go/src/cmd/compile/internal/ssa/config.go

122 lines
3.7 KiB
Go
Raw Normal View History

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "cmd/internal/obj"
type Config struct {
arch string // "amd64", etc.
IntSize int64 // 4 or 8
PtrSize int64 // 4 or 8
lowerBlock func(*Block) bool // lowering function
lowerValue func(*Value, *Config) bool // lowering function
fe Frontend // callbacks into compiler frontend
HTML *HTMLWriter // html writer, for debugging
ctxt *obj.Link // Generic arch information
// TODO: more stuff. Compiler flags of interest, ...
}
type TypeSource interface {
TypeBool() Type
TypeInt8() Type
TypeInt16() Type
TypeInt32() Type
TypeInt64() Type
TypeUInt8() Type
TypeUInt16() Type
TypeUInt32() Type
TypeUInt64() Type
TypeInt() Type
TypeFloat32() Type
TypeFloat64() Type
TypeUintptr() Type
TypeString() Type
TypeBytePtr() Type // TODO: use unsafe.Pointer instead?
CanSSA(t Type) bool
}
type Logger interface {
[dev.ssa] cmd/compile/ssa: separate logging, work in progress, and fatal errors The SSA implementation logs for three purposes: * debug logging * fatal errors * unimplemented features Separating these three uses lets us attempt an SSA implementation for all functions, not just _ssa functions. This turns the entire standard library into a compilation test, and makes it easy to figure out things like "how much coverage does SSA have now" and "what should we do next to get more coverage?". Functions called _ssa are still special. They log profusely by default and the output of the SSA implementation is used. For all other functions, logging is off, and the implementation is built and discarded, due to lack of support for the runtime. While we're here, fix a few minor bugs and add some extra Unimplementeds to allow all.bash to pass. As of now, SSA handles 20.79% of the functions in the standard library (689 of 3314). The top missing features are: 10.03% 2597 SSA unimplemented: zero for type error not implemented 7.79% 2016 SSA unimplemented: addr: bad op DOTPTR 7.33% 1898 SSA unimplemented: unhandled expr EQ 6.10% 1579 SSA unimplemented: unhandled expr OROR 4.91% 1271 SSA unimplemented: unhandled expr NE 4.49% 1163 SSA unimplemented: unhandled expr LROT 4.00% 1036 SSA unimplemented: unhandled expr LEN 3.56% 923 SSA unimplemented: unhandled stmt CALLFUNC 2.37% 615 SSA unimplemented: zero for type []byte not implemented 1.90% 492 SSA unimplemented: unhandled stmt CALLMETH 1.74% 450 SSA unimplemented: unhandled expr CALLINTER 1.74% 450 SSA unimplemented: unhandled expr DOT 1.71% 444 SSA unimplemented: unhandled expr ANDAND 1.65% 426 SSA unimplemented: unhandled expr CLOSUREVAR 1.54% 400 SSA unimplemented: unhandled expr CALLMETH 1.51% 390 SSA unimplemented: unhandled stmt SWITCH 1.47% 380 SSA unimplemented: unhandled expr CONV 1.33% 345 SSA unimplemented: addr: bad op * 1.30% 336 SSA unimplemented: unhandled OLITERAL 6 Change-Id: I4ca07951e276714dc13c31de28640aead17a1be7 Reviewed-on: https://go-review.googlesource.com/11160 Reviewed-by: Keith Randall <khr@golang.org>
2015-06-12 11:01:13 -07:00
// Log logs a message from the compiler.
