2022-04-19 18:45:06 -04:00
|
|
|
// Copyright 2022 The Go Authors. All rights reserved.
|
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
|
|
package coverage
|
|
|
|
|
|
|
|
|
|
// Building the runtime package with coverage instrumentation enabled
|
|
|
|
|
// is tricky. For all other packages, you can be guaranteed that
|
|
|
|
|
// the package init function is run before any functions are executed,
|
|
|
|
|
// but this invariant is not maintained for packages such as "runtime",
|
|
|
|
|
// "internal/cpu", etc. To handle this, hard-code the package ID for
|
|
|
|
|
// the set of packages whose functions may be running before the
|
|
|
|
|
// init function of the package is complete.
|
|
|
|
|
//
|
|
|
|
|
// Hardcoding is unfortunate because it means that the tool that does
|
|
|
|
|
// coverage instrumentation has to keep a list of runtime packages,
|
|
|
|
|
// meaning that if someone makes changes to the pkg "runtime"
|
|
|
|
|
// dependencies, unexpected behavior will result for coverage builds.
|
|
|
|
|
// The coverage runtime will detect and report the unexpected
|
|
|
|
|
// behavior; look for an error of this form:
|
|
|
|
|
//
|
|
|
|
|
// internal error in coverage meta-data tracking:
|
|
|
|
|
// list of hard-coded runtime package IDs needs revising.
|
|
|
|
|
// registered list:
|
|
|
|
|
// slot: 0 path='internal/cpu' hard-coded id: 1
|
|
|
|
|
// slot: 1 path='internal/goarch' hard-coded id: 2
|
2024-02-01 10:21:14 +08:00
|
|
|
// slot: 2 path='internal/runtime/atomic' hard-coded id: 3
|
2022-04-19 18:45:06 -04:00
|
|
|
// slot: 3 path='internal/goos'
|
2024-07-23 11:43:23 -04:00
|
|
|
// slot: 4 path='internal/runtime/sys' hard-coded id: 5
|
2022-04-19 18:45:06 -04:00
|
|
|
// slot: 5 path='internal/abi' hard-coded id: 4
|
2024-07-23 11:18:08 -04:00
|
|
|
// slot: 6 path='internal/runtime/math' hard-coded id: 6
|
2022-04-19 18:45:06 -04:00
|
|
|
// slot: 7 path='internal/bytealg' hard-coded id: 7
|
|
|
|
|
// slot: 8 path='internal/goexperiment'
|
2024-01-31 17:10:49 +08:00
|
|
|
// slot: 9 path='internal/runtime/syscall' hard-coded id: 8
|
2022-04-19 18:45:06 -04:00
|
|
|
// slot: 10 path='runtime' hard-coded id: 9
|
|
|
|
|
// fatal error: runtime.addCovMeta
|
|
|
|
|
//
|
|
|
|
|
// For the error above, the hard-coded list is missing "internal/goos"
|
|
|
|
|
// and "internal/goexperiment" ; the developer in question will need
|
|
|
|
|
// to copy the list above into "rtPkgs" below.
|
|
|
|
|
//
|
|
|
|
|
// Note: this strategy assumes that the list of dependencies of
|
|
|
|
|
// package runtime is fixed, and doesn't vary depending on OS/arch. If
|
|
|
|
|
// this were to be the case, we would need a table of some sort below
|
|
|
|
|
// as opposed to a fixed list.
|
|
|
|
|
|
|
|
|
|
var rtPkgs = [...]string{
|
runtime: use cgroup CPU limit to set GOMAXPROCS
This CL adds two related features enabled by default via compatibility
GODEBUGs containermaxprocs and updatemaxprocs.
On Linux, containermaxprocs makes the Go runtime consider cgroup CPU
bandwidth limits (quota/period) when setting GOMAXPROCS. If the cgroup
limit is lower than the number of logical CPUs available, then the
cgroup limit takes precedence.
On all OSes, updatemaxprocs makes the Go runtime periodically
recalculate the default GOMAXPROCS value and update GOMAXPROCS if it has
changed. If GOMAXPROCS is set manually, this update does not occur. This
is intended primarily to detect changes to cgroup limits, but it applies
on all OSes because the CPU affinity mask can change as well.
The runtime only considers the limit in the leaf cgroup (the one that
actually contains the process), caching the CPU limit file
descriptor(s), which are periodically reread for updates. This is a
small departure from the original proposed design. It will not consider
limits of parent cgroups (which may be lower than the leaf), and it will
not detection cgroup migration after process start.
