2015-03-05 10:45:56 -05:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
|
|
// “Abstract” syntax representation.
|
|
|
|
|
|
|
|
|
|
package gc
|
|
|
|
|
|
2017-01-11 15:48:30 -08:00
|
|
|
import (
|
|
|
|
|
"cmd/compile/internal/syntax"
|
|
|
|
|
"cmd/internal/src"
|
|
|
|
|
)
|
2016-12-06 17:08:06 -08:00
|
|
|
|
2015-03-05 10:45:56 -05:00
|
|
|
// A Node is a single node in the syntax tree.
|
|
|
|
|
// Actually the syntax tree is a syntax DAG, because there is only one
|
|
|
|
|
// node with Op=ONAME for a given instance of a variable x.
|
|
|
|
|
// The same is true for Op=OTYPE and Op=OLITERAL.
|
|
|
|
|
type Node struct {
|
2015-03-05 13:57:36 -05:00
|
|
|
// Tree structure.
|
|
|
|
|
// Generic recursive walks should follow these fields.
|
|
|
|
|
Left *Node
|
|
|
|
|
Right *Node
|
2016-03-07 14:32:18 -08:00
|
|
|
Ninit Nodes
|
2016-02-27 14:31:33 -08:00
|
|
|
Nbody Nodes
|
2016-03-07 14:32:18 -08:00
|
|
|
List Nodes
|
|
|
|
|
Rlist Nodes
|
2015-03-05 13:57:36 -05:00
|
|
|
|
|
|
|
|
// most nodes
|
2015-05-27 10:44:43 -04:00
|
|
|
Type *Type
|
|
|
|
|
Orig *Node // original form, for printing, and tracking copies of ONAMEs
|
2015-03-05 13:57:36 -05:00
|
|
|
|
|
|
|
|
// func
|
2015-03-25 19:33:01 -07:00
|
|
|
Func *Func
|
2015-03-05 13:57:36 -05:00
|
|
|
|
2017-01-11 11:24:35 -08:00
|
|
|
// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
|
2015-05-27 07:31:56 -04:00
|
|
|
Name *Name
|
2015-03-05 13:57:36 -05:00
|
|
|
|
2015-05-27 00:47:05 -04:00
|
|
|
Sym *Sym // various
|
|
|
|
|
E interface{} // Opt or Val, see methods below
|
2015-03-05 13:57:36 -05:00
|
|
|
|
2016-10-12 15:48:18 -07:00
|
|
|
// Various. Usually an offset into a struct. For example:
|
|
|
|
|
// - ONAME nodes that refer to local variables use it to identify their stack frame position.
|
2016-10-24 14:33:22 -07:00
|
|
|
// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
|
2016-10-12 15:48:18 -07:00
|
|
|
// - OSTRUCTKEY uses it to store the named field's offset.
|
|
|
|
|
// - OXCASE and OXFALL use it to validate the use of fallthrough.
|
2016-10-31 16:20:42 -07:00
|
|
|
// - Named OLITERALs use it to to store their ambient iota value.
|
2016-03-14 00:24:43 -07:00
|
|
|
// Possibly still more uses. If you find any, document them.
|
2015-05-26 21:30:20 -04:00
|
|
|
Xoffset int64
|
2015-05-18 15:49:02 -07:00
|
|
|
|
2016-12-15 17:17:01 -08:00
|
|
|
Pos src.XPos
|
2015-05-18 15:49:02 -07:00
|
|
|
|
2015-05-26 23:42:41 -04:00
|
|
|
Esc uint16 // EscXXX
|
2015-05-18 15:49:02 -07:00
|
|
|
|
2016-03-31 11:42:35 -07:00
|
|
|
Op Op
|
|
|
|
|
Ullman uint8 // sethi/ullman number
|
|
|
|
|
Addable bool // addressable
|
2016-10-11 08:36:38 -07:00
|
|
|
Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS
|
2016-03-31 11:42:35 -07:00
|
|
|
Bounded bool // bounds check unnecessary
|
2016-04-19 21:06:53 -07:00
|
|
|
NonNil bool // guaranteed to be non-nil
|
2016-03-31 11:42:35 -07:00
|
|
|
Class Class // PPARAM, PAUTO, PEXTERN, etc
|
|
|
|
|
Embedded uint8 // ODCLFIELD embedded type
|
|
|
|
|
Colas bool // OAS resulting from :=
|
2016-10-27 11:44:51 +02:00
|
|
|
Diag bool // already printed error about this
|
2016-03-31 11:42:35 -07:00
|
|
|
Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
|
2016-08-18 09:14:22 -07:00
|
|
|
Walkdef uint8 // tracks state during typecheckdef; 2 == loop detected
|
|
|
|
|
Typecheck uint8 // tracks state during typechecking; 2 == loop detected
|
2017-01-11 11:24:35 -08:00
|
|
|
Local bool // type created in this file (see also Type.Local); TODO(gri): move this into flags
|
|
|
|
|
IsStatic bool // whether this Node will be converted to purely static data
|
2016-03-31 11:42:35 -07:00
|
|
|
Initorder uint8
|
2016-08-18 09:14:22 -07:00
|
|
|
Used bool // for variable/label declared and not used error
|
2016-03-31 11:42:35 -07:00
|
|
|
Isddd bool // is the argument variadic
|
|
|
|
|
Implicit bool
|
2016-04-21 19:28:28 -07:00
|
|
|
Addrtaken bool // address taken, even if not moved to heap
|
|
|
|
|
Assigned bool // is the variable ever assigned to
|
|
|
|
|
Likely int8 // likeliness of if statement
|
|
|
|
|
hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set
|
|
|
|
|
flags uint8 // TODO: store more bool fields in this flag field
|
|
|
|
|
}
|
|
|
|
|
|
2016-10-28 13:33:57 -04:00
|
|
|
// IsAutoTmp indicates if n was created by the compiler as a temporary,
|
|
|
|
|
// based on the setting of the .AutoTemp flag in n's Name.
