go/src/cmd/compile/internal/gc/esc.go

473 lines
13 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"fmt"
)
func escapes(all []*Node) {
visitBottomUp(all, escapeFuncs)
}
const (
EscFuncUnknown = 0 + iota
EscFuncPlanned
EscFuncStarted
EscFuncTagged
)
cmd/internal/gc: improve flow of input params to output params This includes the following information in the per-function summary: outK = paramJ encoded in outK bits for paramJ outK = *paramJ encoded in outK bits for paramJ heap = paramJ EscHeap heap = *paramJ EscContentEscapes Note that (currently) if the address of a parameter is taken and returned, necessarily a heap allocation occurred to contain that reference, and the heap can never refer to stack, therefore the parameter and everything downstream from it escapes to the heap. The per-function summary information now has a tuneable number of bits (2 is probably noticeably better than 1, 3 is likely overkill, but it is now easy to check and the -m debugging output includes information that allows you to figure out if more would be better.) A new test was added to check pointer flow through struct-typed and *struct-typed parameters and returns; some of these are sensitive to the number of summary bits, and ought to yield better results with a more competent escape analysis algorithm. Another new test checks (some) correctness with array parameters, results, and operations. The old analysis inferred a piece of plan9 runtime was non-escaping by counteracting overconservative analysis with buggy analysis; with the bug fixed, the result was too conservative (and it's not easy to fix in this framework) so the source code was tweaked to get the desired result. A test was added against the discovered bug. The escape analysis was further improved splitting the "level" into 3 parts, one tracking the conventional "level" and the other two computing the highest-level-suffix-from-copy, which is used to generally model the cancelling effect of indirection applied to address-of. With the improved escape analysis enabled, it was necessary to modify one of the runtime tests because it now attempts to allocate too much on the (small, fixed-size) G0 (system) stack and this failed the test. Compiling src/std after touching src/runtime/*.go with -m logging turned on shows 420 fewer heap allocation sites (10538 vs 10968). Profiling allocations in src/html/template with for i in {1..5} ; do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go; go tool pprof -alloc_objects -text mastx.${i}.prof ; done showed a 15% reduction in allocations performed by the compiler. Update #3753 Update #4720 Fixes #10466 Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432 Reviewed-on: https://go-review.googlesource.com/8202 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-26 16:36:15 -04:00
func min8(a, b int8) int8 {
if a < b {
return a
}
return b
}
cmd/internal/gc: improve flow of input params to output params This includes the following information in the per-function summary: outK = paramJ encoded in outK bits for paramJ outK = *paramJ encoded in outK bits for paramJ heap = paramJ EscHeap heap = *paramJ EscContentEscapes Note that (currently) if the address of a parameter is taken and returned, necessarily a heap allocation occurred to contain that reference, and the heap can never refer to stack, therefore the parameter and everything downstream from it escapes to the heap. The per-function summary information now has a tuneable number of bits (2 is probably noticeably better than 1, 3 is likely overkill, but it is now easy to check and the -m debugging output includes information that allows you to figure out if more would be better.) A new test was added to check pointer flow through struct-typed and *struct-typed parameters and returns; some of these are sensitive to the number of summary bits, and ought to yield better results with a more competent escape analysis algorithm. Another new test checks (some) correctness with array parameters, results, and operations. The old analysis inferred a piece of plan9 runtime was non-escaping by counteracting overconservative analysis with buggy analysis; with the bug fixed, the result was too conservative (and it's not easy to fix in this framework) so the source code was tweaked to get the desired result. A test was added against the discovered bug. The escape analysis was further improved splitting the "level" into 3 parts, one tracking the conventional "level" and the other two computing the highest-level-suffix-from-copy, which is used to generally model the cancelling effect of indirection applied to address-of. With the improved escape analysis enabled, it was necessary to modify one of the runtime tests because it now attempts to allocate too much on the (small, fixed-size) G0 (system) stack and this failed the test. Compiling src/std after touching src/runtime/*.go with -m logging turned on shows 420 fewer heap allocation sites (10538 vs 10968). Profiling allocations in src/html/template with for i in {1..5} ; do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go; go tool pprof -alloc_objects -text mastx.${i}.prof ; done showed a 15% reduction in allocations performed by the compiler. Update #3753 Update #4720 Fixes #10466 Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432 Reviewed-on: https://go-review.googlesource.com/8202 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-26 16:36:15 -04:00