We can consider changing this in the future, but the simpler approach is
less invasive; less risk to packages that have some awareness of runtime
internals. e.g., if the runtime periodically opens new files during
execution, file descriptor leak detection is difficult to implement in a
stable way.
For #73193.
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest
Change-Id: I6a6a636c631c1ae577fb8254960377ba91c5dc98
Reviewed-on: https://go-review.googlesource.com/c/go/+/670497
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
2025-05-05 13:44:26 -04:00
|
|
|
"internal/asan",
|
|
|
|
|
"internal/byteorder",
|
|
|
|
|
"internal/coverage/rtcov",
|
2022-04-19 18:45:06 -04:00
|
|
|
"internal/cpu",
|
runtime: use cgroup CPU limit to set GOMAXPROCS
This CL adds two related features enabled by default via compatibility
GODEBUGs containermaxprocs and updatemaxprocs.
On Linux, containermaxprocs makes the Go runtime consider cgroup CPU
bandwidth limits (quota/period) when setting GOMAXPROCS. If the cgroup
limit is lower than the number of logical CPUs available, then the
cgroup limit takes precedence.
On all OSes, updatemaxprocs makes the Go runtime periodically
recalculate the default GOMAXPROCS value and update GOMAXPROCS if it has
changed. If GOMAXPROCS is set manually, this update does not occur. This
is intended primarily to detect changes to cgroup limits, but it applies
on all OSes because the CPU affinity mask can change as well.
The runtime only considers the limit in the leaf cgroup (the one that
actually contains the process), caching the CPU limit file
descriptor(s), which are periodically reread for updates. This is a
small departure from the original proposed design. It will not consider
limits of parent cgroups (which may be lower than the leaf), and it will
not detection cgroup migration after process start.
We can consider changing this in the future, but the simpler approach is
less invasive; less risk to packages that have some awareness of runtime
internals. e.g., if the runtime periodically opens new files during
execution, file descriptor leak detection is difficult to implement in a
stable way.
For #73193.
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest
Change-Id: I6a6a636c631c1ae577fb8254960377ba91c5dc98
Reviewed-on: https://go-review.googlesource.com/c/go/+/670497
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
2025-05-05 13:44:26 -04:00
|
|
|
"internal/bytealg",
|
2022-04-19 18:45:06 -04:00
|
|
|
"internal/goarch",
|
runtime: use cgroup CPU limit to set GOMAXPROCS
This CL adds two related features enabled by default via compatibility
GODEBUGs containermaxprocs and updatemaxprocs.
On Linux, containermaxprocs makes the Go runtime consider cgroup CPU
bandwidth limits (quota/period) when setting GOMAXPROCS. If the cgroup
limit is lower than the number of logical CPUs available, then the
cgroup limit takes precedence.
On all OSes, updatemaxprocs makes the Go runtime periodically
recalculate the default GOMAXPROCS value and update GOMAXPROCS if it has
changed. If GOMAXPROCS is set manually, this update does not occur. This
is intended primarily to detect changes to cgroup limits, but it applies
on all OSes because the CPU affinity mask can change as well.
The runtime only considers the limit in the leaf cgroup (the one that
actually contains the process), caching the CPU limit file
descriptor(s), which are periodically reread for updates. This is a
small departure from the original proposed design. It will not consider
limits of parent cgroups (which may be lower than the leaf), and it will
not detection cgroup migration after process start.
We can consider changing this in the future, but the simpler approach is
less invasive; less risk to packages that have some awareness of runtime
internals. e.g., if the runtime periodically opens new files during
execution, file descriptor leak detection is difficult to implement in a
stable way.
For #73193.
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest
Change-Id: I6a6a636c631c1ae577fb8254960377ba91c5dc98
Reviewed-on: https://go-review.googlesource.com/c/go/+/670497
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
2025-05-05 13:44:26 -04:00
|
|
|
"internal/abi",
|
math/rand, math/rand/v2: use ChaCha8 for global rand
Move ChaCha8 code into internal/chacha8rand and use it to implement
runtime.rand, which is used for the unseeded global source for
both math/rand and math/rand/v2. This also affects the calculation of
the start point for iteration over very very large maps (when the
32-bit fastrand is not big enough).