|
|
|
|
|
func (n *Node) IsAutoTmp() bool {
|
|
|
|
|
if n == nil || n.Op != ONAME {
|
|
|
|
|
return false
|
|
|
|
|
}
|
|
|
|
|
return n.Name.AutoTemp
|
|
|
|
|
}
|
|
|
|
|
|
2016-04-21 19:28:28 -07:00
|
|
|
const (
|
|
|
|
|
hasBreak = 1 << iota
|
2016-05-27 00:56:19 -04:00
|
|
|
isClosureVar
|
2016-06-18 19:40:57 -07:00
|
|
|
isOutputParamHeapAddr
|
2016-05-06 09:24:16 -07:00
|
|
|
noInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
|
2016-04-21 19:28:28 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
func (n *Node) HasBreak() bool {
|
|
|
|
|
return n.flags&hasBreak != 0
|
|
|
|
|
}
|
|
|
|
|
func (n *Node) SetHasBreak(b bool) {
|
|
|
|
|
if b {
|
|
|
|
|
n.flags |= hasBreak
|
|
|
|
|
} else {
|
|
|
|
|
n.flags &^= hasBreak
|
|
|
|
|
}
|
|
|
|
|
}
|
2016-05-27 00:56:19 -04:00
|
|
|
func (n *Node) isClosureVar() bool {
|
|
|
|
|
return n.flags&isClosureVar != 0
|
2016-05-25 10:29:50 -04:00
|
|
|
}
|
2016-05-27 00:56:19 -04:00
|
|
|
func (n *Node) setIsClosureVar(b bool) {
|
2016-05-25 10:29:50 -04:00
|
|
|
if b {
|
2016-05-27 00:56:19 -04:00
|
|
|
n.flags |= isClosureVar
|
2016-05-25 10:29:50 -04:00
|
|
|
} else {
|
2016-05-27 00:56:19 -04:00
|
|
|
n.flags &^= isClosureVar
|
2016-05-25 10:29:50 -04:00
|
|
|
}
|
|
|
|
|
}
|
2016-05-06 09:24:16 -07:00
|
|
|
func (n *Node) noInline() bool {
|
|
|
|
|
return n.flags&noInline != 0
|
|
|
|
|
}
|
|
|
|
|
func (n *Node) setNoInline(b bool) {
|
|
|
|
|
if b {
|
|
|
|
|
n.flags |= noInline
|
|
|
|
|
} else {
|
|
|
|
|
n.flags &^= noInline
|
|
|
|
|
}
|
|
|
|
|
}
|
2015-05-27 00:47:05 -04:00
|
|
|
|
2016-06-18 19:40:57 -07:00
|
|
|
func (n *Node) IsOutputParamHeapAddr() bool {
|
|
|
|
|
return n.flags&isOutputParamHeapAddr != 0
|
|
|
|
|
}
|
|
|
|
|
func (n *Node) setIsOutputParamHeapAddr(b bool) {
|
|
|
|
|
if b {
|
|
|
|
|
n.flags |= isOutputParamHeapAddr
|
|
|
|
|
} else {
|
|
|
|
|
n.flags &^= isOutputParamHeapAddr
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-05-27 00:47:05 -04:00
|
|
|
// Val returns the Val for the node.
|
|
|
|
|
func (n *Node) Val() Val {
|
|
|
|
|
if n.hasVal != +1 {
|
|
|
|
|
return Val{}
|
|
|
|
|
}
|
|
|
|
|
return Val{n.E}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// SetVal sets the Val for the node, which must not have been used with SetOpt.
|
|
|
|
|
func (n *Node) SetVal(v Val) {
|
|
|
|
|
if n.hasVal == -1 {
|
|
|
|
|
Debug['h'] = 1
|
|
|
|
|
Dump("have Opt", n)
|
2015-08-30 23:10:03 +02:00
|
|
|
Fatalf("have Opt")
|
2015-05-27 00:47:05 -04:00
|
|
|
}
|
|
|
|
|
n.hasVal = +1
|
|
|
|
|
n.E = v.U
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Opt returns the optimizer data for the node.
|
|
|
|
|
func (n *Node) Opt() interface{} {
|
|
|
|
|
if n.hasVal != -1 {
|
|
|
|
|
return nil
|
|
|
|
|
}
|
|
|
|
|
return n.E
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
|
|
|
|
|
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
|
|
|
|
|
func (n *Node) SetOpt(x interface{}) {
|
|
|
|
|
if x == nil && n.hasVal >= 0 {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
if n.hasVal == +1 {
|
|
|
|
|
Debug['h'] = 1
|
|
|
|
|
Dump("have Val", n)
|
2015-08-30 23:10:03 +02:00
|
|
|
Fatalf("have Val")
|
2015-05-27 00:47:05 -04:00
|
|
|
}
|
|
|
|
|
n.hasVal = -1
|
|
|
|
|
n.E = x
|
2015-03-10 21:37:13 -07:00
|
|
|
}
|
|
|
|
|
|
2016-10-27 20:15:29 -07:00
|
|
|
func (n *Node) Iota() int64 {
|
|
|
|
|
return n.Xoffset
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func (n *Node) SetIota(x int64) {
|
|
|
|
|
n.Xoffset = x
|
|
|
|
|
}
|
|
|
|
|
|
2017-01-11 11:24:35 -08:00
|
|
|
// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
|
2015-04-03 17:43:38 -07:00
|
|
|
type Name struct {
|
2016-05-27 14:24:26 -04:00
|
|
|
Pack *Node // real package for import . names
|
|
|
|
|
Pkg *Pkg // pkg for OPACK nodes
|
|
|
|
|
Heapaddr *Node // temp holding heap address of param (could move to Param?)
|
|
|
|
|
Defn *Node // initializing assignment
|
|
|
|
|
Curfn *Node // function for local variables
|
2017-01-11 11:24:35 -08:00
|
|
|
Param *Param // additional fields for ONAME, OTYPE
|
2016-05-27 14:24:26 -04:00
|
|
|
Decldepth int32 // declaration loop depth, increased for every loop or label
|
|
|
|
|
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
|
2015-05-27 00:44:05 -04:00
|
|
|
Funcdepth int32
|
2015-04-03 17:43:38 -07:00
|
|
|
Readonly bool
|
|
|
|
|
Captured bool // is the variable captured by a closure
|
|
|
|
|
Byval bool // is the variable captured by value or by reference
|
|
|
|
|
Needzero bool // if it contains pointers, needs to be zeroed on function entry
|
cmd/compile: recognize Syscall-like functions for liveness analysis
Consider this code:
func f(*int)
func g() {
p := new(int)
f(p)
}
where f is an assembly function.
In general liveness analysis assumes that during the call to f, p is dead
in this frame. If f has retained p, p will be found alive in f's frame and keep
the new(int) from being garbage collected. This is all correct and works.
We use the Go func declaration for f to give the assembly function
liveness information (the arguments are assumed live for the entire call).
Now consider this code:
func h1() {
p := new(int)
syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p)))
}
Here syscall.Syscall is taking the place of f, but because its arguments
are uintptr, the liveness analysis and the garbage collector ignore them.
Since p is no longer live in h once the call starts, if the garbage collector
scans the stack while the system call is blocked, it will find no reference
to the new(int) and reclaim it. If the kernel is going to write to *p once
the call finishes, reclaiming the memory is a mistake.
We can't change the arguments or the liveness information for
syscall.Syscall itself, both for compatibility and because sometimes the
arguments really are integers, and the garbage collector will get quite upset
if it finds an integer where it expects a pointer. The problem is that
these arguments are fundamentally untyped.
The solution we have taken in the syscall package's wrappers in past
releases is to insert a call to a dummy function named "use", to make
it look like the argument is live during the call to syscall.Syscall:
func h2() {
p := new(int)
syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p)))
use(unsafe.Pointer(p))
}
Keeping p alive during the call means that if the garbage collector
scans the stack during the system call now, it will find the reference to p.
Unfortunately, this approach is not available to users outside syscall,
because 'use' is unexported, and people also have to realize they need
to use it and do so. There is much existing code using syscall.Syscall
without a 'use'-like function. That code will fail very occasionally in
mysterious ways (see #13372).
