go/src/cmd/compile/internal/gc/dwinl.go

450 lines
13 KiB
Go
Raw Normal View History

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/src"
"fmt"
"strings"
)
// To identify variables by original source position.
type varPos struct {
DeclName string
DeclFile string
DeclLine uint
DeclCol uint
}
// This is the main entry point for collection of raw material to
// drive generation of DWARF "inlined subroutine" DIEs. See proposal
// 22080 for more details and background info.
func assembleInlines(fnsym *obj.LSym, dwVars []*dwarf.Var) dwarf.InlCalls {
var inlcalls dwarf.InlCalls
if Debug_gendwarfinl != 0 {
Ctxt.Logf("assembling DWARF inlined routine info for %v\n", fnsym.Name)
}
// This maps inline index (from Ctxt.InlTree) to index in inlcalls.Calls
imap := make(map[int]int)
// Walk progs to build up the InlCalls data structure
var prevpos src.XPos
for p := fnsym.Func().Text; p != nil; p = p.Link {
if p.Pos == prevpos {
continue
}
ii := posInlIndex(p.Pos)
if ii >= 0 {
insertInlCall(&inlcalls, ii, imap)
}
prevpos = p.Pos
}
// This is used to partition DWARF vars by inline index. Vars not
// produced by the inliner will wind up in the vmap[0] entry.
vmap := make(map[int32][]*dwarf.Var)
// Now walk the dwarf vars and partition them based on whether they
// were produced by the inliner (dwv.InlIndex > 0) or were original
// vars/params from the function (dwv.InlIndex == 0).
for _, dwv := range dwVars {
vmap[dwv.InlIndex] = append(vmap[dwv.InlIndex], dwv)
// Zero index => var was not produced by an inline
if dwv.InlIndex == 0 {
continue
}
// Look up index in our map, then tack the var in question
// onto the vars list for the correct inlined call.
ii := int(dwv.InlIndex) - 1
idx, ok := imap[ii]
if !ok {
// We can occasionally encounter a var produced by the
// inliner for which there is no remaining prog; add a new
// entry to the call list in this scenario.
idx = insertInlCall(&inlcalls, ii, imap)
}
inlcalls.Calls[idx].InlVars =
append(inlcalls.Calls[idx].InlVars, dwv)
}
// Post process the map above to assign child indices to vars.
//
// A given variable is treated differently depending on whether it
// is part of the top-level function (ii == 0) or if it was
// produced as a result of an inline (ii != 0).
//
// If a variable was not produced by an inline and its containing
// function was not inlined, then we just assign an ordering of
// based on variable name.
//
// If a variable was not produced by an inline and its containing
// function was inlined, then we need to assign a child index
// based on the order of vars in the abstract function (in
// addition, those vars that don't appear in the abstract
// function, such as "~r1", are flagged as such).
//
// If a variable was produced by an inline, then we locate it in
// the pre-inlining decls for the target function and assign child
// index accordingly.
for ii, sl := range vmap {
var m map[varPos]int
if ii == 0 {
if !fnsym.WasInlined() {
for j, v := range sl {
v.ChildIndex = int32(j)
}
continue
}
m = makePreinlineDclMap(fnsym)
} else {
ifnlsym := Ctxt.InlTree.InlinedFunction(int(ii - 1))
m = makePreinlineDclMap(ifnlsym)
}
// Here we assign child indices to variables based on
// pre-inlined decls, and set the "IsInAbstract" flag
// appropriately. In addition: parameter and local variable
// names are given "middle dot" version numbers as part of the
// writing them out to export data (see issue 4326). If DWARF
// inlined routine generation is turned on, we want to undo
// this versioning, since DWARF variables in question will be
// parented by the inlined routine and not the top-level
// caller.
synthCount := len(m)
for _, v := range sl {
canonName := unversion(v.Name)
vp := varPos{
DeclName: canonName,
DeclFile: v.DeclFile,
DeclLine: v.DeclLine,
DeclCol: v.DeclCol,
}
synthesized := strings.HasPrefix(v.Name, "~r") || canonName == "_" || strings.HasPrefix(v.Name, "~b")
if idx, found := m[vp]; found {
v.ChildIndex = int32(idx)
v.IsInAbstract = !synthesized
v.Name = canonName
} else {
// Variable can't be found in the pre-inline dcl list.