The benefit is that misuse of the global random number generators
in math/rand and math/rand/v2 in contexts where non-predictable
randomness is important for security reasons is no longer a
security problem, removing a common mistake among programmers
who are unaware of the different kinds of randomness.
The cost is an extra 304 bytes per thread stored in the m struct
plus 2-3ns more per random uint64 due to the more sophisticated
algorithm. Using PCG looks like it would cost about the same,
although I haven't benchmarked that.
Before this, the math/rand and math/rand/v2 global generator
was wyrand (https://github.com/wangyi-fudan/wyhash).
For math/rand, using wyrand instead of the Mitchell/Reeds/Thompson
ALFG was justifiable, since the latter was not any better.
But for math/rand/v2, the global generator really should be
at least as good as one of the well-studied, specific algorithms
provided directly by the package, and it's not.
(Wyrand is still reasonable for scheduling and cache decisions.)
Good randomness does have a cost: about twice wyrand.
Also rationalize the various runtime rand references.
goos: linux
goarch: amd64
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
│ bbb48afeb7.amd64 │ 5cf807d1ea.amd64 │
│ sec/op │ sec/op vs base │
ChaCha8-32 1.862n ± 2% 1.861n ± 2% ~ (p=0.825 n=20)
PCG_DXSM-32 1.471n ± 1% 1.460n ± 2% ~ (p=0.153 n=20)
SourceUint64-32 1.636n ± 2% 1.582n ± 1% -3.30% (p=0.000 n=20)
GlobalInt64-32 2.087n ± 1% 3.663n ± 1% +75.54% (p=0.000 n=20)
GlobalInt64Parallel-32 0.1042n ± 1% 0.2026n ± 1% +94.48% (p=0.000 n=20)
GlobalUint64-32 2.263n ± 2% 3.724n ± 1% +64.57% (p=0.000 n=20)
GlobalUint64Parallel-32 0.1019n ± 1% 0.1973n ± 1% +93.67% (p=0.000 n=20)
Int64-32 1.771n ± 1% 1.774n ± 1% ~ (p=0.449 n=20)
Uint64-32 1.863n ± 2% 1.866n ± 1% ~ (p=0.364 n=20)
GlobalIntN1000-32 3.134n ± 3% 4.730n ± 2% +50.95% (p=0.000 n=20)
IntN1000-32 2.489n ± 1% 2.489n ± 1% ~ (p=0.683 n=20)
Int64N1000-32 2.521n ± 1% 2.516n ± 1% ~ (p=0.394 n=20)
Int64N1e8-32 2.479n ± 1% 2.478n ± 2% ~ (p=0.743 n=20)
Int64N1e9-32 2.530n ± 2% 2.514n ± 2% ~ (p=0.193 n=20)
Int64N2e9-32 2.501n ± 1% 2.494n ± 1% ~ (p=0.616 n=20)
Int64N1e18-32 3.227n ± 1% 3.205n ± 1% ~ (p=0.101 n=20)
Int64N2e18-32 3.647n ± 1% 3.599n ± 1% ~ (p=0.019 n=20)
Int64N4e18-32 5.135n ± 1% 5.069n ± 2% ~ (p=0.034 n=20)
Int32N1000-32 2.657n ± 1% 2.637n ± 1% ~ (p=0.180 n=20)
Int32N1e8-32 2.636n ± 1% 2.636n ± 1% ~ (p=0.763 n=20)
Int32N1e9-32 2.660n ± 2% 2.638n ± 1% ~ (p=0.358 n=20)
Int32N2e9-32 2.662n ± 2% 2.618n ± 2% ~ (p=0.064 n=20)
Float32-32 2.272n ± 2% 2.239n ± 2% ~ (p=0.194 n=20)
Float64-32 2.272n ± 1% 2.286n ± 2% ~ (p=0.763 n=20)
ExpFloat64-32 3.762n ± 1% 3.744n ± 1% ~ (p=0.171 n=20)
NormFloat64-32 3.706n ± 1% 3.655n ± 2% ~ (p=0.066 n=20)