Logf(string, ...interface{})
[dev.ssa] cmd/compile/ssa: separate logging, work in progress, and fatal errors The SSA implementation logs for three purposes: * debug logging * fatal errors * unimplemented features Separating these three uses lets us attempt an SSA implementation for all functions, not just _ssa functions. This turns the entire standard library into a compilation test, and makes it easy to figure out things like "how much coverage does SSA have now" and "what should we do next to get more coverage?". Functions called _ssa are still special. They log profusely by default and the output of the SSA implementation is used. For all other functions, logging is off, and the implementation is built and discarded, due to lack of support for the runtime. While we're here, fix a few minor bugs and add some extra Unimplementeds to allow all.bash to pass. As of now, SSA handles 20.79% of the functions in the standard library (689 of 3314). The top missing features are: 10.03% 2597 SSA unimplemented: zero for type error not implemented 7.79% 2016 SSA unimplemented: addr: bad op DOTPTR 7.33% 1898 SSA unimplemented: unhandled expr EQ 6.10% 1579 SSA unimplemented: unhandled expr OROR 4.91% 1271 SSA unimplemented: unhandled expr NE 4.49% 1163 SSA unimplemented: unhandled expr LROT 4.00% 1036 SSA unimplemented: unhandled expr LEN 3.56% 923 SSA unimplemented: unhandled stmt CALLFUNC 2.37% 615 SSA unimplemented: zero for type []byte not implemented 1.90% 492 SSA unimplemented: unhandled stmt CALLMETH 1.74% 450 SSA unimplemented: unhandled expr CALLINTER 1.74% 450 SSA unimplemented: unhandled expr DOT 1.71% 444 SSA unimplemented: unhandled expr ANDAND 1.65% 426 SSA unimplemented: unhandled expr CLOSUREVAR 1.54% 400 SSA unimplemented: unhandled expr CALLMETH 1.51% 390 SSA unimplemented: unhandled stmt SWITCH 1.47% 380 SSA unimplemented: unhandled expr CONV 1.33% 345 SSA unimplemented: addr: bad op * 1.30% 336 SSA unimplemented: unhandled OLITERAL 6 Change-Id: I4ca07951e276714dc13c31de28640aead17a1be7 Reviewed-on: https://go-review.googlesource.com/11160 Reviewed-by: Keith Randall <khr@golang.org>
2015-06-12 11:01:13 -07:00
// Fatal reports a compiler error and exits.
Fatalf(line int32, msg string, args ...interface{})
[dev.ssa] cmd/compile/ssa: separate logging, work in progress, and fatal errors The SSA implementation logs for three purposes: * debug logging * fatal errors * unimplemented features Separating these three uses lets us attempt an SSA implementation for all functions, not just _ssa functions. This turns the entire standard library into a compilation test, and makes it easy to figure out things like "how much coverage does SSA have now" and "what should we do next to get more coverage?". Functions called _ssa are still special. They log profusely by default and the output of the SSA implementation is used. For all other functions, logging is off, and the implementation is built and discarded, due to lack of support for the runtime. While we're here, fix a few minor bugs and add some extra Unimplementeds to allow all.bash to pass. As of now, SSA handles 20.79% of the functions in the standard library (689 of 3314). The top missing features are: 10.03% 2597 SSA unimplemented: zero for type error not implemented 7.79% 2016 SSA unimplemented: addr: bad op DOTPTR 7.33% 1898 SSA unimplemented: unhandled expr EQ 6.10% 1579 SSA unimplemented: unhandled expr OROR 4.91% 1271 SSA unimplemented: unhandled expr NE 4.49% 1163 SSA unimplemented: unhandled expr LROT 4.00% 1036 SSA unimplemented: unhandled expr LEN 3.56% 923 SSA unimplemented: unhandled stmt CALLFUNC 2.37% 615 SSA unimplemented: zero for type []byte not implemented 1.90% 492 SSA unimplemented: unhandled stmt CALLMETH 1.74% 450 SSA unimplemented: unhandled expr CALLINTER 1.74% 450 SSA unimplemented: unhandled expr DOT 1.71% 444 SSA unimplemented: unhandled expr ANDAND 1.65% 426 SSA unimplemented: unhandled expr CLOSUREVAR 1.54% 400 SSA unimplemented: unhandled expr CALLMETH 1.51% 390 SSA unimplemented: unhandled stmt SWITCH 1.47% 380 SSA unimplemented: unhandled expr CONV 1.33% 345 SSA unimplemented: addr: bad op * 1.30% 336 SSA unimplemented: unhandled OLITERAL 6 Change-Id: I4ca07951e276714dc13c31de28640aead17a1be7 Reviewed-on: https://go-review.googlesource.com/11160 Reviewed-by: Keith Randall <khr@golang.org>
2015-06-12 11:01:13 -07:00
// Unimplemented reports that the function cannot be compiled.
// It will be removed once SSA work is complete.
Unimplementedf(line int32, msg string, args ...interface{})
// Warnl writes compiler messages in the form expected by "errorcheck" tests
Warnl(line int, fmt_ string, args ...interface{})
// Fowards the Debug_checknil flag from gc
Debug_checknil() bool
}
type Frontend interface {
TypeSource
Logger
// StringData returns a symbol pointing to the given string's contents.