// In the top-level case (ii=0) this can happen
// because a composite variable was split into pieces,
// and we're looking at a piece. We can also see
// return temps (~r%d) that were created during
// lowering, or unnamed params ("_").
v.ChildIndex = int32(synthCount)
synthCount++
}
}
}
// Make a second pass through the progs to compute PC ranges for
// the various inlined calls.
start := int64(-1)
curii := -1
var prevp *obj.Prog
for p := fnsym.Func().Text; p != nil; prevp, p = p, p.Link {
if prevp != nil && p.Pos == prevp.Pos {
continue
}
ii := posInlIndex(p.Pos)
if ii == curii {
continue
}
// Close out the current range
if start != -1 {
addRange(inlcalls.Calls, start, p.Pc, curii, imap)
}
// Begin new range
start = p.Pc
curii = ii
}
if start != -1 {
addRange(inlcalls.Calls, start, fnsym.Size, curii, imap)
}
// Issue 33188: if II foo is a child of II bar, then ensure that
// bar's ranges include the ranges of foo (the loop above will produce
// disjoint ranges).
for k, c := range inlcalls.Calls {
if c.Root {
unifyCallRanges(inlcalls, k)
}
}
// Debugging
if Debug_gendwarfinl != 0 {
dumpInlCalls(inlcalls)
dumpInlVars(dwVars)
}
// Perform a consistency check on inlined routine PC ranges
// produced by unifyCallRanges above. In particular, complain in
// cases where you have A -> B -> C (e.g. C is inlined into B, and
// B is inlined into A) and the ranges for B are not enclosed
// within the ranges for A, or C within B.
for k, c := range inlcalls.Calls {
if c.Root {
checkInlCall(fnsym.Name, inlcalls, fnsym.Size, k, -1)
}
}
return inlcalls
}
// Secondary hook for DWARF inlined subroutine generation. This is called
// late in the compilation when it is determined that we need an
// abstract function DIE for an inlined routine imported from a
// previously compiled package.
func genAbstractFunc(fn *obj.LSym) {
ifn := Ctxt.DwFixups.GetPrecursorFunc(fn)
if ifn == nil {
Ctxt.Diag("failed to locate precursor fn for %v", fn)
return
}
if Debug_gendwarfinl != 0 {
Ctxt.Logf("DwarfAbstractFunc(%v)\n", fn.Name)
}
[dev.regabi] cmd/compile: clean up flag handling [generated] The flag values have grown fairly haphazard, with no organization or even common naming convention. This CL moves all flag values into the Flag struct (formerly misnamed Debug), except for a few that live in Ctxt fields instead. This CL is entirely automated changes. A followup CL will make a few manual cleanups, leaving this CL completely automated and easier to regenerate during merge conflicts. Cleaning up flags is necessary because the printing routines look at some of them, and the printing routines need to move out of package gc to a new package shared by gc and any other packages that split out of gc. [git-generate] cd src/cmd/compile/internal/gc rf ' mv Debug Flag mv DebugFlags Flags mv Flags.e Flags.LowerE mv Flags.h Flags.LowerH mv Flags.j Flags.LowerJ mv Flags.l Flags.LowerL mv Flags.m Flags.LowerM mv Flags.r Flags.LowerR mv Flags.w Flags.LowerW mv Flags.P Flags.Percent mv compiling_runtime Flag.CompilingRuntime mv compiling_std Flag.Std mv localimport Flag.D mv asmhdr Flag.AsmHdr mv buildid Flag.BuildID mv nBackendWorkers Flag.LowerC mv pure_go Flag.Complete mv debugstr Flag.LowerD mv flagDWARF Flag.Dwarf mv genDwarfInline Flag.GenDwarfInl mv flag_installsuffix Flag.InstallSuffix mv flag_lang Flag.Lang mv linkobj Flag.LinkObj mv debuglive Flag.Live mv flag_msan Flag.MSan mv nolocalimports Flag.NoLocalImports mv outfile Flag.LowerO mv myimportpath Ctxt.Pkgpath mv writearchive Flag.Pack mv flag_race Flag.Race mv spectre Flag.Spectre mv trace Flag.LowerT mv pathPrefix Flag.TrimPath mv Debug_vlog Ctxt.Debugvlog mv use_writebarrier Flag.WB mv Main.flag_shared Flag.Shared mv Main.flag_dynlink Flag.Dynlink mv Main.goversion Flag.GoVersion mv Main.symabisPath Flag.SymABIs mv cpuprofile Flag.CPUProfile mv memprofile Flag.MemProfile mv traceprofile Flag.TraceProfile mv blockprofile Flag.BlockProfile mv mutexprofile Flag.MutexProfile mv benchfile Flag.Bench mv Main.smallFrames Flag.SmallFrames mv Main.jsonLogOpt Flag.JSON add Flag:$ \ Cfg struct{} mv embedCfg Flag.Cfg.Embed mv idirs Flag.Cfg.ImportDirs mv importMap Flag.Cfg.ImportMap mv packageFile Flag.Cfg.PackageFile mv spectreIndex Flag.Cfg.SpectreIndex mv addidir addImportDir mv main.go:/Wasm/-0,/ssaDump/-3 ParseFlags mv usage Flag Flags ParseFlags \ concurrentFlagOk concurrentBackendAllowed \ addImportDir addImportMap \ readImportCfg readEmbedCfg \ flag.go # Remove //go:generate line copied from main.go # along with two self-assignments from the merge. rm flag.go:/go:generate/-+ \ flag.go:/Ctxt.Pkgpath = Ctxt.Pkgpath/-+ \ flag.go:/Ctxt.Debugvlog = Ctxt.Debugvlog/-+ ' Change-Id: I10431c15fe7d9f48024d53141d4224d957dbf334 Reviewed-on: https://go-review.googlesource.com/c/go/+/271667 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-11-16 00:59:30 -05:00
Ctxt.DwarfAbstractFunc(ifn, fn, Ctxt.Pkgpath)
}
// Undo any versioning performed when a name was written
// out as part of export data.
