go/src/os/file_windows.go

522 lines
14 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package os
import (
"errors"
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
"internal/poll"
"internal/syscall/windows"
"runtime"
"syscall"
"unicode/utf16"
"unsafe"
)
// file is the real representation of *File.
// The extra level of indirection ensures that no clients of os
// can overwrite this data, which could cause the finalizer
// to close the wrong file descriptor.
type file struct {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
pfd poll.FD
name string
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
dirinfo *dirInfo // nil unless directory being read
}
// Fd returns the Windows handle referencing the open file.
// The handle is valid only until f.Close is called or f is garbage collected.
os: calling Fd disables the SetDeadline methods The full truth seems too complicated to write in this method's doc, so I'm going with a simple half truth. The full truth is that Fd returns the descriptor in blocking mode, because that is historically how it worked, and existing programs would be surprised if the descriptor is suddenly non-blocking. On Unix systems whether a file is non-blocking or not is a property of the underlying file description, not of a particular file descriptor, so changing the returned descriptor to blocking mode also changes the existing File to blocking mode. Blocking mode works fine, althoug I/O operations now take up a thread. SetDeadline and friends rely on the runtime poller, and the runtime poller only works if the descriptor is non-blocking. So it's correct that calling Fd disables SetDeadline. The other half of the truth is that if the program is willing to work with a non-blocking descriptor, it could call syscall.SetNonblock(descriptor, true) to change the descriptor, and the original File, to non-blocking mode. At that point SetDeadline would start working again. I tried to write that in a way that is short and comprehensible but failed. Since deadlines mostly work on pipes, and there isn't much reason to call Fd on a pipe, and few people use SetDeadline, I decided to punt. Fixes #22934 Change-Id: I2e49e036f0bcf71f5365193831696f9e4120527c Reviewed-on: https://go-review.googlesource.com/81636 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2017-12-01 16:55:46 -08:00
// On Unix systems this will cause the SetDeadline methods to stop working.
func (file *File) Fd() uintptr {
if file == nil {
return uintptr(syscall.InvalidHandle)
}
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
return uintptr(file.pfd.Sysfd)
}
// newFile returns a new File with the given file handle and name.
// Unlike NewFile, it does not check that h is syscall.InvalidHandle.
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
func newFile(h syscall.Handle, name string, kind string) *File {
if kind == "file" {
var m uint32
if syscall.GetConsoleMode(h, &m) == nil {
kind = "console"
}
if t, err := syscall.GetFileType(h); err == nil && t == syscall.FILE_TYPE_PIPE {
kind = "pipe"
}
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
}
f := &File{&file{
pfd: poll.FD{
Sysfd: h,
IsStream: true,
ZeroReadIsEOF: true,
},
name: name,
}}
runtime.SetFinalizer(f.file, (*file).close)
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
// Ignore initialization errors.
// Assume any problems will show up in later I/O.
f.pfd.Init(kind, false)
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
return f
}
os: make readConsole handle its input and output correctly This CL introduces first test for readConsole. And new test discovered couple of problems with readConsole. Console characters consist of multiple bytes each, but byte blocks returned by syscall.ReadFile have no character boundaries. Some multi-byte characters might start at the end of one block, and end at the start of next block. readConsole feeds these blocks to syscall.MultiByteToWideChar to convert them into utf16, but if some multi-byte characters have no ending or starting bytes, the syscall.MultiByteToWideChar might get confused. Current version of syscall.MultiByteToWideChar call will make syscall.MultiByteToWideChar ignore all these not complete multi-byte characters. The CL solves this issue by changing processing from "randomly sized block of bytes at a time" to "one multi-byte character at a time". New readConsole code calls syscall.ReadFile to get 1 byte first. Then it feeds this byte to syscall.MultiByteToWideChar. The new syscall.MultiByteToWideChar call uses MB_ERR_INVALID_CHARS flag to make syscall.MultiByteToWideChar return error if input is not complete character. If syscall.MultiByteToWideChar returns correspondent error, we read another byte and pass 2 byte buffer into syscall.MultiByteToWideChar, and so on until success. Old readConsole code would also sometimes return no data if user buffer was smaller then uint16 size, which would confuse callers that supply 1 byte buffer. This CL fixes that problem too. Fixes #17097 Change-Id: I88136cdf6a7bf3aed5fbb9ad2c759b6c0304ce30 Reviewed-on: https://go-review.googlesource.com/29493 Run-TryBot: Alex Brainman <alex.brainman@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2016-09-21 11:19:36 +10:00
// newConsoleFile creates new File that will be used as console.