This CL fixes all that existing code by making the compiler do the right
thing automatically, without any code modifications. That is, it takes h1
above, which is incorrect code today, and makes it correct code.
Specifically, if the compiler sees a foreign func definition (one
without a body) that has uintptr arguments, it marks those arguments
as "unsafe uintptrs". If it later sees the function being called
with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x
as having escaped, and it makes sure to hold x in a live temporary
variable until the call returns, so that the garbage collector cannot
reclaim whatever heap memory x points to.
For now I am leaving the explicit calls to use in package syscall,
but they can be removed early in a future cycle (likely Go 1.7).
The rule has no effect on escape analysis, only on liveness analysis.
Fixes #13372.
Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500
Reviewed-on: https://go-review.googlesource.com/18584
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
|
|
|
Keepalive bool // mark value live across unknown assembly call
|
2016-10-28 13:33:57 -04:00
|
|
|
AutoTemp bool // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
|
2015-04-03 17:43:38 -07:00
|
|
|
}
|
|
|
|
|
|
2015-05-18 10:27:59 -07:00
|
|
|
type Param struct {
|
|
|
|
|
Ntype *Node
|
|
|
|
|
|
cmd/compile: fix liveness computation for heap-escaped parameters
The liveness computation of parameters generally was never
correct, but forcing all parameters to be live throughout the
function covered up that problem. The new SSA back end is
too clever: even though it currently keeps the parameter values live
throughout the function, it may find optimizations that mean
the current values are not written back to the original parameter
stack slots immediately or ever (for example if a parameter is set
to nil, SSA constant propagation may replace all later uses of the
parameter with a constant nil, eliminating the need to write the nil
value back to the stack slot), so the liveness code must now
track the actual operations on the stack slots, exposing these
problems.
One small problem in the handling of arguments is that nodarg
can return ONAME PPARAM nodes with adjusted offsets, so that
there are actually multiple *Node pointers for the same parameter
in the instruction stream. This might be possible to correct, but
not in this CL. For now, we fix this by using n.Orig instead of n
when considering PPARAM and PPARAMOUT nodes.
The major problem in the handling of arguments is general
confusion in the liveness code about the meaning of PPARAM|PHEAP
and PPARAMOUT|PHEAP nodes, especially as contrasted with PAUTO|PHEAP.
The difference between these two is that when a local variable "moves"
to the heap, it's really just allocated there to start with; in contrast,
when an argument moves to the heap, the actual data has to be copied
there from the stack at the beginning of the function, and when a
result "moves" to the heap the value in the heap has to be copied
back to the stack when the function returns
This general confusion is also present in the SSA back end.
The PHEAP bit worked decently when I first introduced it 7 years ago (!)
in 391425ae. The back end did nothing sophisticated, and in particular
there was no analysis at all: no escape analysis, no liveness analysis,
and certainly no SSA back end. But the complications caused in the
various downstream consumers suggest that this should be a detail
kept mainly in the front end.
This CL therefore eliminates both the PHEAP bit and even the idea of
"heap variables" from the back ends.
First, it replaces the PPARAM|PHEAP, PPARAMOUT|PHEAP, and PAUTO|PHEAP
variable classes with the single PAUTOHEAP, a pseudo-class indicating
a variable maintained on the heap and available by indirecting a
local variable kept on the stack (a plain PAUTO).
Second, walkexpr replaces all references to PAUTOHEAP variables
with indirections of the corresponding PAUTO variable.
The back ends and the liveness code now just see plain indirected
variables. This may actually produce better code, but the real goal
here is to eliminate these little-used and somewhat suspect code
paths in the back end analyses.
The OPARAM node type goes away too.
A followup CL will do the same to PPARAMREF. I'm not sure that
the back ends (SSA in particular) are handling those right either,
and with the framework established in this CL that change is trivial
and the result clearly more correct.
Fixes #15747.
Change-Id: I2770b1ce3cbc93981bfc7166be66a9da12013d74
Reviewed-on: https://go-review.googlesource.com/23393
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-05-25 01:33:24 -04:00
|
|
|
// ONAME PAUTOHEAP
|
|
|
|
|
Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
|
2015-05-18 10:27:59 -07:00
|
|
|
|
2015-05-26 21:49:31 -04:00
|
|
|
// ONAME PPARAM
|
2016-03-14 01:20:49 -07:00
|
|
|
Field *Field // TFIELD in arg struct
|
2015-05-26 21:49:31 -04:00
|
|
|
|
2016-05-25 10:29:50 -04:00
|
|
|
// ONAME closure linkage
|
2016-05-27 00:56:19 -04:00
|
|
|
// Consider:
|
|
|
|
|
//
|
|
|
|
|
// func f() {
|
|
|
|
|
// x := 1 // x1
|
|
|
|
|
// func() {
|
|
|
|
|
// use(x) // x2
|
|
|
|
|
// func() {
|
|
|
|
|
// use(x) // x3
|
|
|
|
|
// --- parser is here ---
|
|
|
|
|
// }()
|
|
|
|
|
// }()
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// There is an original declaration of x and then a chain of mentions of x
|
|
|
|
|
// leading into the current function. Each time x is mentioned in a new closure,
|
|
|
|
|
// we create a variable representing x for use in that specific closure,
|
|
|
|
|
// since the way you get to x is different in each closure.
|
|
|
|
|
//
|
|
|
|
|
// Let's number the specific variables as shown in the code:
|
|
|
|
|
// x1 is the original x, x2 is when mentioned in the closure,
|
|
|
|
|
// and x3 is when mentioned in the closure in the closure.
|
|
|
|
|
//
|
|
|
|
|
// We keep these linked (assume N > 1):
|
|
|
|
|
//
|
|
|
|
|
// - x1.Defn = original declaration statement for x (like most variables)
|
|
|
|
|
// - x1.Innermost = current innermost closure x (in this case x3), or nil for none
|
|
|
|
|
// - x1.isClosureVar() = false
|
|
|
|
|
//
|
|
|
|
|
// - xN.Defn = x1, N > 1
|
|
|
|
|
// - xN.isClosureVar() = true, N > 1
|
|
|
|
|
// - x2.Outer = nil
|
|
|
|
|
// - xN.Outer = x(N-1), N > 2
|
|
|
|
|
//
|
|
|
|
|
//
|
|
|
|
|
// When we look up x in the symbol table, we always get x1.
|
|
|
|
|
// Then we can use x1.Innermost (if not nil) to get the x
|
|
|
|
|
// for the innermost known closure function,
|
|
|
|
|
// but the first reference in a closure will find either no x1.Innermost
|
|
|
|
|
// or an x1.Innermost with .Funcdepth < Funcdepth.
