go/src/cmd/internal/obj/wasm/wasmobj.go

1003 lines
24 KiB
Go
Raw Normal View History

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package wasm
import (
"bytes"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/sys"
"encoding/binary"
"fmt"
"io"
"math"
)
var Register = map[string]int16{
"PC_F": REG_PC_F,
"PC_B": REG_PC_B,
"SP": REG_SP,
"CTXT": REG_CTXT,
"g": REG_g,
"RET0": REG_RET0,
"RET1": REG_RET1,
"RET2": REG_RET2,
"RET3": REG_RET3,
"PAUSE": REG_PAUSE,
"R0": REG_R0,
"R1": REG_R1,
"R2": REG_R2,
"R3": REG_R3,
"R4": REG_R4,
"R5": REG_R5,
"R6": REG_R6,
"R7": REG_R7,
"R8": REG_R8,
"R9": REG_R9,
"R10": REG_R10,
"R11": REG_R11,
"R12": REG_R12,
"R13": REG_R13,
"R14": REG_R14,
"R15": REG_R15,
"F0": REG_F0,
"F1": REG_F1,
"F2": REG_F2,
"F3": REG_F3,
"F4": REG_F4,
"F5": REG_F5,
"F6": REG_F6,
"F7": REG_F7,
"F8": REG_F8,
"F9": REG_F9,
"F10": REG_F10,
"F11": REG_F11,
"F12": REG_F12,
"F13": REG_F13,
"F14": REG_F14,
"F15": REG_F15,
}
var registerNames []string
func init() {
obj.RegisterRegister(MINREG, MAXREG, rconv)
obj.RegisterOpcode(obj.ABaseWasm, Anames)
registerNames = make([]string, MAXREG-MINREG)
for name, reg := range Register {
registerNames[reg-MINREG] = name
}
}
func rconv(r int) string {
return registerNames[r-MINREG]
}
var unaryDst = map[obj.As]bool{
ASet: true,
ATee: true,
ACall: true,
ACallIndirect: true,
ACallImport: true,
ABr: true,
ABrIf: true,
ABrTable: true,
AI32Store: true,
AI64Store: true,
AF32Store: true,
AF64Store: true,
AI32Store8: true,
AI32Store16: true,
AI64Store8: true,
AI64Store16: true,
AI64Store32: true,
ACALLNORESUME: true,
}
var Linkwasm = obj.LinkArch{
Arch: sys.ArchWasm,
Init: instinit,
Preprocess: preprocess,
Assemble: assemble,
UnaryDst: unaryDst,
}
var (
morestack *obj.LSym
morestackNoCtxt *obj.LSym
gcWriteBarrier *obj.LSym
sigpanic *obj.LSym
deferreturn *obj.LSym
jmpdefer *obj.LSym
)
const (
/* mark flags */
WasmImport = 1 << 0
)
func instinit(ctxt *obj.Link) {
morestack = ctxt.Lookup("runtime.morestack")
morestackNoCtxt = ctxt.Lookup("runtime.morestack_noctxt")
gcWriteBarrier = ctxt.Lookup("runtime.gcWriteBarrier")
sigpanic = ctxt.Lookup("runtime.sigpanic")
cmd/compile, cmd/link: separate stable and internal ABIs This implements compiler and linker support for separating the function calling ABI into two ABIs: a stable and an internal ABI. At the moment, the two ABIs are identical, but we'll be able to evolve the internal ABI without breaking existing assembly code that depends on the stable ABI for calling to and from Go. The Go compiler generates internal ABI symbols for all Go functions. It uses the symabis information produced by the assembler to create ABI wrappers whenever it encounters a body-less Go function that's defined in assembly or a Go function that's referenced from assembly. Since the two ABIs are currently identical, for the moment this is implemented using "ABI alias" symbols, which are just forwarding references to the native ABI symbol for a function. This way there's no actual code involved in the ABI wrapper, which is good because we're not deriving any benefit from it right now. Once the ABIs diverge, we can eliminate ABI aliases. The linker represents these different ABIs internally as different versions of the same symbol. This way, the linker keeps us honest, since every symbol definition and reference also specifies its version. The linker is responsible for resolving ABI aliases. Fixes #27539. Change-Id: I197c52ec9f8fc435db8f7a4259029b20f6d65e95 Reviewed-on: https://go-review.googlesource.com/c/147160 Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2018-11-01 12:30:23 -04:00