func max8(a, b int8) int8 {
if a > b {
return a
}
cmd/internal/gc: improve flow of input params to output params This includes the following information in the per-function summary: outK = paramJ encoded in outK bits for paramJ outK = *paramJ encoded in outK bits for paramJ heap = paramJ EscHeap heap = *paramJ EscContentEscapes Note that (currently) if the address of a parameter is taken and returned, necessarily a heap allocation occurred to contain that reference, and the heap can never refer to stack, therefore the parameter and everything downstream from it escapes to the heap. The per-function summary information now has a tuneable number of bits (2 is probably noticeably better than 1, 3 is likely overkill, but it is now easy to check and the -m debugging output includes information that allows you to figure out if more would be better.) A new test was added to check pointer flow through struct-typed and *struct-typed parameters and returns; some of these are sensitive to the number of summary bits, and ought to yield better results with a more competent escape analysis algorithm. Another new test checks (some) correctness with array parameters, results, and operations. The old analysis inferred a piece of plan9 runtime was non-escaping by counteracting overconservative analysis with buggy analysis; with the bug fixed, the result was too conservative (and it's not easy to fix in this framework) so the source code was tweaked to get the desired result. A test was added against the discovered bug. The escape analysis was further improved splitting the "level" into 3 parts, one tracking the conventional "level" and the other two computing the highest-level-suffix-from-copy, which is used to generally model the cancelling effect of indirection applied to address-of. With the improved escape analysis enabled, it was necessary to modify one of the runtime tests because it now attempts to allocate too much on the (small, fixed-size) G0 (system) stack and this failed the test. Compiling src/std after touching src/runtime/*.go with -m logging turned on shows 420 fewer heap allocation sites (10538 vs 10968). Profiling allocations in src/html/template with for i in {1..5} ; do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go; go tool pprof -alloc_objects -text mastx.${i}.prof ; done showed a 15% reduction in allocations performed by the compiler. Update #3753 Update #4720 Fixes #10466 Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432 Reviewed-on: https://go-review.googlesource.com/8202 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-26 16:36:15 -04:00
return b
}
cmd/internal/gc: improve flow of input params to output params This includes the following information in the per-function summary: outK = paramJ encoded in outK bits for paramJ outK = *paramJ encoded in outK bits for paramJ heap = paramJ EscHeap heap = *paramJ EscContentEscapes Note that (currently) if the address of a parameter is taken and returned, necessarily a heap allocation occurred to contain that reference, and the heap can never refer to stack, therefore the parameter and everything downstream from it escapes to the heap. The per-function summary information now has a tuneable number of bits (2 is probably noticeably better than 1, 3 is likely overkill, but it is now easy to check and the -m debugging output includes information that allows you to figure out if more would be better.) A new test was added to check pointer flow through struct-typed and *struct-typed parameters and returns; some of these are sensitive to the number of summary bits, and ought to yield better results with a more competent escape analysis algorithm. Another new test checks (some) correctness with array parameters, results, and operations. The old analysis inferred a piece of plan9 runtime was non-escaping by counteracting overconservative analysis with buggy analysis; with the bug fixed, the result was too conservative (and it's not easy to fix in this framework) so the source code was tweaked to get the desired result. A test was added against the discovered bug. The escape analysis was further improved splitting the "level" into 3 parts, one tracking the conventional "level" and the other two computing the highest-level-suffix-from-copy, which is used to generally model the cancelling effect of indirection applied to address-of. With the improved escape analysis enabled, it was necessary to modify one of the runtime tests because it now attempts to allocate too much on the (small, fixed-size) G0 (system) stack and this failed the test. Compiling src/std after touching src/runtime/*.go with -m logging turned on shows 420 fewer heap allocation sites (10538 vs 10968). Profiling allocations in src/html/template with for i in {1..5} ; do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go; go tool pprof -alloc_objects -text mastx.${i}.prof ; done showed a 15% reduction in allocations performed by the compiler. Update #3753 Update #4720 Fixes #10466 Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432 Reviewed-on: https://go-review.googlesource.com/8202 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-26 16:36:15 -04:00
const (
EscUnknown = iota
EscNone // Does not escape to heap, result, or parameters.