|
|
|
|
|
// In that case, a new xN must be created, linked in with:
|
|
|
|
|
//
|
|
|
|
|
// xN.Defn = x1
|
|
|
|
|
// xN.Outer = x1.Innermost
|
|
|
|
|
// x1.Innermost = xN
|
|
|
|
|
//
|
|
|
|
|
// When we finish the function, we'll process its closure variables
|
|
|
|
|
// and find xN and pop it off the list using:
|
|
|
|
|
//
|
|
|
|
|
// x1 := xN.Defn
|
|
|
|
|
// x1.Innermost = xN.Outer
|
|
|
|
|
//
|
|
|
|
|
// We leave xN.Innermost set so that we can still get to the original
|
|
|
|
|
// variable quickly. Not shown here, but once we're
|
|
|
|
|
// done parsing a function and no longer need xN.Outer for the
|
|
|
|
|
// lexical x reference links as described above, closurebody
|
|
|
|
|
// recomputes xN.Outer as the semantic x reference link tree,
|
|
|
|
|
// even filling in x in intermediate closures that might not
|
|
|
|
|
// have mentioned it along the way to inner closures that did.
|
|
|
|
|
// See closurebody for details.
|
|
|
|
|
//
|
|
|
|
|
// During the eventual compilation, then, for closure variables we have:
|
|
|
|
|
//
|
|
|
|
|
// xN.Defn = original variable
|
|
|
|
|
// xN.Outer = variable captured in next outward scope
|
|
|
|
|
// to make closure where xN appears
|
|
|
|
|
//
|
|
|
|
|
// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
|
|
|
|
|
// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
|
|
|
|
|
Innermost *Node
|
2016-05-27 14:24:26 -04:00
|
|
|
Outer *Node
|
cmd/compile: add go:notinheap type pragma
This adds a //go:notinheap pragma for declarations of types that must
not be heap allocated. We ensure these rules by disallowing new(T),
make([]T), append([]T), or implicit allocation of T, by disallowing
conversions to notinheap types, and by propagating notinheap to any
struct or array that contains notinheap elements.
The utility of this pragma is that we can eliminate write barriers for
writes to pointers to go:notinheap types, since the write barrier is
guaranteed to be a no-op. This will let us mark several scheduler and
memory allocator structures as go:notinheap, which will let us
disallow write barriers in the scheduler and memory allocator much
more thoroughly and also eliminate some problematic hybrid write
barriers.
This also makes go:nowritebarrierrec and go:yeswritebarrierrec much
more powerful. Currently we use go:nowritebarrier all over the place,
but it's almost never what you actually want: when write barriers are
illegal, they're typically illegal for a whole dynamic scope. Partly
this is because go:nowritebarrier has been around longer, but it's
also because go:nowritebarrierrec couldn't be used in situations that
had no-op write barriers or where some nested scope did allow write
barriers. go:notinheap eliminates many no-op write barriers and
go:yeswritebarrierrec makes it possible to opt back in to write
barriers, so these two changes will let us use go:nowritebarrierrec
far more liberally.
This updates #13386, which is about controlling pointers from non-GC'd
memory to GC'd memory. That would require some additional pragma (or
pragmas), but could build on this pragma.
Change-Id: I6314f8f4181535dd166887c9ec239977b54940bd
Reviewed-on: https://go-review.googlesource.com/30939
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2016-10-11 22:53:27 -04:00
|
|
|
|
2017-01-11 11:24:35 -08:00
|
|
|
// OTYPE
|
cmd/compile: add go:notinheap type pragma
This adds a //go:notinheap pragma for declarations of types that must
not be heap allocated. We ensure these rules by disallowing new(T),
make([]T), append([]T), or implicit allocation of T, by disallowing
conversions to notinheap types, and by propagating notinheap to any
struct or array that contains notinheap elements.
The utility of this pragma is that we can eliminate write barriers for
writes to pointers to go:notinheap types, since the write barrier is
guaranteed to be a no-op. This will let us mark several scheduler and
memory allocator structures as go:notinheap, which will let us
disallow write barriers in the scheduler and memory allocator much
more thoroughly and also eliminate some problematic hybrid write
barriers.
This also makes go:nowritebarrierrec and go:yeswritebarrierrec much
more powerful. Currently we use go:nowritebarrier all over the place,
but it's almost never what you actually want: when write barriers are
illegal, they're typically illegal for a whole dynamic scope. Partly
this is because go:nowritebarrier has been around longer, but it's
also because go:nowritebarrierrec couldn't be used in situations that
had no-op write barriers or where some nested scope did allow write
barriers. go:notinheap eliminates many no-op write barriers and
go:yeswritebarrierrec makes it possible to opt back in to write
barriers, so these two changes will let us use go:nowritebarrierrec
far more liberally.
This updates #13386, which is about controlling pointers from non-GC'd
memory to GC'd memory. That would require some additional pragma (or
pragmas), but could build on this pragma.
Change-Id: I6314f8f4181535dd166887c9ec239977b54940bd
Reviewed-on: https://go-review.googlesource.com/30939
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2016-10-11 22:53:27 -04:00
|
|
|
//
|
|
|
|
|
// TODO: Should Func pragmas also be stored on the Name?
|
2017-01-11 15:48:30 -08:00
|
|
|
Pragma syntax.Pragma
|
2017-01-12 15:21:21 -08:00
|
|
|
Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
|
2015-05-18 10:27:59 -07:00
|
|
|
}
|
|
|
|
|
|
2015-03-10 21:37:13 -07:00
|
|
|
// Func holds Node fields used only with function-like nodes.
|
|
|
|
|
type Func struct {
|
2017-01-23 13:40:25 -08:00
|
|
|
Shortname *Sym
|
2016-10-03 16:09:13 -07:00
|
|
|
Enter Nodes // for example, allocate and initialize memory for escaping parameters
|
|
|
|
|
Exit Nodes
|
|
|
|
|
Cvars Nodes // closure params
|
|
|
|
|
Dcl []*Node // autodcl for this func/closure
|
|
|
|
|
Inldcl Nodes // copy of dcl for use in inlining
|
|
|
|
|
Closgen int
|
|
|
|
|
Outerfunc *Node // outer function (for closure)
|
|
|
|
|
FieldTrack map[*Sym]struct{}
|
|
|
|
|
Ntype *Node // signature
|
|
|
|
|
Top int // top context (Ecall, Eproc, etc)
|
|
|
|
|
Closure *Node // OCLOSURE <-> ODCLFUNC
|
|
|
|
|
Nname *Node
|
2015-03-10 21:37:13 -07:00
|
|
|
|
2016-02-27 14:31:33 -08:00
|
|
|
Inl Nodes // copy of the body for use in inlining
|
2015-03-10 21:37:13 -07:00
|
|
|
InlCost int32
|
2015-05-27 00:44:05 -04:00
|
|
|
Depth int32
|
2015-03-10 21:37:13 -07:00
|
|
|
|
2016-06-01 10:15:02 -07:00
|
|
|
Label int32 // largest auto-generated label in this function
|
|
|
|
|
|
2016-12-15 17:17:01 -08:00
|
|
|
Endlineno src.XPos
|
|
|
|
|
WBPos src.XPos // position of first write barrier
|
2015-03-10 21:37:13 -07:00
|
|
|
|
2017-01-11 15:48:30 -08:00
|
|
|
Pragma syntax.Pragma // go:xxx function annotations
|
|
|
|
|
Dupok bool // duplicate definitions ok
|
|
|
|
|
Wrapper bool // is method wrapper
|
|
|
|
|
Needctxt bool // function uses context register (has closure variables)
|
|
|
|
|
ReflectMethod bool // function calls reflect.Type.Method or MethodByName
|
2016-10-26 22:23:32 -07:00
|
|
|
IsHiddenClosure bool
|
2016-11-30 16:15:32 -08:00
|
|
|
NoFramePointer bool // Must not use a frame pointer for this function
|
2015-03-05 10:45:56 -05:00
|
|
|
}
|
|
|
|
|
|
2015-09-24 23:21:18 +02:00
|
|
|
type Op uint8
|
|
|
|
|
|
2015-03-05 10:45:56 -05:00
|
|
|
// Node ops.