func newConsoleFile(h syscall.Handle, name string) *File {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
return newFile(h, name, "console")
os: make readConsole handle its input and output correctly This CL introduces first test for readConsole. And new test discovered couple of problems with readConsole. Console characters consist of multiple bytes each, but byte blocks returned by syscall.ReadFile have no character boundaries. Some multi-byte characters might start at the end of one block, and end at the start of next block. readConsole feeds these blocks to syscall.MultiByteToWideChar to convert them into utf16, but if some multi-byte characters have no ending or starting bytes, the syscall.MultiByteToWideChar might get confused. Current version of syscall.MultiByteToWideChar call will make syscall.MultiByteToWideChar ignore all these not complete multi-byte characters. The CL solves this issue by changing processing from "randomly sized block of bytes at a time" to "one multi-byte character at a time". New readConsole code calls syscall.ReadFile to get 1 byte first. Then it feeds this byte to syscall.MultiByteToWideChar. The new syscall.MultiByteToWideChar call uses MB_ERR_INVALID_CHARS flag to make syscall.MultiByteToWideChar return error if input is not complete character. If syscall.MultiByteToWideChar returns correspondent error, we read another byte and pass 2 byte buffer into syscall.MultiByteToWideChar, and so on until success. Old readConsole code would also sometimes return no data if user buffer was smaller then uint16 size, which would confuse callers that supply 1 byte buffer. This CL fixes that problem too. Fixes #17097 Change-Id: I88136cdf6a7bf3aed5fbb9ad2c759b6c0304ce30 Reviewed-on: https://go-review.googlesource.com/29493 Run-TryBot: Alex Brainman <alex.brainman@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2016-09-21 11:19:36 +10:00
}
// NewFile returns a new File with the given file descriptor and
// name. The returned value will be nil if fd is not a valid file
// descriptor.
func NewFile(fd uintptr, name string) *File {
h := syscall.Handle(fd)
if h == syscall.InvalidHandle {
return nil
}
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
return newFile(h, name, "file")
}
// Auxiliary information if the File describes a directory
type dirInfo struct {
data syscall.Win32finddata
needdata bool
path string
isempty bool // set if FindFirstFile returns ERROR_FILE_NOT_FOUND
}
func epipecheck(file *File, e error) {
}
// DevNull is the name of the operating system's ``null device.''
// On Unix-like systems, it is "/dev/null"; on Windows, "NUL".
const DevNull = "NUL"
func (f *file) isdir() bool { return f != nil && f.dirinfo != nil }
func openFile(name string, flag int, perm FileMode) (file *File, err error) {
r, e := syscall.Open(fixLongPath(name), flag|syscall.O_CLOEXEC, syscallMode(perm))
if e != nil {
return nil, e
}
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
return newFile(r, name, "file"), nil
}
func openDir(name string) (file *File, err error) {
var mask string
path := fixLongPath(name)
if len(path) == 2 && path[1] == ':' || (len(path) > 0 && path[len(path)-1] == '\\') { // it is a drive letter, like C:
mask = path + `*`
} else {
mask = path + `\*`
}
maskp, e := syscall.UTF16PtrFromString(mask)
if e != nil {
return nil, e
}
d := new(dirInfo)
r, e := syscall.FindFirstFile(maskp, &d.data)
if e != nil {
// FindFirstFile returns ERROR_FILE_NOT_FOUND when
// no matching files can be found. Then, if directory
// exists, we should proceed.
if e != syscall.ERROR_FILE_NOT_FOUND {
return nil, e
}
var fa syscall.Win32FileAttributeData
pathp, e := syscall.UTF16PtrFromString(path)
if e != nil {
return nil, e
}
e = syscall.GetFileAttributesEx(pathp, syscall.GetFileExInfoStandard, (*byte)(unsafe.Pointer(&fa)))
if e != nil {
return nil, e
}
if fa.FileAttributes&syscall.FILE_ATTRIBUTE_DIRECTORY == 0 {
return nil, e
}
d.isempty = true
}
d.path = path
if !isAbs(d.path) {
d.path, e = syscall.FullPath(d.path)
if e != nil {
return nil, e
}
}
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
f := newFile(r, name, "dir")
f.dirinfo = d
return f, nil
}
// openFileNolog is the Windows implementation of OpenFile.