Perm3-32 32.93n ± 3% 34.62n ± 1% +5.13% (p=0.000 n=20)
Perm30-32 202.9n ± 1% 204.0n ± 1% ~ (p=0.482 n=20)
Perm30ViaShuffle-32 115.0n ± 1% 114.9n ± 1% ~ (p=0.358 n=20)
ShuffleOverhead-32 112.8n ± 1% 112.7n ± 1% ~ (p=0.692 n=20)
Concurrent-32 2.107n ± 0% 3.725n ± 1% +76.75% (p=0.000 n=20)
goos: darwin
goarch: arm64
pkg: math/rand/v2
│ bbb48afeb7.arm64 │ 5cf807d1ea.arm64 │
│ sec/op │ sec/op vs base │
ChaCha8-8 2.480n ± 0% 2.429n ± 0% -2.04% (p=0.000 n=20)
PCG_DXSM-8 2.531n ± 0% 2.530n ± 0% ~ (p=0.877 n=20)
SourceUint64-8 2.534n ± 0% 2.533n ± 0% ~ (p=0.732 n=20)
GlobalInt64-8 2.172n ± 1% 4.794n ± 0% +120.67% (p=0.000 n=20)
GlobalInt64Parallel-8 0.4320n ± 0% 0.9605n ± 0% +122.32% (p=0.000 n=20)
GlobalUint64-8 2.182n ± 0% 4.770n ± 0% +118.58% (p=0.000 n=20)
GlobalUint64Parallel-8 0.4307n ± 0% 0.9583n ± 0% +122.51% (p=0.000 n=20)
Int64-8 4.107n ± 0% 4.104n ± 0% ~ (p=0.416 n=20)
Uint64-8 4.080n ± 0% 4.080n ± 0% ~ (p=0.052 n=20)
GlobalIntN1000-8 2.814n ± 2% 5.643n ± 0% +100.50% (p=0.000 n=20)
IntN1000-8 4.141n ± 0% 4.139n ± 0% ~ (p=0.140 n=20)
Int64N1000-8 4.140n ± 0% 4.140n ± 0% ~ (p=0.313 n=20)
Int64N1e8-8 4.140n ± 0% 4.139n ± 0% ~ (p=0.103 n=20)
Int64N1e9-8 4.139n ± 0% 4.140n ± 0% ~ (p=0.761 n=20)
Int64N2e9-8 4.140n ± 0% 4.140n ± 0% ~ (p=0.636 n=20)
Int64N1e18-8 5.266n ± 0% 5.326n ± 1% +1.14% (p=0.001 n=20)
Int64N2e18-8 6.052n ± 0% 6.167n ± 0% +1.90% (p=0.000 n=20)
Int64N4e18-8 8.826n ± 0% 9.051n ± 0% +2.55% (p=0.000 n=20)
Int32N1000-8 4.127n ± 0% 4.132n ± 0% +0.12% (p=0.000 n=20)
Int32N1e8-8 4.126n ± 0% 4.131n ± 0% +0.12% (p=0.000 n=20)
Int32N1e9-8 4.127n ± 0% 4.132n ± 0% +0.12% (p=0.000 n=20)
Int32N2e9-8 4.132n ± 0% 4.131n ± 0% ~ (p=0.017 n=20)
Float32-8 4.109n ± 0% 4.105n ± 0% ~ (p=0.379 n=20)
Float64-8 4.107n ± 0% 4.106n ± 0% ~ (p=0.867 n=20)
ExpFloat64-8 5.339n ± 0% 5.383n ± 0% +0.82% (p=0.000 n=20)
NormFloat64-8 5.735n ± 0% 5.737n ± 1% ~ (p=0.856 n=20)
Perm3-8 26.65n ± 0% 26.80n ± 1% +0.58% (p=0.000 n=20)
Perm30-8 194.8n ± 1% 197.0n ± 0% +1.18% (p=0.000 n=20)
Perm30ViaShuffle-8 156.6n ± 0% 157.6n ± 1% +0.61% (p=0.000 n=20)
ShuffleOverhead-8 124.9n ± 0% 125.5n ± 0% +0.52% (p=0.000 n=20)
Concurrent-8 2.434n ± 3% 5.066n ± 0% +108.09% (p=0.000 n=20)
goos: linux
goarch: 386
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
│ bbb48afeb7.386 │ 5cf807d1ea.386 │
│ sec/op │ sec/op vs base │
ChaCha8-32 11.295n ± 1% 4.748n ± 2% -57.96% (p=0.000 n=20)
PCG_DXSM-32 7.693n ± 1% 7.738n ± 2% ~ (p=0.542 n=20)
SourceUint64-32 7.658n ± 2% 7.622n ± 2% ~ (p=0.344 n=20)
GlobalInt64-32 3.473n ± 2% 7.526n ± 2% +116.73% (p=0.000 n=20)
GlobalInt64Parallel-32 0.3198n ± 0% 0.5444n ± 0% +70.22% (p=0.000 n=20)
GlobalUint64-32 3.612n ± 0% 7.575n ± 1% +109.69% (p=0.000 n=20)
GlobalUint64Parallel-32 0.3168n ± 0% 0.5403n ± 0% +70.51% (p=0.000 n=20)