sigpanic.SetABI(obj.ABIInternal)
deferreturn = ctxt.Lookup("runtime.deferreturn")
cmd/compile, cmd/link: separate stable and internal ABIs This implements compiler and linker support for separating the function calling ABI into two ABIs: a stable and an internal ABI. At the moment, the two ABIs are identical, but we'll be able to evolve the internal ABI without breaking existing assembly code that depends on the stable ABI for calling to and from Go. The Go compiler generates internal ABI symbols for all Go functions. It uses the symabis information produced by the assembler to create ABI wrappers whenever it encounters a body-less Go function that's defined in assembly or a Go function that's referenced from assembly. Since the two ABIs are currently identical, for the moment this is implemented using "ABI alias" symbols, which are just forwarding references to the native ABI symbol for a function. This way there's no actual code involved in the ABI wrapper, which is good because we're not deriving any benefit from it right now. Once the ABIs diverge, we can eliminate ABI aliases. The linker represents these different ABIs internally as different versions of the same symbol. This way, the linker keeps us honest, since every symbol definition and reference also specifies its version. The linker is responsible for resolving ABI aliases. Fixes #27539. Change-Id: I197c52ec9f8fc435db8f7a4259029b20f6d65e95 Reviewed-on: https://go-review.googlesource.com/c/147160 Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2018-11-01 12:30:23 -04:00
deferreturn.SetABI(obj.ABIInternal)
jmpdefer = ctxt.Lookup(`"".jmpdefer`)
}
func preprocess(ctxt *obj.Link, s *obj.LSym, newprog obj.ProgAlloc) {
appendp := func(p *obj.Prog, as obj.As, args ...obj.Addr) *obj.Prog {
if p.As != obj.ANOP {
p2 := obj.Appendp(p, newprog)
p2.Pc = p.Pc
p = p2
}
p.As = as
switch len(args) {
case 0:
p.From = obj.Addr{}
p.To = obj.Addr{}
case 1:
if unaryDst[as] {
p.From = obj.Addr{}
p.To = args[0]
} else {
p.From = args[0]
p.To = obj.Addr{}
}
case 2:
p.From = args[0]
p.To = args[1]
default:
panic("bad args")
}
return p
}
framesize := s.Func.Text.To.Offset
if framesize < 0 {
panic("bad framesize")
}
s.Func.Args = s.Func.Text.To.Val.(int32)
s.Func.Locals = int32(framesize)
if s.Func.Text.From.Sym.Wrapper() {
// if g._panic != nil && g._panic.argp == FP {
// g._panic.argp = bottom-of-frame
// }
//
// MOVD g_panic(g), R0
// Get R0
// I64Eqz
// Not
// If
// Get SP
// I64ExtendUI32
// I64Const $framesize+8
// I64Add
// I64Load panic_argp(R0)
// I64Eq
// If
// MOVD SP, panic_argp(R0)
// End
// End
gpanic := obj.Addr{
Type: obj.TYPE_MEM,
Reg: REGG,
Offset: 4 * 8, // g_panic
}
panicargp := obj.Addr{
Type: obj.TYPE_MEM,
Reg: REG_R0,
Offset: 0, // panic.argp
}
p := s.Func.Text
p = appendp(p, AMOVD, gpanic, regAddr(REG_R0))
p = appendp(p, AGet, regAddr(REG_R0))
p = appendp(p, AI64Eqz)
p = appendp(p, ANot)
p = appendp(p, AIf)
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI64ExtendUI32)
p = appendp(p, AI64Const, constAddr(framesize+8))
p = appendp(p, AI64Add)
p = appendp(p, AI64Load, panicargp)
p = appendp(p, AI64Eq)
p = appendp(p, AIf)
p = appendp(p, AMOVD, regAddr(REG_SP), panicargp)
p = appendp(p, AEnd)
p = appendp(p, AEnd)
}
if framesize > 0 {
p := s.Func.Text
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Const, constAddr(framesize))
p = appendp(p, AI32Sub)
p = appendp(p, ASet, regAddr(REG_SP))
p.Spadj = int32(framesize)
}
// Introduce resume points for CALL instructions
// and collect other explicit resume points.