func openFileNolog(name string, flag int, perm FileMode) (*File, error) {
if name == "" {
return nil, &PathError{"open", name, syscall.ENOENT}
}
r, errf := openFile(name, flag, perm)
if errf == nil {
return r, nil
}
r, errd := openDir(name)
if errd == nil {
if flag&O_WRONLY != 0 || flag&O_RDWR != 0 {
r.Close()
return nil, &PathError{"open", name, syscall.EISDIR}
}
return r, nil
}
return nil, &PathError{"open", name, errf}
}
// Close closes the File, rendering it unusable for I/O.
// On files that support SetDeadline, any pending I/O operations will
// be canceled and return immediately with an error.
func (file *File) Close() error {
if file == nil {
return ErrInvalid
}
return file.file.close()
}
func (file *file) close() error {
if file == nil {
return syscall.EINVAL
}
if file.isdir() && file.dirinfo.isempty {
// "special" empty directories
return nil
}
var err error
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
if e := file.pfd.Close(); e != nil {
if e == poll.ErrFileClosing {
e = ErrClosed
}
err = &PathError{"close", file.name, e}
}
// no need for a finalizer anymore
runtime.SetFinalizer(file, nil)
return err
}
// read reads up to len(b) bytes from the File.
// It returns the number of bytes read and an error, if any.
func (f *File) read(b []byte) (n int, err error) {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
n, err = f.pfd.Read(b)
runtime.KeepAlive(f)
return n, err
}
// pread reads len(b) bytes from the File starting at byte offset off.
// It returns the number of bytes read and the error, if any.
// EOF is signaled by a zero count with err set to 0.
func (f *File) pread(b []byte, off int64) (n int, err error) {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
n, err = f.pfd.Pread(b, off)
runtime.KeepAlive(f)
return n, err
}
// write writes len(b) bytes to the File.
// It returns the number of bytes written and an error, if any.
func (f *File) write(b []byte) (n int, err error) {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
n, err = f.pfd.Write(b)
runtime.KeepAlive(f)
return n, err
}
// pwrite writes len(b) bytes to the File starting at byte offset off.
// It returns the number of bytes written and an error, if any.
func (f *File) pwrite(b []byte, off int64) (n int, err error) {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
n, err = f.pfd.Pwrite(b, off)
runtime.KeepAlive(f)
return n, err
}
// seek sets the offset for the next Read or Write on file to offset, interpreted
// according to whence: 0 means relative to the origin of the file, 1 means
// relative to the current offset, and 2 means relative to the end.
// It returns the new offset and an error, if any.
func (f *File) seek(offset int64, whence int) (ret int64, err error) {
os: use poller for file I/O This changes the os package to use the runtime poller for file I/O where possible. When a system call blocks on a pollable descriptor, the goroutine will be blocked on the poller but the thread will be released to run other goroutines. When using a non-pollable descriptor, the os package will continue to use thread-blocking system calls as before. For example, on GNU/Linux, the runtime poller uses epoll. epoll does not support ordinary disk files, so they will continue to use blocking I/O as before. The poller will be used for pipes. Since this means that the poller is used for many more programs, this modifies the runtime to only block waiting for the poller if there is some goroutine that is waiting on the poller. Otherwise, there is no point, as the poller will never make any goroutine ready. This preserves the runtime's current simple deadlock detection. This seems to crash FreeBSD systems, so it is disabled on FreeBSD. This is issue 19093. Using the poller on Windows requires opening the file with FILE_FLAG_OVERLAPPED. We should only do that if we can remove that flag if the program calls the Fd method. This is issue 19098. Update #6817. Update #7903. Update #15021. Update #18507. Update #19093. Update #19098. Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe Reviewed-on: https://go-review.googlesource.com/36800 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-10 15:17:38 -08:00
ret, err = f.pfd.Seek(offset, whence)
runtime.KeepAlive(f)
return ret, err
}
// Truncate changes the size of the named file.
// If the file is a symbolic link, it changes the size of the link's target.
func Truncate(name string, size int64) error {
f, e := OpenFile(name, O_WRONLY|O_CREATE, 0666)
if e != nil {
return e
}
defer f.Close()
e1 := f.Truncate(size)
if e1 != nil {
return e1
}
return nil
}
// Remove removes the named file or directory.