EscHeap // Reachable from the heap
EscNever // By construction will not escape.
cmd/internal/gc: improve flow of input params to output params This includes the following information in the per-function summary: outK = paramJ encoded in outK bits for paramJ outK = *paramJ encoded in outK bits for paramJ heap = paramJ EscHeap heap = *paramJ EscContentEscapes Note that (currently) if the address of a parameter is taken and returned, necessarily a heap allocation occurred to contain that reference, and the heap can never refer to stack, therefore the parameter and everything downstream from it escapes to the heap. The per-function summary information now has a tuneable number of bits (2 is probably noticeably better than 1, 3 is likely overkill, but it is now easy to check and the -m debugging output includes information that allows you to figure out if more would be better.) A new test was added to check pointer flow through struct-typed and *struct-typed parameters and returns; some of these are sensitive to the number of summary bits, and ought to yield better results with a more competent escape analysis algorithm. Another new test checks (some) correctness with array parameters, results, and operations. The old analysis inferred a piece of plan9 runtime was non-escaping by counteracting overconservative analysis with buggy analysis; with the bug fixed, the result was too conservative (and it's not easy to fix in this framework) so the source code was tweaked to get the desired result. A test was added against the discovered bug. The escape analysis was further improved splitting the "level" into 3 parts, one tracking the conventional "level" and the other two computing the highest-level-suffix-from-copy, which is used to generally model the cancelling effect of indirection applied to address-of. With the improved escape analysis enabled, it was necessary to modify one of the runtime tests because it now attempts to allocate too much on the (small, fixed-size) G0 (system) stack and this failed the test. Compiling src/std after touching src/runtime/*.go with -m logging turned on shows 420 fewer heap allocation sites (10538 vs 10968). Profiling allocations in src/html/template with for i in {1..5} ; do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go; go tool pprof -alloc_objects -text mastx.${i}.prof ; done showed a 15% reduction in allocations performed by the compiler. Update #3753 Update #4720 Fixes #10466 Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432 Reviewed-on: https://go-review.googlesource.com/8202 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-26 16:36:15 -04:00
)
// funcSym returns fn.Func.Nname.Sym if no nils are encountered along the way.
func funcSym(fn *Node) *types.Sym {
if fn == nil || fn.Func.Nname == nil {
return nil
}
return fn.Func.Nname.Sym
}
// Mark labels that have no backjumps to them as not increasing e.loopdepth.
// Walk hasn't generated (goto|label).Left.Sym.Label yet, so we'll cheat
// and set it to one of the following two. Then in esc we'll clear it again.
var (
looping Node
nonlooping Node
)
func isSliceSelfAssign(dst, src *Node) bool {
// Detect the following special case.
//
// func (b *Buffer) Foo() {
// n, m := ...
// b.buf = b.buf[n:m]
// }
//
// This assignment is a no-op for escape analysis,
// it does not store any new pointers into b that were not already there.
// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
// Here we assume that the statement will not contain calls,
// that is, that order will move any calls to init.
// Otherwise base ONAME value could change between the moments
// when we evaluate it for dst and for src.
// dst is ONAME dereference.
cmd/compile: bulk rename This change does a bulk rename of several identifiers in the compiler. See #27167 and https://docs.google.com/document/d/19_ExiylD9MRfeAjKIfEsMU1_RGhuxB9sA0b5Zv7byVI/ for context and for discussion of these particular renames. Commands run to generate this change: gorename -from '"cmd/compile/internal/gc".OPROC' -to OGO gorename -from '"cmd/compile/internal/gc".OCOM' -to OBITNOT gorename -from '"cmd/compile/internal/gc".OMINUS' -to ONEG gorename -from '"cmd/compile/internal/gc".OIND' -to ODEREF gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTR' -to OBYTES2STR gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTRTMP' -to OBYTES2STRTMP gorename -from '"cmd/compile/internal/gc".OARRAYRUNESTR' -to ORUNES2STR gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTE' -to OSTR2BYTES gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTETMP' -to OSTR2BYTESTMP gorename -from '"cmd/compile/internal/gc".OSTRARRAYRUNE' -to OSTR2RUNES gorename -from '"cmd/compile/internal/gc".Etop' -to ctxStmt gorename -from '"cmd/compile/internal/gc".Erv' -to ctxExpr gorename -from '"cmd/compile/internal/gc".Ecall' -to ctxCallee gorename -from '"cmd/compile/internal/gc".Efnstruct' -to ctxMultiOK gorename -from '"cmd/compile/internal/gc".Easgn' -to ctxAssign gorename -from '"cmd/compile/internal/gc".Ecomplit' -to ctxCompLit Not altered: parameters and local variables (mostly in typecheck.go) named top, which should probably now be called ctx (and which should probably have a named type). Also not altered: Field called Top in gc.Func. gorename -from '"cmd/compile/internal/gc".Node.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/gc".Node.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/gc".nodeIsddd' -to nodeIsDDD gorename -from '"cmd/compile/internal/types".Field.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/types".Field.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/types".fieldIsddd' -to fieldIsDDD Not altered: function gc.hasddd, params and local variables called isddd Also not altered: fmt.go prints nodes using "isddd(%v)". cd cmd/compile/internal/gc; go generate I then manually found impacted comments using exact string match and fixed them up by hand. The comment changes were trivial. Passes toolstash-check. Fixes #27167. If this experiment is deemed a success, we will open a new tracking issue for renames to do at the end of the 1.13 cycles. Change-Id: I2dc541533d2ab0d06cb3d31d65df205ecfb151e8 Reviewed-on: https://go-review.googlesource.com/c/150140 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2018-11-18 08:34:38 -08:00
if dst.Op != ODEREF && dst.Op != ODOTPTR || dst.Left.Op != ONAME {
return false
}
// src is a slice operation.