Int64-32 7.673n ± 2% 7.789n ± 1% ~ (p=0.122 n=20)
Uint64-32 7.773n ± 1% 7.827n ± 2% ~ (p=0.920 n=20)
GlobalIntN1000-32 6.268n ± 1% 9.581n ± 1% +52.87% (p=0.000 n=20)
IntN1000-32 10.33n ± 2% 10.45n ± 1% ~ (p=0.233 n=20)
Int64N1000-32 10.98n ± 2% 11.01n ± 1% ~ (p=0.401 n=20)
Int64N1e8-32 11.19n ± 2% 10.97n ± 1% ~ (p=0.033 n=20)
Int64N1e9-32 11.06n ± 1% 11.08n ± 1% ~ (p=0.498 n=20)
Int64N2e9-32 11.10n ± 1% 11.01n ± 2% ~ (p=0.995 n=20)
Int64N1e18-32 15.23n ± 2% 15.04n ± 1% ~ (p=0.973 n=20)
Int64N2e18-32 15.89n ± 1% 15.85n ± 1% ~ (p=0.409 n=20)
Int64N4e18-32 18.96n ± 2% 19.34n ± 2% ~ (p=0.048 n=20)
Int32N1000-32 10.46n ± 2% 10.44n ± 2% ~ (p=0.480 n=20)
Int32N1e8-32 10.46n ± 2% 10.49n ± 2% ~ (p=0.951 n=20)
Int32N1e9-32 10.28n ± 2% 10.26n ± 1% ~ (p=0.431 n=20)
Int32N2e9-32 10.50n ± 2% 10.44n ± 2% ~ (p=0.249 n=20)
Float32-32 13.80n ± 2% 13.80n ± 2% ~ (p=0.751 n=20)
Float64-32 23.55n ± 2% 23.87n ± 0% ~ (p=0.408 n=20)
ExpFloat64-32 15.36n ± 1% 15.29n ± 2% ~ (p=0.316 n=20)
NormFloat64-32 13.57n ± 1% 13.79n ± 1% +1.66% (p=0.005 n=20)
Perm3-32 45.70n ± 2% 46.99n ± 2% +2.81% (p=0.001 n=20)
Perm30-32 399.0n ± 1% 403.8n ± 1% +1.19% (p=0.006 n=20)
Perm30ViaShuffle-32 349.0n ± 1% 350.4n ± 1% ~ (p=0.909 n=20)
ShuffleOverhead-32 322.3n ± 1% 323.8n ± 1% ~ (p=0.410 n=20)
Concurrent-32 3.331n ± 1% 7.312n ± 1% +119.50% (p=0.000 n=20)
For #61716.
Change-Id: Ibdddeed85c34d9ae397289dc899e04d4845f9ed2
Reviewed-on: https://go-review.googlesource.com/c/go/+/516860
Reviewed-by: Michael Pratt <mpratt@google.com>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2023-08-06 13:26:28 +10:00
|
|
|
"internal/chacha8rand",
|
runtime: use cgroup CPU limit to set GOMAXPROCS
This CL adds two related features enabled by default via compatibility
GODEBUGs containermaxprocs and updatemaxprocs.
On Linux, containermaxprocs makes the Go runtime consider cgroup CPU
bandwidth limits (quota/period) when setting GOMAXPROCS. If the cgroup
limit is lower than the number of logical CPUs available, then the
cgroup limit takes precedence.
On all OSes, updatemaxprocs makes the Go runtime periodically
recalculate the default GOMAXPROCS value and update GOMAXPROCS if it has
changed. If GOMAXPROCS is set manually, this update does not occur. This
is intended primarily to detect changes to cgroup limits, but it applies
on all OSes because the CPU affinity mask can change as well.
The runtime only considers the limit in the leaf cgroup (the one that
actually contains the process), caching the CPU limit file
descriptor(s), which are periodically reread for updates. This is a
small departure from the original proposed design. It will not consider
limits of parent cgroups (which may be lower than the leaf), and it will
not detection cgroup migration after process start.