// If there is an error, it will be of type *PathError.
func Remove(name string) error {
p, e := syscall.UTF16PtrFromString(fixLongPath(name))
if e != nil {
return &PathError{"remove", name, e}
}
// Go file interface forces us to know whether
// name is a file or directory. Try both.
e = syscall.DeleteFile(p)
if e == nil {
return nil
}
e1 := syscall.RemoveDirectory(p)
if e1 == nil {
return nil
}
// Both failed: figure out which error to return.
if e1 != e {
a, e2 := syscall.GetFileAttributes(p)
if e2 != nil {
e = e2
} else {
if a&syscall.FILE_ATTRIBUTE_DIRECTORY != 0 {
e = e1
} else if a&syscall.FILE_ATTRIBUTE_READONLY != 0 {
if e1 = syscall.SetFileAttributes(p, a&^syscall.FILE_ATTRIBUTE_READONLY); e1 == nil {
if e = syscall.DeleteFile(p); e == nil {
return nil
}
}
}
}
}
return &PathError{"remove", name, e}
}
func rename(oldname, newname string) error {
e := windows.Rename(fixLongPath(oldname), fixLongPath(newname))
if e != nil {
return &LinkError{"rename", oldname, newname, e}
}
return nil
}
// Pipe returns a connected pair of Files; reads from r return bytes written to w.
// It returns the files and an error, if any.
func Pipe() (r *File, w *File, err error) {
var p [2]syscall.Handle
e := syscall.CreatePipe(&p[0], &p[1], nil, 0)
if e != nil {
return nil, nil, NewSyscallError("pipe", e)
}
return newFile(p[0], "|0", "pipe"), newFile(p[1], "|1", "pipe"), nil
}
func tempDir() string {
n := uint32(syscall.MAX_PATH)
for {
b := make([]uint16, n)
n, _ = syscall.GetTempPath(uint32(len(b)), &b[0])
if n > uint32(len(b)) {
continue
}
if n == 3 && b[1] == ':' && b[2] == '\\' {
// Do nothing for path, like C:\.
} else if n > 0 && b[n-1] == '\\' {
// Otherwise remove terminating \.
n--
}
return string(utf16.Decode(b[:n]))
}
}
// Link creates newname as a hard link to the oldname file.
// If there is an error, it will be of type *LinkError.
func Link(oldname, newname string) error {
n, err := syscall.UTF16PtrFromString(fixLongPath(newname))
if err != nil {
return &LinkError{"link", oldname, newname, err}
}
o, err := syscall.UTF16PtrFromString(fixLongPath(oldname))
if err != nil {
return &LinkError{"link", oldname, newname, err}
}
err = syscall.CreateHardLink(n, o, 0)
if err != nil {
return &LinkError{"link", oldname, newname, err}
}
return nil
}
// Symlink creates newname as a symbolic link to oldname.
// If there is an error, it will be of type *LinkError.
func Symlink(oldname, newname string) error {
// '/' does not work in link's content
oldname = fromSlash(oldname)
// need the exact location of the oldname when it's relative to determine if it's a directory
destpath := oldname
if !isAbs(oldname) {
destpath = dirname(newname) + `\` + oldname
}
fi, err := Stat(destpath)
isdir := err == nil && fi.IsDir()
n, err := syscall.UTF16PtrFromString(fixLongPath(newname))
if err != nil {
return &LinkError{"symlink", oldname, newname, err}
}
o, err := syscall.UTF16PtrFromString(fixLongPath(oldname))
if err != nil {
return &LinkError{"symlink", oldname, newname, err}
}
var flags uint32 = windows.SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE
if isdir {
flags |= syscall.SYMBOLIC_LINK_FLAG_DIRECTORY
}
err = syscall.CreateSymbolicLink(n, o, flags)
if err != nil {
// the unprivileged create flag is unsupported
// below Windows 10 (1703, v10.0.14972). retry without it.
flags &^= windows.SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE
err = syscall.CreateSymbolicLink(n, o, flags)
}
if err != nil {
return &LinkError{"symlink", oldname, newname, err}
}
return nil
}
// openSymlink calls CreateFile Windows API with FILE_FLAG_OPEN_REPARSE_POINT
// parameter, so that Windows does not follow symlink, if path is a symlink.