switch src.Op {
case OSLICE, OSLICE3, OSLICESTR:
// OK.
case OSLICEARR, OSLICE3ARR:
// Since arrays are embedded into containing object,
// slice of non-pointer array will introduce a new pointer into b that was not already there
// (pointer to b itself). After such assignment, if b contents escape,
// b escapes as well. If we ignore such OSLICEARR, we will conclude
// that b does not escape when b contents do.
//
// Pointer to an array is OK since it's not stored inside b directly.
// For slicing an array (not pointer to array), there is an implicit OADDR.
// We check that to determine non-pointer array slicing.
if src.Left.Op == OADDR {
return false
}
default:
return false
}
// slice is applied to ONAME dereference.
cmd/compile: bulk rename This change does a bulk rename of several identifiers in the compiler. See #27167 and https://docs.google.com/document/d/19_ExiylD9MRfeAjKIfEsMU1_RGhuxB9sA0b5Zv7byVI/ for context and for discussion of these particular renames. Commands run to generate this change: gorename -from '"cmd/compile/internal/gc".OPROC' -to OGO gorename -from '"cmd/compile/internal/gc".OCOM' -to OBITNOT gorename -from '"cmd/compile/internal/gc".OMINUS' -to ONEG gorename -from '"cmd/compile/internal/gc".OIND' -to ODEREF gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTR' -to OBYTES2STR gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTRTMP' -to OBYTES2STRTMP gorename -from '"cmd/compile/internal/gc".OARRAYRUNESTR' -to ORUNES2STR gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTE' -to OSTR2BYTES gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTETMP' -to OSTR2BYTESTMP gorename -from '"cmd/compile/internal/gc".OSTRARRAYRUNE' -to OSTR2RUNES gorename -from '"cmd/compile/internal/gc".Etop' -to ctxStmt gorename -from '"cmd/compile/internal/gc".Erv' -to ctxExpr gorename -from '"cmd/compile/internal/gc".Ecall' -to ctxCallee gorename -from '"cmd/compile/internal/gc".Efnstruct' -to ctxMultiOK gorename -from '"cmd/compile/internal/gc".Easgn' -to ctxAssign gorename -from '"cmd/compile/internal/gc".Ecomplit' -to ctxCompLit Not altered: parameters and local variables (mostly in typecheck.go) named top, which should probably now be called ctx (and which should probably have a named type). Also not altered: Field called Top in gc.Func. gorename -from '"cmd/compile/internal/gc".Node.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/gc".Node.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/gc".nodeIsddd' -to nodeIsDDD gorename -from '"cmd/compile/internal/types".Field.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/types".Field.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/types".fieldIsddd' -to fieldIsDDD Not altered: function gc.hasddd, params and local variables called isddd Also not altered: fmt.go prints nodes using "isddd(%v)". cd cmd/compile/internal/gc; go generate I then manually found impacted comments using exact string match and fixed them up by hand. The comment changes were trivial. Passes toolstash-check. Fixes #27167. If this experiment is deemed a success, we will open a new tracking issue for renames to do at the end of the 1.13 cycles. Change-Id: I2dc541533d2ab0d06cb3d31d65df205ecfb151e8 Reviewed-on: https://go-review.googlesource.com/c/150140 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2018-11-18 08:34:38 -08:00
if src.Left.Op != ODEREF && src.Left.Op != ODOTPTR || src.Left.Left.Op != ONAME {
return false
}
// dst and src reference the same base ONAME.
return dst.Left == src.Left.Left
}
// isSelfAssign reports whether assignment from src to dst can
// be ignored by the escape analysis as it's effectively a self-assignment.
func isSelfAssign(dst, src *Node) bool {
if isSliceSelfAssign(dst, src) {
return true
}
// Detect trivial assignments that assign back to the same object.