numResumePoints := 0
explicitBlockDepth := 0
pc := int64(0) // pc is only incremented when necessary, this avoids bloat of the BrTable instruction
var tableIdxs []uint64
tablePC := int64(0)
base := ctxt.PosTable.Pos(s.Func.Text.Pos).Base()
for p := s.Func.Text; p != nil; p = p.Link {
prevBase := base
base = ctxt.PosTable.Pos(p.Pos).Base()
switch p.As {
case ABlock, ALoop, AIf:
explicitBlockDepth++
case AEnd:
if explicitBlockDepth == 0 {
panic("End without block")
}
explicitBlockDepth--
case ARESUMEPOINT:
if explicitBlockDepth != 0 {
panic("RESUME can only be used on toplevel")
}
p.As = AEnd
for tablePC <= pc {
tableIdxs = append(tableIdxs, uint64(numResumePoints))
tablePC++
}
numResumePoints++
pc++
case obj.ACALL:
if explicitBlockDepth != 0 {
panic("CALL can only be used on toplevel, try CALLNORESUME instead")
}
appendp(p, ARESUMEPOINT)
}
p.Pc = pc
// Increase pc whenever some pc-value table needs a new entry. Don't increase it
// more often to avoid bloat of the BrTable instruction.
// The "base != prevBase" condition detects inlined instructions. They are an
// implicit call, so entering and leaving this section affects the stack trace.
if p.As == ACALLNORESUME || p.As == obj.ANOP || p.As == ANop || p.Spadj != 0 || base != prevBase {
pc++
}
}
tableIdxs = append(tableIdxs, uint64(numResumePoints))
s.Size = pc + 1
if !s.Func.Text.From.Sym.NoSplit() {
p := s.Func.Text
if framesize <= objabi.StackSmall {
// small stack: SP <= stackguard
// Get SP
// Get g
// I32WrapI64
// I32Load $stackguard0
// I32GtU
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AGet, regAddr(REGG))
p = appendp(p, AI32WrapI64)
p = appendp(p, AI32Load, constAddr(2*int64(ctxt.Arch.PtrSize))) // G.stackguard0
p = appendp(p, AI32LeU)
} else {
// large stack: SP-framesize <= stackguard-StackSmall
// SP <= stackguard+(framesize-StackSmall)
// Get SP
// Get g
// I32WrapI64
// I32Load $stackguard0
// I32Const $(framesize-StackSmall)
// I32Add
// I32GtU
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AGet, regAddr(REGG))
p = appendp(p, AI32WrapI64)
p = appendp(p, AI32Load, constAddr(2*int64(ctxt.Arch.PtrSize))) // G.stackguard0
p = appendp(p, AI32Const, constAddr(int64(framesize)-objabi.StackSmall))
p = appendp(p, AI32Add)
p = appendp(p, AI32LeU)
}
// TODO(neelance): handle wraparound case
p = appendp(p, AIf)
p = appendp(p, obj.ACALL, constAddr(0))
if s.Func.Text.From.Sym.NeedCtxt() {
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: morestack}
} else {
p.To = obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: morestackNoCtxt}
}
p = appendp(p, AEnd)
}
// Add Block instructions for resume points and BrTable to jump to selected resume point.
