkgs, and Names, and make the known symbols, packages, and names fields of those. [git-generate] cd src/cmd/compile/internal/gc rf ' add go.go:$ \ // Names holds known names. \ var Names struct{} \ \ // Syms holds known symbols. \ var Syms struct {} \ \ // Pkgs holds known packages. \ var Pkgs struct {} \ mv staticuint64s Names.Staticuint64s mv zerobase Names.Zerobase mv assertE2I Syms.AssertE2I mv assertE2I2 Syms.AssertE2I2 mv assertI2I Syms.AssertI2I mv assertI2I2 Syms.AssertI2I2 mv deferproc Syms.Deferproc mv deferprocStack Syms.DeferprocStack mv Deferreturn Syms.Deferreturn mv Duffcopy Syms.Duffcopy mv Duffzero Syms.Duffzero mv gcWriteBarrier Syms.GCWriteBarrier mv goschedguarded Syms.Goschedguarded mv growslice Syms.Growslice mv msanread Syms.Msanread mv msanwrite Syms.Msanwrite mv msanmove Syms.Msanmove mv newobject Syms.Newobject mv newproc Syms.Newproc mv panicdivide Syms.Panicdivide mv panicshift Syms.Panicshift mv panicdottypeE Syms.PanicdottypeE mv panicdottypeI Syms.PanicdottypeI mv panicnildottype Syms.Panicnildottype mv panicoverflow Syms.Panicoverflow mv raceread Syms.Raceread mv racereadrange Syms.Racereadrange mv racewrite Syms.Racewrite mv racewriterange Syms.Racewriterange mv SigPanic Syms.SigPanic mv typedmemclr Syms.Typedmemclr mv typedmemmove Syms.Typedmemmove mv Udiv Syms.Udiv mv writeBarrier Syms.WriteBarrier mv zerobaseSym Syms.Zerobase mv arm64HasATOMICS Syms.ARM64HasATOMICS mv armHasVFPv4 Syms.ARMHasVFPv4 mv x86HasFMA Syms.X86HasFMA mv x86HasPOPCNT Syms.X86HasPOPCNT mv x86HasSSE41 Syms.X86HasSSE41 mv WasmDiv Syms.WasmDiv mv WasmMove Syms.WasmMove mv WasmZero Syms.WasmZero mv WasmTruncS Syms.WasmTruncS mv WasmTruncU Syms.WasmTruncU mv gopkg Pkgs.Go mv itabpkg Pkgs.Itab mv itablinkpkg Pkgs.Itablink mv mappkg Pkgs.Map mv msanpkg Pkgs.Msan mv racepkg Pkgs.Race mv Runtimepkg Pkgs.Runtime mv trackpkg Pkgs.Track mv unsafepkg Pkgs.Unsafe mv Names Syms Pkgs symtab.go mv symtab.go cmd/compile/internal/ir ' Change-Id: Ic143862148569a3bcde8e70b26d75421aa2d00f3 Reviewed-on: https://go-review.googlesource.com/c/go/+/279235 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:10:25 -05:00
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: ir.Syms.WasmTruncU}
}
case ssa.OpWasmF32DemoteF64:
getValue64(s, v.Args[0])
s.Prog(v.Op.Asm())
case ssa.OpWasmF64PromoteF32:
getValue64(s, v.Args[0])
s.Prog(v.Op.Asm())
case ssa.OpWasmF32ConvertI64S, ssa.OpWasmF32ConvertI64U,
ssa.OpWasmF64ConvertI64S, ssa.OpWasmF64ConvertI64U,
ssa.OpWasmI64Extend8S, ssa.OpWasmI64Extend16S, ssa.OpWasmI64Extend32S,
ssa.OpWasmF32Neg, ssa.OpWasmF32Sqrt, ssa.OpWasmF32Trunc, ssa.OpWasmF32Ceil, ssa.OpWasmF32Floor, ssa.OpWasmF32Nearest, ssa.OpWasmF32Abs,
ssa.OpWasmF64Neg, ssa.OpWasmF64Sqrt, ssa.OpWasmF64Trunc, ssa.OpWasmF64Ceil, ssa.OpWasmF64Floor, ssa.OpWasmF64Nearest, ssa.OpWasmF64Abs,
ssa.OpWasmI64Ctz, ssa.OpWasmI64Clz, ssa.OpWasmI64Popcnt:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
s.Prog(v.Op.Asm())
case ssa.OpLoadReg:
p := s.Prog(loadOp(v.Type))
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
ssagen.AddrAuto(&p.From, v.Args[0])
case ssa.OpCopy:
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
getValue64(s, v.Args[0])
default:
v.Fatalf("unexpected op: %s", v.Op)
}
}
func isCmp(v *ssa.Value) bool {
switch v.Op {
case ssa.OpWasmI64Eqz, ssa.OpWasmI64Eq, ssa.OpWasmI64Ne, ssa.OpWasmI64LtS, ssa.OpWasmI64LtU, ssa.OpWasmI64GtS, ssa.OpWasmI64GtU, ssa.OpWasmI64LeS, ssa.OpWasmI64LeU, ssa.OpWasmI64GeS, ssa.OpWasmI64GeU,
ssa.OpWasmF32Eq, ssa.OpWasmF32Ne, ssa.OpWasmF32Lt, ssa.OpWasmF32Gt, ssa.OpWasmF32Le, ssa.OpWasmF32Ge,
ssa.OpWasmF64Eq, ssa.OpWasmF64Ne, ssa.OpWasmF64Lt, ssa.OpWasmF64Gt, ssa.OpWasmF64Le, ssa.OpWasmF64Ge:
return true
default:
return false
}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func getValue32(s *ssagen.State, v *ssa.Value) {
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
if v.OnWasmStack {
s.OnWasmStackSkipped--
ssaGenValueOnStack(s, v, false)
if !isCmp(v) {
s.Prog(wasm.AI32WrapI64)
}
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
return
}
reg := v.Reg()
getReg(s, reg)
if reg != wasm.REG_SP {
s.Prog(wasm.AI32WrapI64)
}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func getValue64(s *ssagen.State, v *ssa.Value) {
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
if v.OnWasmStack {
s.OnWasmStackSkipped--
ssaGenValueOnStack(s, v, true)