//
// It covers these cases:
// val.x = val.y
// val.x[i] = val.y[j]
// val.x1.x2 = val.x1.y2
// ... etc
//
// These assignments do not change assigned object lifetime.
if dst == nil || src == nil || dst.Op != src.Op {
return false
}
switch dst.Op {
case ODOT, ODOTPTR:
// Safe trailing accessors that are permitted to differ.
case OINDEX:
if mayAffectMemory(dst.Right) || mayAffectMemory(src.Right) {
return false
}
default:
return false
}
// The expression prefix must be both "safe" and identical.
return samesafeexpr(dst.Left, src.Left)
}
// mayAffectMemory reports whether evaluation of n may affect the program's
// memory state. If the expression can't affect memory state, then it can be
// safely ignored by the escape analysis.
func mayAffectMemory(n *Node) bool {
// We may want to use a list of "memory safe" ops instead of generally
// "side-effect free", which would include all calls and other ops that can
// allocate or change global state. For now, it's safer to start with the latter.
//
// We're ignoring things like division by zero, index out of range,
// and nil pointer dereference here.
switch n.Op {
case ONAME, OCLOSUREVAR, OLITERAL:
return false
// Left+Right group.
case OINDEX, OADD, OSUB, OOR, OXOR, OMUL, OLSH, ORSH, OAND, OANDNOT, ODIV, OMOD:
return mayAffectMemory(n.Left) || mayAffectMemory(n.Right)
// Left group.
cmd/compile: bulk rename This change does a bulk rename of several identifiers in the compiler. See #27167 and https://docs.google.com/document/d/19_ExiylD9MRfeAjKIfEsMU1_RGhuxB9sA0b5Zv7byVI/ for context and for discussion of these particular renames. Commands run to generate this change: gorename -from '"cmd/compile/internal/gc".OPROC' -to OGO gorename -from '"cmd/compile/internal/gc".OCOM' -to OBITNOT gorename -from '"cmd/compile/internal/gc".OMINUS' -to ONEG gorename -from '"cmd/compile/internal/gc".OIND' -to ODEREF gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTR' -to OBYTES2STR gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTRTMP' -to OBYTES2STRTMP gorename -from '"cmd/compile/internal/gc".OARRAYRUNESTR' -to ORUNES2STR gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTE' -to OSTR2BYTES gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTETMP' -to OSTR2BYTESTMP gorename -from '"cmd/compile/internal/gc".OSTRARRAYRUNE' -to OSTR2RUNES gorename -from '"cmd/compile/internal/gc".Etop' -to ctxStmt gorename -from '"cmd/compile/internal/gc".Erv' -to ctxExpr gorename -from '"cmd/compile/internal/gc".Ecall' -to ctxCallee gorename -from '"cmd/compile/internal/gc".Efnstruct' -to ctxMultiOK gorename -from '"cmd/compile/internal/gc".Easgn' -to ctxAssign gorename -from '"cmd/compile/internal/gc".Ecomplit' -to ctxCompLit Not altered: parameters and local variables (mostly in typecheck.go) named top, which should probably now be called ctx (and which should probably have a named type). Also not altered: Field called Top in gc.Func. gorename -from '"cmd/compile/internal/gc".Node.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/gc".Node.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/gc".nodeIsddd' -to nodeIsDDD gorename -from '"cmd/compile/internal/types".Field.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/types".Field.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/types".fieldIsddd' -to fieldIsDDD Not altered: function gc.hasddd, params and local variables called isddd Also not altered: fmt.go prints nodes using "isddd(%v)". cd cmd/compile/internal/gc; go generate I then manually found impacted comments using exact string match and fixed them up by hand. The comment changes were trivial. Passes toolstash-check. Fixes #27167. If this experiment is deemed a success, we will open a new tracking issue for renames to do at the end of the 1.13 cycles. Change-Id: I2dc541533d2ab0d06cb3d31d65df205ecfb151e8 Reviewed-on: https://go-review.googlesource.com/c/150140 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2018-11-18 08:34:38 -08:00
case ODOT, ODOTPTR, ODEREF, OCONVNOP, OCONV, OLEN, OCAP,
ONOT, OBITNOT, OPLUS, ONEG, OALIGNOF, OOFFSETOF, OSIZEOF:
return mayAffectMemory(n.Left)
default:
return true
}
}
// heapAllocReason returns the reason the given Node must be heap
// allocated, or the empty string if it doesn't.
func heapAllocReason(n *Node) string {
if n.Type == nil {
return ""
}
// Parameters are always passed via the stack.