func unversion(name string) string {
if i := strings.Index(name, "·"); i > 0 {
name = name[:i]
}
return name
}
// Given a function that was inlined as part of the compilation, dig
// up the pre-inlining DCL list for the function and create a map that
// supports lookup of pre-inline dcl index, based on variable
// position/name. NB: the recipe for computing variable pos/file/line
// needs to be kept in sync with the similar code in gc.createSimpleVars
// and related functions.
func makePreinlineDclMap(fnsym *obj.LSym) map[varPos]int {
dcl := preInliningDcls(fnsym)
m := make(map[varPos]int)
for i, n := range dcl {
pos := Ctxt.InnermostPos(n.Pos)
vp := varPos{
DeclName: unversion(n.Sym.Name),
DeclFile: pos.RelFilename(),
DeclLine: pos.RelLine(),
DeclCol: pos.Col(),
}
if _, found := m[vp]; found {
Fatalf("child dcl collision on symbol %s within %v\n", n.Sym.Name, fnsym.Name)
}
m[vp] = i
}
return m
}
func insertInlCall(dwcalls *dwarf.InlCalls, inlIdx int, imap map[int]int) int {
callIdx, found := imap[inlIdx]
if found {
return callIdx
}
// Haven't seen this inline yet. Visit parent of inline if there
// is one. We do this first so that parents appear before their
// children in the resulting table.
parCallIdx := -1
parInlIdx := Ctxt.InlTree.Parent(inlIdx)
if parInlIdx >= 0 {
parCallIdx = insertInlCall(dwcalls, parInlIdx, imap)
}
// Create new entry for this inline
inlinedFn := Ctxt.InlTree.InlinedFunction(inlIdx)
callXPos := Ctxt.InlTree.CallPos(inlIdx)
absFnSym := Ctxt.DwFixups.AbsFuncDwarfSym(inlinedFn)
pb := Ctxt.PosTable.Pos(callXPos).Base()
callFileSym := Ctxt.Lookup(pb.SymFilename())
ic := dwarf.InlCall{
InlIndex: inlIdx,
CallFile: callFileSym,
CallLine: uint32(callXPos.Line()),
AbsFunSym: absFnSym,
Root: parCallIdx == -1,
}
dwcalls.Calls = append(dwcalls.Calls, ic)
callIdx = len(dwcalls.Calls) - 1
imap[inlIdx] = callIdx
if parCallIdx != -1 {
// Add this inline to parent's child list
dwcalls.Calls[parCallIdx].Children = append(dwcalls.Calls[parCallIdx].Children, callIdx)
}
return callIdx
}
// Given a src.XPos, return its associated inlining index if it
// corresponds to something created as a result of an inline, or -1 if
// there is no inline info. Note that the index returned will refer to
// the deepest call in the inlined stack, e.g. if you have "A calls B
// calls C calls D" and all three callees are inlined (B, C, and D),
// the index for a node from the inlined body of D will refer to the
// call to D from C. Whew.