cmd/compile: add wasm stack optimization Go's SSA instructions only operate on registers. For example, an add instruction would read two registers, do the addition and then write to a register. WebAssembly's instructions, on the other hand, operate on the stack. The add instruction first pops two values from the stack, does the addition, then pushes the result to the stack. To fulfill Go's semantics, one needs to map Go's single add instruction to 4 WebAssembly instructions: - Push the value of local variable A to the stack - Push the value of local variable B to the stack - Do addition - Write value from stack to local variable C Now consider that B was set to the constant 42 before the addition: - Push constant 42 to the stack - Write value from stack to local variable B This works, but is inefficient. Instead, the stack is used directly by inlining instructions if possible. With inlining it becomes: - Push the value of local variable A to the stack (add) - Push constant 42 to the stack (constant) - Do addition (add) - Write value from stack to local variable C (add) Note that the two SSA instructions can not be generated sequentially anymore, because their WebAssembly instructions are interleaved. Design doc: https://docs.google.com/document/d/131vjr4DH6JFnb-blm_uRdaC0_Nv3OUwjEY5qVCxCup4 Updates #18892 Change-Id: Ie35e1c0bebf4985fddda0d6330eb2066f9ad6dec Reviewed-on: https://go-review.googlesource.com/103535 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
2018-03-09 00:14:58 +01:00
return
}
reg := v.Reg()
getReg(s, reg)
if reg == wasm.REG_SP {
s.Prog(wasm.AI64ExtendI32U)
}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func i32Const(s *ssagen.State, val int32) {
p := s.Prog(wasm.AI32Const)
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(val)}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func i64Const(s *ssagen.State, val int64) {
p := s.Prog(wasm.AI64Const)
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: val}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func f32Const(s *ssagen.State, val float64) {
p := s.Prog(wasm.AF32Const)
p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func f64Const(s *ssagen.State, val float64) {
p := s.Prog(wasm.AF64Const)
p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func getReg(s *ssagen.State, reg int16) {
p := s.Prog(wasm.AGet)
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: reg}
}
[dev.regabi] cmd/compile: split out package ssagen [generated] [git-generate] cd src/cmd/compile/internal/gc rf ' # maxOpenDefers is declared in ssa.go but used only by walk. mv maxOpenDefers walk.go # gc.Arch -> ssagen.Arch # It is not as nice but will do for now. mv Arch ArchInfo mv thearch Arch mv Arch ArchInfo arch.go # Pull dwarf out of pgen.go. mv debuginfo declPos createDwarfVars preInliningDcls \ createSimpleVars createSimpleVar \ createComplexVars createComplexVar \ dwarf.go # Pull high-level compilation out of pgen.go, # leaving only the SSA code. mv compilequeue funccompile compile compilenow \ compileFunctions isInlinableButNotInlined \ initLSym \ compile.go mv BoundsCheckFunc GCWriteBarrierReg ssa.go mv largeStack largeStackFrames CheckLargeStacks pgen.go # All that is left in dcl.go is the nowritebarrierrecCheck mv dcl.go nowb.go # Export API and unexport non-API. mv initssaconfig InitConfig mv isIntrinsicCall IsIntrinsicCall mv ssaDumpInline DumpInline mv initSSATables InitTables mv initSSAEnv InitEnv mv compileSSA Compile mv stackOffset StackOffset mv canSSAType TypeOK mv SSAGenState State mv FwdRefAux fwdRefAux mv cgoSymABIs CgoSymABIs mv readSymABIs ReadSymABIs mv initLSym InitLSym mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen ' rm go.go gsubr.go Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1 Reviewed-on: https://go-review.googlesource.com/c/go/+/279476 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:57:10 -05:00
func setReg(s *ssagen.State, reg int16) {
p := s.Prog(wasm.ASet)
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: reg}
}
func loadOp(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return wasm.AF32Load
case 8:
return wasm.AF64Load
default:
panic("bad load type")
}
}
switch t.Size() {
case 1:
if t.IsSigned() {
return wasm.AI64Load8S
}
return wasm.AI64Load8U
case 2:
if t.IsSigned() {
return wasm.AI64Load16S
}
return wasm.AI64Load16U
case 4:
if t.IsSigned() {
return wasm.AI64Load32S
}
return wasm.AI64Load32U
case 8:
return wasm.AI64Load
default:
panic("bad load type")
}
}
func storeOp(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return wasm.AF32Store
case 8:
return wasm.AF64Store
default:
panic("bad store type")
}
}
switch t.Size() {
case 1:
return wasm.AI64Store8
case 2:
return wasm.AI64Store16
case 4:
return wasm.AI64Store32
case 8:
return wasm.AI64Store
default:
panic("bad store type")
}
}