StringData(string) interface{} // returns *gc.Sym
// Auto returns a Node for an auto variable of the given type.
// The SSA compiler uses this function to allocate space for spills.
Auto(Type) GCNode
// Line returns a string describing the given line number.
Line(int32) string
}
// interface used to hold *gc.Node. We'd use *gc.Node directly but
// that would lead to an import cycle.
type GCNode interface {
Typ() Type
String() string
}
// NewConfig returns a new configuration object for the given architecture.
func NewConfig(arch string, fe Frontend, ctxt *obj.Link) *Config {
c := &Config{arch: arch, fe: fe}
switch arch {
case "amd64":
[dev.ssa] cmd/compile/internal/ssa: redo how sign extension is handled For integer types less than a machine register, we have to decide what the invariants are for the high bits of the register. We used to set the high bits to the correct extension (sign or zero, as determined by the type) of the low bits. This CL makes the compiler ignore the high bits of the register altogether (they are junk). On this plus side, this means ops that generate subword results don't have to worry about correctly extending them. On the minus side, ops that consume subword arguments have to deal with the input registers not being correctly extended. For x86, this tradeoff is probably worth it. Almost all opcodes have versions that use only the correct subword piece of their inputs. (The one big exception is array indexing.) Not many opcodes can correctly sign extend on output. For other architectures, the tradeoff is probably not so clear, as they don't have many subword-safe opcodes (e.g. 16-bit compare, ignoring the high 16/48 bits). Fortunately we can decide whether we do this per-architecture. For the machine-independent opcodes, we pretend that the "register" size is equal to the type width, so sign extension is immaterial. Opcodes that care about the signedness of the input (e.g. compare, right shift) have two different variants. Change-Id: I465484c5734545ee697afe83bc8bf4b53bd9df8d Reviewed-on: https://go-review.googlesource.com/12600 Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2015-07-23 14:35:02 -07:00
c.IntSize = 8
c.PtrSize = 8
c.lowerBlock = rewriteBlockAMD64
c.lowerValue = rewriteValueAMD64
case "386":
[dev.ssa] cmd/compile/internal/ssa: redo how sign extension is handled For integer types less than a machine register, we have to decide what the invariants are for the high bits of the register. We used to set the high bits to the correct extension (sign or zero, as determined by the type) of the low bits. This CL makes the compiler ignore the high bits of the register altogether (they are junk). On this plus side, this means ops that generate subword results don't have to worry about correctly extending them. On the minus side, ops that consume subword arguments have to deal with the input registers not being correctly extended. For x86, this tradeoff is probably worth it. Almost all opcodes have versions that use only the correct subword piece of their inputs. (The one big exception is array indexing.) Not many opcodes can correctly sign extend on output. For other architectures, the tradeoff is probably not so clear, as they don't have many subword-safe opcodes (e.g. 16-bit compare, ignoring the high 16/48 bits). Fortunately we can decide whether we do this per-architecture. For the machine-independent opcodes, we pretend that the "register" size is equal to the type width, so sign extension is immaterial. Opcodes that care about the signedness of the input (e.g. compare, right shift) have two different variants. Change-Id: I465484c5734545ee697afe83bc8bf4b53bd9df8d Reviewed-on: https://go-review.googlesource.com/12600 Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2015-07-23 14:35:02 -07:00
c.IntSize = 4
c.PtrSize = 4
c.lowerBlock = rewriteBlockAMD64
c.lowerValue = rewriteValueAMD64 // TODO(khr): full 32-bit support
default:
fe.Unimplementedf(0, "arch %s not implemented", arch)
}
c.ctxt = ctxt
return c
}
[dev.ssa] cmd/compile: add GOSSAFUNC and GOSSAPKG These temporary environment variables make it possible to enable using SSA-generated code for a particular function or package without having to rebuild the compiler. This makes it possible to start bulk testing SSA generated code. First, bump up the default stack size (_StackMin in runtime/stack2.go) to something large like 32768, because without stackmaps we can't grow stacks. Then run something like: for pkg in `go list std` do GOGC=off GOSSAPKG=`basename $pkg` go test -a $pkg done When a test fails, you can re-run those tests, selectively enabling one function after another, until you find the one that is causing trouble. Doing this right now yields some interesting results: * There are several packages for which we generate some code and whose tests pass. Yay! * We can generate code for encoding/base64, but tests there fail, so there's a bug to fix. * Attempting to build the runtime yields a panic during codegen: panic: interface conversion: ssa.Location is nil, not *ssa.LocalSlot * The top unimplemented codegen items are (simplified): 59 genValue not implemented: REPMOVSB 18 genValue not implemented: REPSTOSQ 14 genValue not implemented: SUBQ 9 branch not implemented: If v -> b b. Control: XORQconst <bool> [1] 8 genValue not implemented: MOVQstoreidx8 4 branch not implemented: If v -> b b. Control: SETG <bool> 3 branch not implemented: If v -> b b. Control: SETLE <bool> 2 load flags not implemented: LoadReg8 <flags> 2 genValue not implemented: InvertFlags <flags> 1 store flags not implemented: StoreReg8 <flags> 1 branch not implemented: If v -> b b. Control: SETGE <bool> Change-Id: Ib64809ac0c917e25bcae27829ae634c70d290c7f Reviewed-on: https://go-review.googlesource.com/12547 Reviewed-by: Keith Randall <khr@golang.org>
2015-07-22 13:13:53 -07:00
func (c *Config) Frontend() Frontend { return c.fe }
// NewFunc returns a new, empty function object
func (c *Config) NewFunc() *Func {
// TODO(khr): should this function take name, type, etc. as arguments?