|
|
|
|
|
const (
|
2015-09-24 23:21:18 +02:00
|
|
|
OXXX = Op(iota)
|
2015-03-05 13:57:36 -05:00
|
|
|
|
|
|
|
|
// names
|
|
|
|
|
ONAME // var, const or func name
|
|
|
|
|
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
|
|
|
|
|
OTYPE // type name
|
|
|
|
|
OPACK // import
|
|
|
|
|
OLITERAL // literal
|
|
|
|
|
|
|
|
|
|
// expressions
|
2015-06-03 23:57:59 -04:00
|
|
|
OADD // Left + Right
|
|
|
|
|
OSUB // Left - Right
|
|
|
|
|
OOR // Left | Right
|
|
|
|
|
OXOR // Left ^ Right
|
2015-10-22 18:56:45 -07:00
|
|
|
OADDSTR // +{List} (string addition, list elements are strings)
|
2015-06-03 23:57:59 -04:00
|
|
|
OADDR // &Left
|
|
|
|
|
OANDAND // Left && Right
|
|
|
|
|
OAPPEND // append(List)
|
|
|
|
|
OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte)
|
|
|
|
|
OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
|
|
|
|
|
OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune)
|
|
|
|
|
OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string)
|
|
|
|
|
OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
|
|
|
|
|
OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string)
|
|
|
|
|
OAS // Left = Right or (if Colas=true) Left := Right
|
|
|
|
|
OAS2 // List = Rlist (x, y, z = a, b, c)
|
|
|
|
|
OAS2FUNC // List = Rlist (x, y = f())
|
|
|
|
|
OAS2RECV // List = Rlist (x, ok = <-c)
|
|
|
|
|
OAS2MAPR // List = Rlist (x, ok = m["foo"])
|
|
|
|
|
OAS2DOTTYPE // List = Rlist (x, ok = I.(int))
|
|
|
|
|
OASOP // Left Etype= Right (x += y)
|
|
|
|
|
OASWB // Left = Right (with write barrier)
|
|
|
|
|
OCALL // Left(List) (function call, method call or type conversion)
|
|
|
|
|
OCALLFUNC // Left(List) (function call f(args))
|
|
|
|
|
OCALLMETH // Left(List) (direct method call x.Method(args))
|
|
|
|
|
OCALLINTER // Left(List) (interface method call x.Method(args))
|
|
|
|
|
OCALLPART // Left.Right (method expression x.Method, not called)
|
|
|
|
|
OCAP // cap(Left)
|
|
|
|
|
OCLOSE // close(Left)
|
|
|
|
|
OCLOSURE // func Type { Body } (func literal)
|
|
|
|
|
OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y)
|
|
|
|
|
OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc)
|
|
|
|
|
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
|
|
|
|
|
OMAPLIT // Type{List} (composite literal, Type is map)
|
|
|
|
|
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
|
2016-06-19 07:20:28 -07:00
|
|
|
OARRAYLIT // Type{List} (composite literal, Type is array)
|
|
|
|
|
OSLICELIT // Type{List} (composite literal, Type is slice)
|
2015-06-03 23:57:59 -04:00
|
|
|
OPTRLIT // &Left (left is composite literal)
|
|
|
|
|
OCONV // Type(Left) (type conversion)
|
|
|
|
|
OCONVIFACE // Type(Left) (type conversion, to interface)
|
|
|
|
|
OCONVNOP // Type(Left) (type conversion, no effect)
|
|
|
|
|
OCOPY // copy(Left, Right)
|
|
|
|
|
ODCL // var Left (declares Left of type Left.Type)
|
|
|
|
|
|
|
|
|
|
// Used during parsing but don't last.
|
|
|
|
|
ODCLFUNC // func f() or func (r) f()
|
|
|
|
|
ODCLFIELD // struct field, interface field, or func/method argument/return value.
|
|
|
|
|
ODCLCONST // const pi = 3.14
|
2017-01-11 11:24:35 -08:00
|
|
|
ODCLTYPE // type Int int or type Int = int
|
2015-06-03 23:57:59 -04:00
|
|
|
|
|
|
|
|
ODELETE // delete(Left, Right)
|
cmd/compile: change ODOT and friends to use Sym, not Right
The Node type ODOT and its variants all represent a selector, with a
simple name to the right of the dot. Before this change this was
represented by using an ONAME Node in the Right field. This ONAME node
served no useful purpose. This CL changes these Node types to store the
symbol in the Sym field instead, thus not requiring allocating a Node
for each selector.
When compiling x/tools/go/types this CL eliminates nearly 5000 calls to
newname and reduces the total number of Nodes allocated by about 6.6%.
It seems to cut compilation time by 1 to 2 percent.
Getting this right was somewhat subtle, and I added two dubious changes
to produce the exact same output as before. One is to ishairy in
inl.go: the ONAME node increased the cost of ODOT and friends by 1, and
I retained that, although really ODOT is not more expensive than any
other node. The other is to varexpr in walk.go: because the ONAME in
the Right field of an ODOT has no class, varexpr would always return
false for an ODOT, although in fact for some ODOT's it seemingly ought
to return true; I added an && false for now. I will send separate CLs,
that will break toolstash -cmp, to clean these up.
This CL passes toolstash -cmp.