func posInlIndex(xpos src.XPos) int {
pos := Ctxt.PosTable.Pos(xpos)
if b := pos.Base(); b != nil {
ii := b.InliningIndex()
if ii >= 0 {
return ii
}
}
return -1
}
func addRange(calls []dwarf.InlCall, start, end int64, ii int, imap map[int]int) {
if start == -1 {
panic("bad range start")
}
if end == -1 {
panic("bad range end")
}
if ii == -1 {
return
}
if start == end {
return
}
// Append range to correct inlined call
callIdx, found := imap[ii]
if !found {
Fatalf("can't find inlIndex %d in imap for prog at %d\n", ii, start)
}
call := &calls[callIdx]
call.Ranges = append(call.Ranges, dwarf.Range{Start: start, End: end})
}
func dumpInlCall(inlcalls dwarf.InlCalls, idx, ilevel int) {
for i := 0; i < ilevel; i++ {
Ctxt.Logf(" ")
}
ic := inlcalls.Calls[idx]
callee := Ctxt.InlTree.InlinedFunction(ic.InlIndex)
Ctxt.Logf(" %d: II:%d (%s) V: (", idx, ic.InlIndex, callee.Name)
for _, f := range ic.InlVars {
Ctxt.Logf(" %v", f.Name)
}
Ctxt.Logf(" ) C: (")
for _, k := range ic.Children {
Ctxt.Logf(" %v", k)
}
Ctxt.Logf(" ) R:")
for _, r := range ic.Ranges {
Ctxt.Logf(" [%d,%d)", r.Start, r.End)
}
Ctxt.Logf("\n")
for _, k := range ic.Children {
dumpInlCall(inlcalls, k, ilevel+1)
}
}
func dumpInlCalls(inlcalls dwarf.InlCalls) {
for k, c := range inlcalls.Calls {
if c.Root {
dumpInlCall(inlcalls, k, 0)
}
}
}
func dumpInlVars(dwvars []*dwarf.Var) {
for i, dwv := range dwvars {
typ := "local"
if dwv.Abbrev == dwarf.DW_ABRV_PARAM_LOCLIST || dwv.Abbrev == dwarf.DW_ABRV_PARAM {
typ = "param"
}
ia := 0
if dwv.IsInAbstract {
ia = 1
}
Ctxt.Logf("V%d: %s CI:%d II:%d IA:%d %s\n", i, dwv.Name, dwv.ChildIndex, dwv.InlIndex-1, ia, typ)
}
}
func rangesContains(par []dwarf.Range, rng dwarf.Range) (bool, string) {
for _, r := range par {
if rng.Start >= r.Start && rng.End <= r.End {
return true, ""
}
}
msg := fmt.Sprintf("range [%d,%d) not contained in {", rng.Start, rng.End)
for _, r := range par {
msg += fmt.Sprintf(" [%d,%d)", r.Start, r.End)
}
msg += " }"
return false, msg
}
func rangesContainsAll(parent, child []dwarf.Range) (bool, string) {
for _, r := range child {
c, m := rangesContains(parent, r)
if !c {
return false, m
}
}
return true, ""
}
// checkInlCall verifies that the PC ranges for inline info 'idx' are
// enclosed/contained within the ranges of its parent inline (or if
// this is a root/toplevel inline, checks that the ranges fall within
// the extent of the top level function). A panic is issued if a
// malformed range is found.
func checkInlCall(funcName string, inlCalls dwarf.InlCalls, funcSize int64, idx, parentIdx int) {
// Callee
ic := inlCalls.Calls[idx]
callee := Ctxt.InlTree.InlinedFunction(ic.InlIndex).Name
calleeRanges := ic.Ranges
// Caller
caller := funcName
parentRanges := []dwarf.Range{dwarf.Range{Start: int64(0), End: funcSize}}
if parentIdx != -1 {
pic := inlCalls.Calls[parentIdx]
caller = Ctxt.InlTree.InlinedFunction(pic.InlIndex).Name
parentRanges = pic.Ranges
}
// Callee ranges contained in caller ranges?
c, m := rangesContainsAll(parentRanges, calleeRanges)
if !c {
Fatalf("** malformed inlined routine range in %s: caller %s callee %s II=%d %s\n", funcName, caller, callee, idx, m)
}
// Now visit kids
for _, k := range ic.Children {
checkInlCall(funcName, inlCalls, funcSize, k, idx)
}
}
// unifyCallRanges ensures that the ranges for a given inline
// transitively include all of the ranges for its child inlines.
func unifyCallRanges(inlcalls dwarf.InlCalls, idx int) {
ic := &inlcalls.Calls[idx]
for _, childIdx := range ic.Children {
// First make sure child ranges are unified.
unifyCallRanges(inlcalls, childIdx)
// Then merge child ranges into ranges for this inline.
cic := inlcalls.Calls[childIdx]
ic.Ranges = dwarf.MergeRanges(ic.Ranges, cic.Ranges)
}
}