if numResumePoints > 0 {
p := s.Func.Text
p = appendp(p, ALoop) // entryPointLoop, used to jump between basic blocks
for i := 0; i < numResumePoints+1; i++ {
p = appendp(p, ABlock)
}
p = appendp(p, AGet, regAddr(REG_PC_B)) // read next basic block from PC_B
p = appendp(p, ABrTable, obj.Addr{Val: tableIdxs})
p = appendp(p, AEnd) // end of Block
for p.Link != nil {
p = p.Link
}
p = appendp(p, AEnd) // end of entryPointLoop
p = appendp(p, obj.AUNDEF)
}
p := s.Func.Text
currentDepth := 0
blockDepths := make(map[*obj.Prog]int)
for p != nil {
switch p.As {
case ABlock, ALoop, AIf:
currentDepth++
blockDepths[p] = currentDepth
case AEnd:
currentDepth--
}
switch p.As {
case ABr, ABrIf:
if p.To.Type == obj.TYPE_BRANCH {
blockDepth, ok := blockDepths[p.To.Val.(*obj.Prog)]
if !ok {
panic("label not at block")
}
p.To = constAddr(int64(currentDepth - blockDepth))
}
case obj.AJMP:
jmp := *p
p.As = obj.ANOP
if jmp.To.Type == obj.TYPE_BRANCH {
// jump to basic block
p = appendp(p, AI32Const, constAddr(jmp.To.Val.(*obj.Prog).Pc))
p = appendp(p, ASet, regAddr(REG_PC_B)) // write next basic block to PC_B
p = appendp(p, ABr, constAddr(int64(currentDepth-1))) // jump to beginning of entryPointLoop
break
}
// reset PC_B to function entry
p = appendp(p, AI32Const, constAddr(0))
p = appendp(p, ASet, regAddr(REG_PC_B))
// low-level WebAssembly call to function
switch jmp.To.Type {
case obj.TYPE_MEM:
p = appendp(p, ACall, jmp.To)
case obj.TYPE_NONE:
// (target PC is on stack)
p = appendp(p, AI32WrapI64)
p = appendp(p, AI32Const, constAddr(16)) // only needs PC_F bits (16-31), PC_B bits (0-15) are zero
p = appendp(p, AI32ShrU)
p = appendp(p, ACallIndirect)
default:
panic("bad target for JMP")
}
p = appendp(p, AReturn)
case obj.ACALL, ACALLNORESUME:
call := *p
p.As = obj.ANOP
pcAfterCall := call.Link.Pc
if call.To.Sym == sigpanic {
pcAfterCall-- // sigpanic expects to be called without advancing the pc
}
// jmpdefer manipulates the return address on the stack so deferreturn gets called repeatedly.
// Model this in WebAssembly with a loop.
if call.To.Sym == deferreturn {
p = appendp(p, ALoop)
}
// SP -= 8
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Const, constAddr(8))
p = appendp(p, AI32Sub)
p = appendp(p, ASet, regAddr(REG_SP))
// write return address to Go stack
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI64Const, obj.Addr{
Type: obj.TYPE_ADDR,
Name: obj.NAME_EXTERN,
Sym: s, // PC_F
Offset: pcAfterCall, // PC_B
})
p = appendp(p, AI64Store, constAddr(0))
// reset PC_B to function entry
p = appendp(p, AI32Const, constAddr(0))
p = appendp(p, ASet, regAddr(REG_PC_B))
// low-level WebAssembly call to function
switch call.To.Type {
case obj.TYPE_MEM:
p = appendp(p, ACall, call.To)
case obj.TYPE_NONE:
// (target PC is on stack)
p = appendp(p, AI32WrapI64)
p = appendp(p, AI32Const, constAddr(16)) // only needs PC_F bits (16-31), PC_B bits (0-15) are zero
p = appendp(p, AI32ShrU)
p = appendp(p, ACallIndirect)
default:
panic("bad target for CALL")
}
// gcWriteBarrier has no return value, it never unwinds the stack
if call.To.Sym == gcWriteBarrier {
break
}
// jmpdefer removes the frame of deferreturn from the Go stack.
// However, its WebAssembly function still returns normally,
// so we need to return from deferreturn without removing its
// stack frame (no RET), because the frame is already gone.