Change-Id: I4af8a10cc59078c436130ce472f25abc3a9b2f80
Reviewed-on: https://go-review.googlesource.com/20890
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-03-18 16:52:30 -07:00
|
|
|
ODOT // Left.Sym (Left is of struct type)
|
|
|
|
|
ODOTPTR // Left.Sym (Left is of pointer to struct type)
|
|
|
|
|
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
|
|
|
|
|
ODOTINTER // Left.Sym (Left is interface, Right is method name)
|
|
|
|
|
OXDOT // Left.Sym (before rewrite to one of the preceding)
|
2015-06-03 23:57:59 -04:00
|
|
|
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved)
|
|
|
|
|
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE)
|
|
|
|
|
OEQ // Left == Right
|
|
|
|
|
ONE // Left != Right
|
|
|
|
|
OLT // Left < Right
|
|
|
|
|
OLE // Left <= Right
|
|
|
|
|
OGE // Left >= Right
|
|
|
|
|
OGT // Left > Right
|
|
|
|
|
OIND // *Left
|
|
|
|
|
OINDEX // Left[Right] (index of array or slice)
|
|
|
|
|
OINDEXMAP // Left[Right] (index of map)
|
2016-10-27 02:02:30 -07:00
|
|
|
OKEY // Left:Right (key:value in struct/array/map literal)
|
2016-10-12 17:39:28 -07:00
|
|
|
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
|
2015-06-03 23:57:59 -04:00
|
|
|
OLEN // len(Left)
|
|
|
|
|
OMAKE // make(List) (before type checking converts to one of the following)
|
|
|
|
|
OMAKECHAN // make(Type, Left) (type is chan)
|
|
|
|
|
OMAKEMAP // make(Type, Left) (type is map)
|
|
|
|
|
OMAKESLICE // make(Type, Left, Right) (type is slice)
|
|
|
|
|
OMUL // Left * Right
|
|
|
|
|
ODIV // Left / Right
|
|
|
|
|
OMOD // Left % Right
|
|
|
|
|
OLSH // Left << Right
|
|
|
|
|
ORSH // Left >> Right
|
|
|
|
|
OAND // Left & Right
|
|
|
|
|
OANDNOT // Left &^ Right
|
|
|
|
|
ONEW // new(Left)
|
|
|
|
|
ONOT // !Left
|
|
|
|
|
OCOM // ^Left
|
|
|
|
|
OPLUS // +Left
|
|
|
|
|
OMINUS // -Left
|
|
|
|
|
OOROR // Left || Right
|
|
|
|
|
OPANIC // panic(Left)
|
|
|
|
|
OPRINT // print(List)
|
|
|
|
|
OPRINTN // println(List)
|
|
|
|
|
OPAREN // (Left)
|
|
|
|
|
OSEND // Left <- Right
|
2016-04-21 19:35:26 -07:00
|
|
|
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
|
|
|
|
|
OSLICEARR // Left[List[0] : List[1]] (Left is array)
|
|
|
|
|
OSLICESTR // Left[List[0] : List[1]] (Left is string)
|
|
|
|
|
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
|
|
|
|
|
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
|
2015-06-03 23:57:59 -04:00
|
|
|
ORECOVER // recover()
|
|
|
|
|
ORECV // <-Left
|
|
|
|
|
ORUNESTR // Type(Left) (Type is string, Left is rune)
|
|
|
|
|
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
|
|
|
|
|
OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
|
|
|
|
|
OIOTA // iota
|
|
|
|
|
OREAL // real(Left)
|
|
|
|
|
OIMAG // imag(Left)
|
|
|
|
|
OCOMPLEX // complex(Left, Right)
|
2016-10-18 14:17:05 -07:00
|
|
|
OALIGNOF // unsafe.Alignof(Left)
|
|
|
|
|
OOFFSETOF // unsafe.Offsetof(Left)
|
|
|
|
|
OSIZEOF // unsafe.Sizeof(Left)
|
2015-03-05 13:57:36 -05:00
|
|
|
|
|
|
|
|
// statements
|
2015-06-03 23:57:59 -04:00
|
|
|
OBLOCK // { List } (block of code)
|
2015-03-05 13:57:36 -05:00
|
|
|
OBREAK // break
|
cmd/compile: recognize integer ranges in switch statements
Consider a switch statement like:
switch x {
case 1:
// ...
case 2, 3, 4, 5, 6:
// ...
case 5:
// ...
}
Prior to this CL, the generated code treated
2, 3, 4, 5, and 6 independently in a binary search.
With this CL, the generated code checks whether
2 <= x && x <= 6.
walkinrange then optimizes that range check
into a single unsigned comparison.
Experiments suggest that the best min range size
is 2, using binary size as a proxy for optimization.
Binary sizes before/after this CL:
cmd/compile: 14209728 / 14165360
cmd/go: 9543100 / 9539004
Change-Id: If2f7fb97ca80468fa70351ef540866200c4c996c
Reviewed-on: https://go-review.googlesource.com/26770
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2016-06-17 16:27:23 -07:00
|
|
|
OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
|
2015-06-03 23:57:59 -04:00
|
|
|
OXCASE // case List: Nbody (select case before processing; List==nil means default)
|
2015-03-05 13:57:36 -05:00
|
|
|
OCONTINUE // continue
|
2015-06-03 23:57:59 -04:00
|
|
|
ODEFER // defer Left (Left must be call)
|
|
|
|
|
OEMPTY // no-op (empty statement)
|
|
|
|
|
OFALL // fallthrough (after processing)
|
|
|
|
|
OXFALL // fallthrough (before processing)
|
|
|
|
|
OFOR // for Ninit; Left; Right { Nbody }
|
|
|
|
|
OGOTO // goto Left
|
|
|
|
|
OIF // if Ninit; Left { Nbody } else { Rlist }
|
|
|
|
|
OLABEL // Left:
|
|
|
|
|
OPROC // go Left (Left must be call)
|
|
|
|
|
ORANGE // for List = range Right { Nbody }
|
|
|
|
|
ORETURN // return List
|
|
|
|
|
OSELECT // select { List } (List is list of OXCASE or OCASE)
|
|
|
|
|
OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
|
|
|
|
|
OTYPESW // List = Left.(type) (appears as .Left of OSWITCH)
|
2015-03-05 13:57:36 -05:00
|
|
|
|
|
|
|
|
// types
|
|
|
|
|
OTCHAN // chan int
|
|
|
|
|
OTMAP // map[string]int
|
|
|
|
|
OTSTRUCT // struct{}
|
|
|
|
|
OTINTER // interface{}
|
|
|
|
|
OTFUNC // func()
|
|
|
|
|
OTARRAY // []int, [8]int, [N]int or [...]int
|
|
|
|
|
|
|
|
|
|
// misc
|
|
|
|
|
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
|
|
|
|
|
ODDDARG // func f(args ...int), introduced by escape analysis.
|
|
|
|
|
OINLCALL // intermediary representation of an inlined call.
|
|
|
|
|
OEFACE // itable and data words of an empty-interface value.
|
|
|
|
|
OITAB // itable word of an interface value.
|
2016-10-25 06:46:51 -07:00
|
|
|
OIDATA // data word of an interface value in Left
|
2015-03-05 13:57:36 -05:00
|
|
|
OSPTR // base pointer of a slice or string.
|
|
|
|
|
OCLOSUREVAR // variable reference at beginning of closure function
|
|
|
|
|
OCFUNC // reference to c function pointer (not go func value)
|
|
|
|
|
OCHECKNIL // emit code to ensure pointer/interface not nil
|
|
|
|
|
OVARKILL // variable is dead
|
cmd/compile: recognize Syscall-like functions for liveness analysis
Consider this code:
func f(*int)
func g() {
p := new(int)
f(p)
}
where f is an assembly function.
In general liveness analysis assumes that during the call to f, p is dead
in this frame. If f has retained p, p will be found alive in f's frame and keep
the new(int) from being garbage collected. This is all correct and works.
We use the Go func declaration for f to give the assembly function
liveness information (the arguments are assumed live for the entire call).
Now consider this code:
func h1() {
p := new(int)
syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p)))
}
Here syscall.Syscall is taking the place of f, but because its arguments
are uintptr, the liveness analysis and the garbage collector ignore them.