// openSymlink returns opened file handle.
func openSymlink(path string) (syscall.Handle, error) {
p, err := syscall.UTF16PtrFromString(path)
if err != nil {
return 0, err
}
attrs := uint32(syscall.FILE_FLAG_BACKUP_SEMANTICS)
// Use FILE_FLAG_OPEN_REPARSE_POINT, otherwise CreateFile will follow symlink.
// See https://docs.microsoft.com/en-us/windows/desktop/FileIO/symbolic-link-effects-on-file-systems-functions#createfile-and-createfiletransacted
attrs |= syscall.FILE_FLAG_OPEN_REPARSE_POINT
h, err := syscall.CreateFile(p, 0, 0, nil, syscall.OPEN_EXISTING, attrs, 0)
if err != nil {
return 0, err
}
return h, nil
}
// normaliseLinkPath converts absolute paths returned by
// DeviceIoControl(h, FSCTL_GET_REPARSE_POINT, ...)
// into paths acceptable by all Windows APIs.
// For example, it coverts
// \??\C:\foo\bar into C:\foo\bar
// \??\UNC\foo\bar into \\foo\bar
// \??\Volume{abc}\ into C:\
func normaliseLinkPath(path string) (string, error) {
if len(path) < 4 || path[:4] != `\??\` {
// unexpected path, return it as is
return path, nil
}
// we have path that start with \??\
s := path[4:]
switch {
case len(s) >= 2 && s[1] == ':': // \??\C:\foo\bar
return s, nil
case len(s) >= 4 && s[:4] == `UNC\`: // \??\UNC\foo\bar
return `\\` + s[4:], nil
}
// handle paths, like \??\Volume{abc}\...
err := windows.LoadGetFinalPathNameByHandle()
if err != nil {
// we must be using old version of Windows
return "", err
}
h, err := openSymlink(path)
if err != nil {
return "", err
}
defer syscall.CloseHandle(h)
buf := make([]uint16, 100)
for {
n, err := windows.GetFinalPathNameByHandle(h, &buf[0], uint32(len(buf)), windows.VOLUME_NAME_DOS)
if err != nil {
return "", err
}
if n < uint32(len(buf)) {
break
}
buf = make([]uint16, n)
}
s = syscall.UTF16ToString(buf)
if len(s) > 4 && s[:4] == `\\?\` {
s = s[4:]
if len(s) > 3 && s[:3] == `UNC` {
// return path like \\server\share\...
return `\` + s[3:], nil
}
return s, nil
}
return "", errors.New("GetFinalPathNameByHandle returned unexpected path: " + s)
}
func readlink(path string) (string, error) {
h, err := openSymlink(path)
if err != nil {
return "", err
}
defer syscall.CloseHandle(h)
rdbbuf := make([]byte, syscall.MAXIMUM_REPARSE_DATA_BUFFER_SIZE)
var bytesReturned uint32
err = syscall.DeviceIoControl(h, syscall.FSCTL_GET_REPARSE_POINT, nil, 0, &rdbbuf[0], uint32(len(rdbbuf)), &bytesReturned, nil)
if err != nil {
return "", err
}
rdb := (*windows.REPARSE_DATA_BUFFER)(unsafe.Pointer(&rdbbuf[0]))
switch rdb.ReparseTag {
case syscall.IO_REPARSE_TAG_SYMLINK:
rb := (*windows.SymbolicLinkReparseBuffer)(unsafe.Pointer(&rdb.DUMMYUNIONNAME))
s := rb.Path()
if rb.Flags&windows.SYMLINK_FLAG_RELATIVE != 0 {
return s, nil
}
return normaliseLinkPath(s)
case windows.IO_REPARSE_TAG_MOUNT_POINT:
return normaliseLinkPath((*windows.MountPointReparseBuffer)(unsafe.Pointer(&rdb.DUMMYUNIONNAME)).Path())
default:
// the path is not a symlink or junction but another type of reparse
// point
return "", syscall.ENOENT
}
}
// Readlink returns the destination of the named symbolic link.
// If there is an error, it will be of type *PathError.
func Readlink(name string) (string, error) {
s, err := readlink(fixLongPath(name))
if err != nil {
return "", &PathError{"readlink", name, err}
}
return s, nil
}