if n.Op == ONAME && (n.Class() == PPARAM || n.Class() == PPARAMOUT) {
return ""
}
if n.Type.Width > maxStackVarSize {
return "too large for stack"
}
if (n.Op == ONEW || n.Op == OPTRLIT) && n.Type.Elem().Width >= maxImplicitStackVarSize {
return "too large for stack"
}
if n.Op == OCLOSURE && closureType(n).Size() >= maxImplicitStackVarSize {
return "too large for stack"
}
if n.Op == OCALLPART && partialCallType(n).Size() >= maxImplicitStackVarSize {
return "too large for stack"
}
if n.Op == OMAKESLICE {
r := n.Right
if r == nil {
r = n.Left
}
if !smallintconst(r) {
return "non-constant size"
}
if t := n.Type; t.Elem().Width != 0 && r.Int64Val() >= maxImplicitStackVarSize/t.Elem().Width {
return "too large for stack"
}
}
return ""
}
// addrescapes tags node n as having had its address taken
// by "increasing" the "value" of n.Esc to EscHeap.
// Storage is allocated as necessary to allow the address
// to be taken.
func addrescapes(n *Node) {
switch n.Op {
default:
// Unexpected Op, probably due to a previous type error. Ignore.
cmd/compile: bulk rename This change does a bulk rename of several identifiers in the compiler. See #27167 and https://docs.google.com/document/d/19_ExiylD9MRfeAjKIfEsMU1_RGhuxB9sA0b5Zv7byVI/ for context and for discussion of these particular renames. Commands run to generate this change: gorename -from '"cmd/compile/internal/gc".OPROC' -to OGO gorename -from '"cmd/compile/internal/gc".OCOM' -to OBITNOT gorename -from '"cmd/compile/internal/gc".OMINUS' -to ONEG gorename -from '"cmd/compile/internal/gc".OIND' -to ODEREF gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTR' -to OBYTES2STR gorename -from '"cmd/compile/internal/gc".OARRAYBYTESTRTMP' -to OBYTES2STRTMP gorename -from '"cmd/compile/internal/gc".OARRAYRUNESTR' -to ORUNES2STR gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTE' -to OSTR2BYTES gorename -from '"cmd/compile/internal/gc".OSTRARRAYBYTETMP' -to OSTR2BYTESTMP gorename -from '"cmd/compile/internal/gc".OSTRARRAYRUNE' -to OSTR2RUNES gorename -from '"cmd/compile/internal/gc".Etop' -to ctxStmt gorename -from '"cmd/compile/internal/gc".Erv' -to ctxExpr gorename -from '"cmd/compile/internal/gc".Ecall' -to ctxCallee gorename -from '"cmd/compile/internal/gc".Efnstruct' -to ctxMultiOK gorename -from '"cmd/compile/internal/gc".Easgn' -to ctxAssign gorename -from '"cmd/compile/internal/gc".Ecomplit' -to ctxCompLit Not altered: parameters and local variables (mostly in typecheck.go) named top, which should probably now be called ctx (and which should probably have a named type). Also not altered: Field called Top in gc.Func. gorename -from '"cmd/compile/internal/gc".Node.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/gc".Node.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/gc".nodeIsddd' -to nodeIsDDD gorename -from '"cmd/compile/internal/types".Field.Isddd' -to IsDDD gorename -from '"cmd/compile/internal/types".Field.SetIsddd' -to SetIsDDD gorename -from '"cmd/compile/internal/types".fieldIsddd' -to fieldIsDDD Not altered: function gc.hasddd, params and local variables called isddd Also not altered: fmt.go prints nodes using "isddd(%v)". cd cmd/compile/internal/gc; go generate I then manually found impacted comments using exact string match and fixed them up by hand. The comment changes were trivial. Passes toolstash-check. Fixes #27167. If this experiment is deemed a success, we will open a new tracking issue for renames to do at the end of the 1.13 cycles. Change-Id: I2dc541533d2ab0d06cb3d31d65df205ecfb151e8 Reviewed-on: https://go-review.googlesource.com/c/150140 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2018-11-18 08:34:38 -08:00
case ODEREF, ODOTPTR:
// Nothing to do.
case ONAME:
if n == nodfp {
break
}
// if this is a tmpname (PAUTO), it was tagged by tmpname as not escaping.
// on PPARAM it means something different.
if n.Class() == PAUTO && n.Esc == EscNever {
break
}
// If a closure reference escapes, mark the outer variable as escaping.
if n.Name.IsClosureVar() {
addrescapes(n.Name.Defn)
break
}
if n.Class() != PPARAM && n.Class() != PPARAMOUT && n.Class() != PAUTO {
break
}
// This is a plain parameter or local variable that needs to move to the heap,
// but possibly for the function outside the one we're compiling.