if call.To.Sym == jmpdefer {
p = appendp(p, AReturn)
break
}
// return value of call is on the top of the stack, indicating whether to unwind the WebAssembly stack
p = appendp(p, AIf)
if call.As == ACALLNORESUME && call.To.Sym != sigpanic { // sigpanic unwinds the stack, but it never resumes
// trying to unwind WebAssembly stack but call has no resume point, terminate with error
p = appendp(p, obj.AUNDEF)
} else {
// unwinding WebAssembly stack to switch goroutine, return 1
p = appendp(p, AI32Const, constAddr(1))
p = appendp(p, AReturn)
}
p = appendp(p, AEnd)
// jump to before the call if jmpdefer has reset the return address to the call's PC
if call.To.Sym == deferreturn {
p = appendp(p, AGet, regAddr(REG_PC_B))
p = appendp(p, AI32Const, constAddr(call.Pc))
p = appendp(p, AI32Eq)
p = appendp(p, ABrIf, constAddr(0))
p = appendp(p, AEnd) // end of Loop
}
case obj.ARET, ARETUNWIND:
ret := *p
p.As = obj.ANOP
if framesize > 0 {
// SP += framesize
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Const, constAddr(framesize))
p = appendp(p, AI32Add)
p = appendp(p, ASet, regAddr(REG_SP))
// TODO(neelance): This should theoretically set Spadj, but it only works without.
// p.Spadj = int32(-framesize)
}
if ret.To.Type == obj.TYPE_MEM {
// reset PC_B to function entry
p = appendp(p, AI32Const, constAddr(0))
p = appendp(p, ASet, regAddr(REG_PC_B))
// low-level WebAssembly call to function
p = appendp(p, ACall, ret.To)
p = appendp(p, AReturn)
break
}
// read return PC_F from Go stack
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Load16U, constAddr(2))
p = appendp(p, ASet, regAddr(REG_PC_F))
// read return PC_B from Go stack
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Load16U, constAddr(0))
p = appendp(p, ASet, regAddr(REG_PC_B))
// SP += 8
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, AI32Const, constAddr(8))
p = appendp(p, AI32Add)
p = appendp(p, ASet, regAddr(REG_SP))
if ret.As == ARETUNWIND {
// function needs to unwind the WebAssembly stack, return 1
p = appendp(p, AI32Const, constAddr(1))
p = appendp(p, AReturn)
break
}
// not unwinding the WebAssembly stack, return 0
p = appendp(p, AI32Const, constAddr(0))
p = appendp(p, AReturn)
}
p = p.Link
}
p = s.Func.Text
for p != nil {
switch p.From.Name {
case obj.NAME_AUTO:
p.From.Offset += int64(framesize)
case obj.NAME_PARAM:
p.From.Reg = REG_SP
p.From.Offset += int64(framesize) + 8 // parameters are after the frame and the 8-byte return address
}
switch p.To.Name {
case obj.NAME_AUTO:
p.To.Offset += int64(framesize)
case obj.NAME_PARAM:
p.To.Reg = REG_SP
p.To.Offset += int64(framesize) + 8 // parameters are after the frame and the 8-byte return address
}
switch p.As {
case AGet:
if p.From.Type == obj.TYPE_ADDR {
get := *p
p.As = obj.ANOP
switch get.From.Name {
case obj.NAME_EXTERN:
p = appendp(p, AI64Const, get.From)
case obj.NAME_AUTO, obj.NAME_PARAM:
p = appendp(p, AGet, regAddr(get.From.Reg))
if get.From.Reg == REG_SP {
p = appendp(p, AI64ExtendUI32)
}
if get.From.Offset != 0 {
p = appendp(p, AI64Const, constAddr(get.From.Offset))
p = appendp(p, AI64Add)
}
default:
panic("bad Get: invalid name")
}
}
case AI32Load, AI64Load, AF32Load, AF64Load, AI32Load8S, AI32Load8U, AI32Load16S, AI32Load16U, AI64Load8S, AI64Load8U, AI64Load16S, AI64Load16U, AI64Load32S, AI64Load32U:
if p.From.Type == obj.TYPE_MEM {
as := p.As
from := p.From