Since p is no longer live in h once the call starts, if the garbage collector
scans the stack while the system call is blocked, it will find no reference
to the new(int) and reclaim it. If the kernel is going to write to *p once
the call finishes, reclaiming the memory is a mistake.
We can't change the arguments or the liveness information for
syscall.Syscall itself, both for compatibility and because sometimes the
arguments really are integers, and the garbage collector will get quite upset
if it finds an integer where it expects a pointer. The problem is that
these arguments are fundamentally untyped.
The solution we have taken in the syscall package's wrappers in past
releases is to insert a call to a dummy function named "use", to make
it look like the argument is live during the call to syscall.Syscall:
func h2() {
p := new(int)
syscall.Syscall(1, 2, 3, uintptr(unsafe.Pointer(p)))
use(unsafe.Pointer(p))
}
Keeping p alive during the call means that if the garbage collector
scans the stack during the system call now, it will find the reference to p.
Unfortunately, this approach is not available to users outside syscall,
because 'use' is unexported, and people also have to realize they need
to use it and do so. There is much existing code using syscall.Syscall
without a 'use'-like function. That code will fail very occasionally in
mysterious ways (see #13372).
This CL fixes all that existing code by making the compiler do the right
thing automatically, without any code modifications. That is, it takes h1
above, which is incorrect code today, and makes it correct code.
Specifically, if the compiler sees a foreign func definition (one
without a body) that has uintptr arguments, it marks those arguments
as "unsafe uintptrs". If it later sees the function being called
with uintptr(unsafe.Pointer(x)) as an argument, it arranges to mark x
as having escaped, and it makes sure to hold x in a live temporary
variable until the call returns, so that the garbage collector cannot
reclaim whatever heap memory x points to.
For now I am leaving the explicit calls to use in package syscall,
but they can be removed early in a future cycle (likely Go 1.7).
The rule has no effect on escape analysis, only on liveness analysis.
Fixes #13372.
Change-Id: I2addb83f70d08db08c64d394f9d06ff0a063c500
Reviewed-on: https://go-review.googlesource.com/18584
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-13 00:46:28 -05:00
|
|
|
OVARLIVE // variable is alive
|
2016-10-24 14:33:22 -07:00
|
|
|
OINDREGSP // offset plus indirect of REGSP, such as 8(SP).
|
2015-03-05 13:57:36 -05:00
|
|
|
|
2015-04-01 16:02:34 -04:00
|
|
|
// arch-specific opcodes
|
2015-03-05 13:57:36 -05:00
|
|
|
OCMP // compare: ACMP.
|
|
|
|
|
ODEC // decrement: ADEC.
|
|
|
|
|
OINC // increment: AINC.
|
|
|
|
|
OEXTEND // extend: ACWD/ACDQ/ACQO.
|
|
|
|
|
OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
|
|
|
|
|
ORROTC // right rotate-carry: ARCR.
|
|
|
|
|
ORETJMP // return to other function
|
2015-03-18 17:26:36 -04:00
|
|
|
OPS // compare parity set (for x86 NaN check)
|
cmd/internal/gc, cmd/6g: generate boolean values without jumps
Use SETcc instructions instead of Jcc to generate boolean values.
This generates shorter, jump-free code, which may in turn enable other
peephole optimizations.
For example, given
func f(i, j int) bool {
return i == j
}
Before
"".f t=1 size=32 value=0 args=0x18 locals=0x0
0x0000 00000 (x.go:3) TEXT "".f(SB), $0-24
0x0000 00000 (x.go:3) FUNCDATA $0, gclocals·b4c25e9b09fd0cf9bb429dcefe91c353(SB)
0x0000 00000 (x.go:3) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x0000 00000 (x.go:4) MOVQ "".i+8(FP), BX
0x0005 00005 (x.go:4) MOVQ "".j+16(FP), BP
0x000a 00010 (x.go:4) CMPQ BX, BP
0x000d 00013 (x.go:4) JEQ 21
0x000f 00015 (x.go:4) MOVB $0, "".~r2+24(FP)
0x0014 00020 (x.go:4) RET
0x0015 00021 (x.go:4) MOVB $1, "".~r2+24(FP)
0x001a 00026 (x.go:4) JMP 20
After
"".f t=1 size=32 value=0 args=0x18 locals=0x0
0x0000 00000 (x.go:3) TEXT "".f(SB), $0-24
0x0000 00000 (x.go:3) FUNCDATA $0, gclocals·b4c25e9b09fd0cf9bb429dcefe91c353(SB)
0x0000 00000 (x.go:3) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x0000 00000 (x.go:4) MOVQ "".i+8(FP), BX
0x0005 00005 (x.go:4) MOVQ "".j+16(FP), BP
0x000a 00010 (x.go:4) CMPQ BX, BP
0x000d 00013 (x.go:4) SETEQ "".~r2+24(FP)
0x0012 00018 (x.go:4) RET
regexp benchmarks, best of 12 runs:
benchmark old ns/op new ns/op delta
BenchmarkNotOnePassShortB 782 733 -6.27%
BenchmarkLiteral 180 171 -5.00%
BenchmarkNotLiteral 2855 2721 -4.69%
BenchmarkMatchHard_32 2672 2557 -4.30%
BenchmarkMatchHard_1K 80182 76732 -4.30%
BenchmarkMatchEasy1_32M 76440180 73304748 -4.10%
BenchmarkMatchEasy1_32K 68798 66350 -3.56%
BenchmarkAnchoredLongMatch 482 465 -3.53%
BenchmarkMatchEasy1_1M 2373042 2292692 -3.39%
BenchmarkReplaceAll 2776 2690 -3.10%
BenchmarkNotOnePassShortA 1397 1360 -2.65%
BenchmarkMatchClass_InRange 3842 3742 -2.60%
BenchmarkMatchEasy0_32 125 122 -2.40%
BenchmarkMatchEasy0_32K 11414 11164 -2.19%
BenchmarkMatchEasy0_1K 668 654 -2.10%
BenchmarkAnchoredShortMatch 260 255 -1.92%
BenchmarkAnchoredLiteralShortNonMatch 164 161 -1.83%
BenchmarkOnePassShortB 623 612 -1.77%
BenchmarkOnePassShortA 801 788 -1.62%
BenchmarkMatchClass 4094 4033 -1.49%
BenchmarkMatchEasy0_32M 14078800 13890704 -1.34%
BenchmarkMatchHard_32K 4095844 4045820 -1.22%
BenchmarkMatchEasy1_1K 1663 1643 -1.20%
BenchmarkMatchHard_1M 131261708 129708215 -1.18%
BenchmarkMatchHard_32M 4210112412 4169292003 -0.97%
BenchmarkMatchMedium_32K 2460752 2438611 -0.90%
BenchmarkMatchEasy0_1M 422914 419672 -0.77%
BenchmarkMatchMedium_1M 78581121 78040160 -0.69%
BenchmarkMatchMedium_32M 2515287278 2498464906 -0.67%
BenchmarkMatchMedium_32 1754 1746 -0.46%
BenchmarkMatchMedium_1K 52105 52106 +0.00%
BenchmarkAnchoredLiteralLongNonMatch 185 185 +0.00%
BenchmarkMatchEasy1_32 107 107 +0.00%
BenchmarkOnePassLongNotPrefix 505 505 +0.00%
BenchmarkOnePassLongPrefix 147 147 +0.00%
The godoc binary is ~0.12% smaller after this CL.