We can consider changing this in the future, but the simpler approach is
less invasive; less risk to packages that have some awareness of runtime
internals. e.g., if the runtime periodically opens new files during
execution, file descriptor leak detection is difficult to implement in a
stable way.
For #73193.
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest
Change-Id: I6a6a636c631c1ae577fb8254960377ba91c5dc98
Reviewed-on: https://go-review.googlesource.com/c/go/+/670497
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
2025-05-05 13:44:26 -04:00
|
|
|
"internal/godebugs",
|
|
|
|
|
"internal/goexperiment",
|
|
|
|
|
"internal/goos",
|
|
|
|
|
"internal/msan",
|
|
|
|
|
"internal/profilerecord",
|
|
|
|
|
"internal/race",
|
|
|
|
|
"internal/runtime/atomic",
|
|
|
|
|
"internal/runtime/exithook",
|
|
|
|
|
"internal/runtime/gc",
|
|
|
|
|
"internal/runtime/math",
|
|
|
|
|
"internal/runtime/strconv",
|
2024-07-23 11:43:23 -04:00
|
|
|
"internal/runtime/sys",
|
2024-05-03 13:03:04 -04:00
|
|
|
"internal/runtime/maps",
|
2024-01-31 17:10:49 +08:00
|
|
|
"internal/runtime/syscall",
|
runtime: use cgroup CPU limit to set GOMAXPROCS
This CL adds two related features enabled by default via compatibility
GODEBUGs containermaxprocs and updatemaxprocs.
On Linux, containermaxprocs makes the Go runtime consider cgroup CPU
bandwidth limits (quota/period) when setting GOMAXPROCS. If the cgroup
limit is lower than the number of logical CPUs available, then the
cgroup limit takes precedence.
On all OSes, updatemaxprocs makes the Go runtime periodically
recalculate the default GOMAXPROCS value and update GOMAXPROCS if it has
changed. If GOMAXPROCS is set manually, this update does not occur. This
is intended primarily to detect changes to cgroup limits, but it applies
on all OSes because the CPU affinity mask can change as well.
The runtime only considers the limit in the leaf cgroup (the one that
actually contains the process), caching the CPU limit file
descriptor(s), which are periodically reread for updates. This is a
small departure from the original proposed design. It will not consider
limits of parent cgroups (which may be lower than the leaf), and it will
not detection cgroup migration after process start.
We can consider changing this in the future, but the simpler approach is
less invasive; less risk to packages that have some awareness of runtime
internals. e.g., if the runtime periodically opens new files during
execution, file descriptor leak detection is difficult to implement in a
stable way.
For #73193.
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest
Change-Id: I6a6a636c631c1ae577fb8254960377ba91c5dc98
Reviewed-on: https://go-review.googlesource.com/c/go/+/670497
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
2025-05-05 13:44:26 -04:00
|
|
|
"internal/runtime/cgroup",
|
2024-07-30 13:47:58 +00:00
|
|
|
"internal/stringslite",
|
2022-04-19 18:45:06 -04:00
|
|
|
"runtime",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Scoping note: the constants and apis in this file are internal
|
|
|
|
|
// only, not expected to ever be exposed outside of the runtime (unlike
|
|
|
|
|
// other coverage file formats and APIs, which will likely be shared
|
|
|
|
|
// at some point).
|
|
|
|
|
|
|
|
|
|
// NotHardCoded is a package pseudo-ID indicating that a given package
|
|
|
|
|
// is not part of the runtime and doesn't require a hard-coded ID.
|
|
|
|
|
const NotHardCoded = -1
|
|
|
|
|
|
2022-09-30 09:19:02 +00:00
|
|
|
// HardCodedPkgID returns the hard-coded ID for the specified package
|
2022-04-19 18:45:06 -04:00
|
|
|
// path, or -1 if we don't use a hard-coded ID. Hard-coded IDs start
|
|
|
|
|
// at -2 and decrease as we go down the list.
|
|
|
|
|
func HardCodedPkgID(pkgpath string) int {
|
|
|
|
|
for k, p := range rtPkgs {
|
|
|
|
|
if p == pkgpath {
|
|
|
|
|
return (0 - k) - 2
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return NotHardCoded
|
|
|
|
|
}
|