// That is, if we have:
//
// func f(x int) {
// func() {
// global = &x
// }
// }
//
// then we're analyzing the inner closure but we need to move x to the
// heap in f, not in the inner closure. Flip over to f before calling moveToHeap.
oldfn := Curfn
Curfn = n.Name.Curfn
if Curfn.Func.Closure != nil && Curfn.Op == OCLOSURE {
Curfn = Curfn.Func.Closure
}
ln := lineno
lineno = Curfn.Pos
moveToHeap(n)
Curfn = oldfn
lineno = ln
// ODOTPTR has already been introduced,
// so these are the non-pointer ODOT and OINDEX.
// In &x[0], if x is a slice, then x does not
// escape--the pointer inside x does, but that
// is always a heap pointer anyway.
case ODOT, OINDEX, OPAREN, OCONVNOP:
if !n.Left.Type.IsSlice() {
addrescapes(n.Left)
}
}
}
// moveToHeap records the parameter or local variable n as moved to the heap.
func moveToHeap(n *Node) {
if Debug.r != 0 {
Dump("MOVE", n)
}
if compiling_runtime {
yyerror("%v escapes to heap, not allowed in runtime", n)
}
if n.Class() == PAUTOHEAP {
Dump("n", n)
Fatalf("double move to heap")
}
// Allocate a local stack variable to hold the pointer to the heap copy.
// temp will add it to the function declaration list automatically.
heapaddr := temp(types.NewPtr(n.Type))
heapaddr.Sym = lookup("&" + n.Sym.Name)
heapaddr.Orig.Sym = heapaddr.Sym
heapaddr.Pos = n.Pos
// Unset AutoTemp to persist the &foo variable name through SSA to
// liveness analysis.
// TODO(mdempsky/drchase): Cleaner solution?
heapaddr.Name.SetAutoTemp(false)
// Parameters have a local stack copy used at function start/end
// in addition to the copy in the heap that may live longer than
// the function.
if n.Class() == PPARAM || n.Class() == PPARAMOUT {
if n.Xoffset == BADWIDTH {
Fatalf("addrescapes before param assignment")
}
// We rewrite n below to be a heap variable (indirection of heapaddr).
// Preserve a copy so we can still write code referring to the original,
// and substitute that copy into the function declaration list
// so that analyses of the local (on-stack) variables use it.
stackcopy := newname(n.Sym)
stackcopy.Type = n.Type
stackcopy.Xoffset = n.Xoffset
stackcopy.SetClass(n.Class())
stackcopy.Name.Param.Heapaddr = heapaddr
if n.Class() == PPARAMOUT {
// Make sure the pointer to the heap copy is kept live throughout the function.
// The function could panic at any point, and then a defer could recover.
// Thus, we need the pointer to the heap copy always available so the
// post-deferreturn code can copy the return value back to the stack.
// See issue 16095.
heapaddr.Name.SetIsOutputParamHeapAddr(true)
}
n.Name.Param.Stackcopy = stackcopy
// Substitute the stackcopy into the function variable list so that
// liveness and other analyses use the underlying stack slot
// and not the now-pseudo-variable n.
found := false
for i, d := range Curfn.Func.Dcl {
if d == n {
Curfn.Func.Dcl[i] = stackcopy
found = true
break
}
// Parameters are before locals, so can stop early.
// This limits the search even in functions with many local variables.
if d.Class() == PAUTO {
break
}
}
if !found {
Fatalf("cannot find %v in local variable list", n)
}
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
}
// Modify n in place so that uses of n now mean indirection of the heapaddr.
n.SetClass(PAUTOHEAP)
n.Xoffset = 0
n.Name.Param.Heapaddr = heapaddr
n.Esc = EscHeap
if Debug.m != 0 {
Warnl(n.Pos, "moved to heap: %v", n)
}
}
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
const unsafeUintptrTag = "unsafe-uintptr"
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const uintptrEscapesTag = "uintptr-escapes"
func (e *Escape) paramTag(fn *Node, narg int, f *types.Field) string {
name := func() string {
if f.Sym != nil {
return f.Sym.Name
}
return fmt.Sprintf("arg#%d", narg)
}
if fn.Nbody.Len() == 0 {
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
// Assume that uintptr arguments must be held live across the call.
// This is most important for syscall.Syscall.
// See golang.org/issue/13372.