Updates #5729.
toolstash -cmp passes for all architectures other than amd64 and amd64p32.
Other architectures can be done in follow-up CLs.
Change-Id: I0e167e259274b722958567fc0af83a17ca002da7
Reviewed-on: https://go-review.googlesource.com/2284
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-08 09:54:15 -07:00
|
|
|
OPC // compare parity clear (for x86 NaN check)
|
2015-04-03 12:23:28 -04:00
|
|
|
OGETG // runtime.getg() (read g pointer)
|
2015-03-05 13:57:36 -05:00
|
|
|
|
2015-03-05 10:45:56 -05:00
|
|
|
OEND
|
|
|
|
|
)
|
|
|
|
|
|
2016-02-26 14:28:48 -08:00
|
|
|
// Nodes is a pointer to a slice of *Node.
|
|
|
|
|
// For fields that are not used in most nodes, this is used instead of
|
|
|
|
|
// a slice to save space.
|
|
|
|
|
type Nodes struct{ slice *[]*Node }
|
|
|
|
|
|
|
|
|
|
// Slice returns the entries in Nodes as a slice.
|
|
|
|
|
// Changes to the slice entries (as in s[i] = n) will be reflected in
|
|
|
|
|
// the Nodes.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) Slice() []*Node {
|
2016-02-26 14:28:48 -08:00
|
|
|
if n.slice == nil {
|
|
|
|
|
return nil
|
|
|
|
|
}
|
|
|
|
|
return *n.slice
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-08 15:10:26 -08:00
|
|
|
// Len returns the number of entries in Nodes.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) Len() int {
|
2016-03-08 15:10:26 -08:00
|
|
|
if n.slice == nil {
|
|
|
|
|
return 0
|
|
|
|
|
}
|
|
|
|
|
return len(*n.slice)
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-09 12:39:36 -08:00
|
|
|
// Index returns the i'th element of Nodes.
|
|
|
|
|
// It panics if n does not have at least i+1 elements.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) Index(i int) *Node {
|
2016-03-09 12:39:36 -08:00
|
|
|
return (*n.slice)[i]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// First returns the first element of Nodes (same as n.Index(0)).
|
|
|
|
|
// It panics if n has no elements.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) First() *Node {
|
2016-03-08 15:10:26 -08:00
|
|
|
return (*n.slice)[0]
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-09 12:39:36 -08:00
|
|
|
// Second returns the second element of Nodes (same as n.Index(1)).
|
|
|
|
|
// It panics if n has fewer than two elements.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) Second() *Node {
|
2016-03-08 15:10:26 -08:00
|
|
|
return (*n.slice)[1]
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-09 12:39:36 -08:00
|
|
|
// Set sets n to a slice.
|
2016-02-26 14:28:48 -08:00
|
|
|
// This takes ownership of the slice.
|
|
|
|
|
func (n *Nodes) Set(s []*Node) {
|
|
|
|
|
if len(s) == 0 {
|
|
|
|
|
n.slice = nil
|
|
|
|
|
} else {
|
2016-03-28 14:12:10 -07:00
|
|
|
// Copy s and take address of t rather than s to avoid
|
|
|
|
|
// allocation in the case where len(s) == 0 (which is
|
|
|
|
|
// over 3x more common, dynamically, for make.bash).
|
|
|
|
|
t := s
|
|
|
|
|
n.slice = &t
|
2016-02-26 14:28:48 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-10 10:13:42 -08:00
|
|
|
// Set1 sets n to a slice containing a single node.
|
|
|
|
|
func (n *Nodes) Set1(node *Node) {
|
|
|
|
|
n.slice = &[]*Node{node}
|
|
|
|
|
}
|
|
|
|
|
|
2016-05-29 11:16:13 -07:00
|
|
|
// Set2 sets n to a slice containing two nodes.
|
|
|
|
|
func (n *Nodes) Set2(n1, n2 *Node) {
|
|
|
|
|
n.slice = &[]*Node{n1, n2}
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-09 12:39:36 -08:00
|
|
|
// MoveNodes sets n to the contents of n2, then clears n2.
|
|
|
|
|
func (n *Nodes) MoveNodes(n2 *Nodes) {
|
|
|
|
|
n.slice = n2.slice
|
|
|
|
|
n2.slice = nil
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// SetIndex sets the i'th element of Nodes to node.
|
|
|
|
|
// It panics if n does not have at least i+1 elements.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) SetIndex(i int, node *Node) {
|
2016-03-09 12:39:36 -08:00
|
|
|
(*n.slice)[i] = node
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Addr returns the address of the i'th element of Nodes.
|
|
|
|
|
// It panics if n does not have at least i+1 elements.
|
2016-03-23 15:27:23 -07:00
|
|
|
func (n Nodes) Addr(i int) **Node {
|
2016-03-09 12:39:36 -08:00
|
|
|
return &(*n.slice)[i]
|
|
|
|
|
}
|
|
|
|
|
|
2016-02-26 14:28:48 -08:00
|
|
|
// Append appends entries to Nodes.
|
|
|
|
|
// If a slice is passed in, this will take ownership of it.
|
|
|
|
|
func (n *Nodes) Append(a ...*Node) {
|
2016-09-14 13:19:20 -07:00
|
|
|
if len(a) == 0 {
|
|
|
|
|
return
|
|
|
|
|
}
|
2016-02-26 14:28:48 -08:00
|
|
|
if n.slice == nil {
|
2016-09-14 13:19:20 -07:00
|
|
|
n.slice = &a
|
2016-02-26 14:28:48 -08:00
|
|
|
} else {
|
|
|
|
|
*n.slice = append(*n.slice, a...)
|
|
|
|
|
}
|
|
|
|
|
}
|
2016-02-27 14:31:33 -08:00
|
|
|
|
2016-09-14 13:19:20 -07:00
|
|
|
// Prepend prepends entries to Nodes.
|
|
|
|
|
// If a slice is passed in, this will take ownership of it.
|
|
|
|
|
func (n *Nodes) Prepend(a ...*Node) {
|
|
|
|
|
if len(a) == 0 {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
if n.slice == nil {
|
|
|
|
|
n.slice = &a
|
|
|
|
|
} else {
|
|
|
|
|
*n.slice = append(a, *n.slice...)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-07 22:54:46 -08:00
|
|
|
// AppendNodes appends the contents of *n2 to n, then clears n2.
|
|
|
|
|
func (n *Nodes) AppendNodes(n2 *Nodes) {
|
|
|
|
|
switch {
|
|
|
|
|
case n2.slice == nil:
|
|
|
|
|
case n.slice == nil:
|
|
|
|
|
n.slice = n2.slice
|
|
|
|
|
default:
|
|
|
|
|
*n.slice = append(*n.slice, *n2.slice...)
|
|
|
|
|
}
|
|
|
|
|
n2.slice = nil
|
|
|
|
|
}
|