return &Func{Config: c, NamedValues: map[LocalSlot][]*Value{}}
}
func (c *Config) Logf(msg string, args ...interface{}) { c.fe.Logf(msg, args...) }
func (c *Config) Fatalf(line int32, msg string, args ...interface{}) { c.fe.Fatalf(line, msg, args...) }
func (c *Config) Unimplementedf(line int32, msg string, args ...interface{}) {
c.fe.Unimplementedf(line, msg, args...)
}
func (c *Config) Warnl(line int, msg string, args ...interface{}) { c.fe.Warnl(line, msg, args...) }
func (c *Config) Debug_checknil() bool { return c.fe.Debug_checknil() }
[dev.ssa] cmd/compile/ssa: separate logging, work in progress, and fatal errors The SSA implementation logs for three purposes: * debug logging * fatal errors * unimplemented features Separating these three uses lets us attempt an SSA implementation for all functions, not just _ssa functions. This turns the entire standard library into a compilation test, and makes it easy to figure out things like "how much coverage does SSA have now" and "what should we do next to get more coverage?". Functions called _ssa are still special. They log profusely by default and the output of the SSA implementation is used. For all other functions, logging is off, and the implementation is built and discarded, due to lack of support for the runtime. While we're here, fix a few minor bugs and add some extra Unimplementeds to allow all.bash to pass. As of now, SSA handles 20.79% of the functions in the standard library (689 of 3314). The top missing features are: 10.03% 2597 SSA unimplemented: zero for type error not implemented 7.79% 2016 SSA unimplemented: addr: bad op DOTPTR 7.33% 1898 SSA unimplemented: unhandled expr EQ 6.10% 1579 SSA unimplemented: unhandled expr OROR 4.91% 1271 SSA unimplemented: unhandled expr NE 4.49% 1163 SSA unimplemented: unhandled expr LROT 4.00% 1036 SSA unimplemented: unhandled expr LEN 3.56% 923 SSA unimplemented: unhandled stmt CALLFUNC 2.37% 615 SSA unimplemented: zero for type []byte not implemented 1.90% 492 SSA unimplemented: unhandled stmt CALLMETH 1.74% 450 SSA unimplemented: unhandled expr CALLINTER 1.74% 450 SSA unimplemented: unhandled expr DOT 1.71% 444 SSA unimplemented: unhandled expr ANDAND 1.65% 426 SSA unimplemented: unhandled expr CLOSUREVAR 1.54% 400 SSA unimplemented: unhandled expr CALLMETH 1.51% 390 SSA unimplemented: unhandled stmt SWITCH 1.47% 380 SSA unimplemented: unhandled expr CONV 1.33% 345 SSA unimplemented: addr: bad op * 1.30% 336 SSA unimplemented: unhandled OLITERAL 6 Change-Id: I4ca07951e276714dc13c31de28640aead17a1be7 Reviewed-on: https://go-review.googlesource.com/11160 Reviewed-by: Keith Randall <khr@golang.org>
2015-06-12 11:01:13 -07:00
// TODO(khr): do we really need a separate Config, or can we just
// store all its fields inside a Func?