// This really doesn't have much to do with escape analysis per se,
// but we are reusing the ability to annotate an individual function
// argument and pass those annotations along to importing code.
if f.Type.IsUintptr() {
if Debug.m != 0 {
Warnl(f.Pos, "assuming %v is unsafe uintptr", name())
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
}
return unsafeUintptrTag
cmd/compile: recognize Syscall-like functions for liveness analysis Consider this code: func f(*int) func g() { p := new(int) f(p) } where f is an assembly function. In general liveness analysis assumes that during the call to f, p is dead in this frame. If f has retained p, p will be found alive in f's frame and keep the new(int) from being garbage collected. This is all correct and works. We use the Go func declaration for f to give the assembly function liveness information (the arguments are assumed live for the entire call). Now consider this code: func h1() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) } Here syscall.Syscall is taking the place of f, but because its arguments are uintptr, the liveness analysis and the garbage collector ignore them. Since p is no longer live in h once the call starts, if the garbage collector scans the stack while the system call is blocked, it will find no reference to the new(int) and reclaim it. If the kernel is going to write to *p once the call finishes, reclaiming the memory is a mistake. We can't change the arguments or the liveness information for syscall.Syscall itself, both for compatibility and because sometimes the arguments really are integers, and the garbage collector will get quite upset if it finds an integer where it expects a pointer. The problem is that these arguments are fundamentally untyped. The solution we have taken in the syscall package's wrappers in past releases is to insert a call to a dummy function named "use", to make it look like the argument is live during the call to syscall.Syscall: func h2() { p := new(int) syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p))) use(unsafe.Pointer(p)) } Keeping p alive during the call means that if the garbage collector scans the stack during the system call now, it will find the reference to p. Unfortunately, this approach is not available to users outside syscall, because 'use' is unexported, and people also have to realize they need to use it and do so. There is much existing code using syscall.Syscall without a 'use'-like function. That code will fail very occasionally in mysterious ways (see #13372). This CL fixes all that existing code by making the compiler do the right thing automatically, without any code modifications. That is, it takes h1 above, which is incorrect code today, and makes it correct code. Specifically, if the compiler sees a foreign func definition (one without a body) that has uintptr arguments, it marks those arguments as "unsafe uintptrs". If it later sees the function being called with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x as having escaped, and it makes sure to hold x in a live temporary variable until the call returns, so that the garbage collector cannot reclaim whatever heap memory x points to. For now I am leaving the explicit calls to use in package syscall, but they can be removed early in a future cycle (likely Go 1.7). The rule has no effect on escape analysis, only on liveness analysis. Fixes #13372. Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500 Reviewed-on: https://go-review.googlesource.com/18584 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
}
if !f.Type.HasPointers() { // don't bother tagging for scalars
return ""
}
var esc EscLeaks
// External functions are assumed unsafe, unless
// //go:noescape is given before the declaration.
if fn.Func.Pragma&Noescape != 0 {
if Debug.m != 0 && f.Sym != nil {
Warnl(f.Pos, "%v does not escape", name())
}
} else {
if Debug.m != 0 && f.Sym != nil {
Warnl(f.Pos, "leaking param: %v", name())
}
esc.AddHeap(0)
}
return esc.Encode()
}
if fn.Func.Pragma&UintptrEscapes != 0 {
if f.Type.IsUintptr() {
if Debug.m != 0 {
Warnl(f.Pos, "marking %v as escaping uintptr", name())
}
return uintptrEscapesTag
}
if f.IsDDD() && f.Type.Elem().IsUintptr() {
// final argument is ...uintptr.
if Debug.m != 0 {
Warnl(f.Pos, "marking %v as escaping ...uintptr", name())
}
return uintptrEscapesTag
}
}
if !f.Type.HasPointers() { // don't bother tagging for scalars
return ""
}
// Unnamed parameters are unused and therefore do not escape.
if f.Sym == nil || f.Sym.IsBlank() {
var esc EscLeaks
return esc.Encode()
}
n := asNode(f.Nname)
loc := e.oldLoc(n)
esc := loc.paramEsc
esc.Optimize()
if Debug.m != 0 && !loc.escapes {
if esc.Empty() {
Warnl(f.Pos, "%v does not escape", name())
}
if x := esc.Heap(); x >= 0 {
if x == 0 {
Warnl(f.Pos, "leaking param: %v", name())
} else {
// TODO(mdempsky): Mention level=x like below?
Warnl(f.Pos, "leaking param content: %v", name())
}
}
for i := 0; i < numEscResults; i++ {
if x := esc.Result(i); x >= 0 {
res := fn.Type.Results().Field(i).Sym
Warnl(f.Pos, "leaking param: %v to result %v level=%d", name(), res, x)
}
}
}
return esc.Encode()
}