p.As = AGet
p.From = regAddr(from.Reg)
if from.Reg != REG_SP {
p = appendp(p, AI32WrapI64)
}
p = appendp(p, as, constAddr(from.Offset))
}
case AMOVB, AMOVH, AMOVW, AMOVD:
mov := *p
p.As = obj.ANOP
var loadAs obj.As
var storeAs obj.As
switch mov.As {
case AMOVB:
loadAs = AI64Load8U
storeAs = AI64Store8
case AMOVH:
loadAs = AI64Load16U
storeAs = AI64Store16
case AMOVW:
loadAs = AI64Load32U
storeAs = AI64Store32
case AMOVD:
loadAs = AI64Load
storeAs = AI64Store
}
appendValue := func() {
switch mov.From.Type {
case obj.TYPE_CONST:
p = appendp(p, AI64Const, constAddr(mov.From.Offset))
case obj.TYPE_ADDR:
switch mov.From.Name {
case obj.NAME_NONE, obj.NAME_PARAM, obj.NAME_AUTO:
p = appendp(p, AGet, regAddr(mov.From.Reg))
if mov.From.Reg == REG_SP {
p = appendp(p, AI64ExtendUI32)
}
p = appendp(p, AI64Const, constAddr(mov.From.Offset))
p = appendp(p, AI64Add)
case obj.NAME_EXTERN:
p = appendp(p, AI64Const, mov.From)
default:
panic("bad name for MOV")
}
case obj.TYPE_REG:
p = appendp(p, AGet, mov.From)
if mov.From.Reg == REG_SP {
p = appendp(p, AI64ExtendUI32)
}
case obj.TYPE_MEM:
p = appendp(p, AGet, regAddr(mov.From.Reg))
if mov.From.Reg != REG_SP {
p = appendp(p, AI32WrapI64)
}
p = appendp(p, loadAs, constAddr(mov.From.Offset))
default:
panic("bad MOV type")
}
}
switch mov.To.Type {
case obj.TYPE_REG:
appendValue()
if mov.To.Reg == REG_SP {
p = appendp(p, AI32WrapI64)
}
p = appendp(p, ASet, mov.To)
case obj.TYPE_MEM:
switch mov.To.Name {
case obj.NAME_NONE, obj.NAME_PARAM:
p = appendp(p, AGet, regAddr(mov.To.Reg))
if mov.To.Reg != REG_SP {
p = appendp(p, AI32WrapI64)
}
case obj.NAME_EXTERN:
p = appendp(p, AI32Const, obj.Addr{Type: obj.TYPE_ADDR, Name: obj.NAME_EXTERN, Sym: mov.To.Sym})
default:
panic("bad MOV name")
}
appendValue()
p = appendp(p, storeAs, constAddr(mov.To.Offset))
default:
panic("bad MOV type")
}
case ACallImport:
p.As = obj.ANOP
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, ACall, obj.Addr{Type: obj.TYPE_MEM, Name: obj.NAME_EXTERN, Sym: s})
p.Mark = WasmImport
}
p = p.Link
}
}
func constAddr(value int64) obj.Addr {
return obj.Addr{Type: obj.TYPE_CONST, Offset: value}
}
func regAddr(reg int16) obj.Addr {
return obj.Addr{Type: obj.TYPE_REG, Reg: reg}
}
// countRegisters returns the number of integer and float registers used by s.
// It does so by looking for the maximum I* and R* registers.
func countRegisters(s *obj.LSym) (numI, numF int16) {
for p := s.Func.Text; p != nil; p = p.Link {
var reg int16
switch p.As {
case AGet:
reg = p.From.Reg
case ASet:
reg = p.To.Reg
case ATee:
reg = p.To.Reg
default:
continue
}
if reg >= REG_R0 && reg <= REG_R15 {
if n := reg - REG_R0 + 1; numI < n {
numI = n
}
} else if reg >= REG_F0 && reg <= REG_F15 {
if n := reg - REG_F0 + 1; numF < n {
numF = n
}
}
}
return
}
func assemble(ctxt *obj.Link, s *obj.LSym, newprog obj.ProgAlloc) {
w := new(bytes.Buffer)
numI, numF := countRegisters(s)
// Function starts with declaration of locals: numbers and types.
switch s.Name {
// memchr and memcmp don't use the normal Go calling convention and need i32 variables.
case "memchr":
writeUleb128(w, 1) // number of sets of locals
writeUleb128(w, 3) // number of locals
w.WriteByte(0x7F) // i32
case "memcmp":
writeUleb128(w, 1) // number of sets of locals
writeUleb128(w, 2) // number of locals
w.WriteByte(0x7F) // i32
default:
numTypes := 0
if numI > 0 {
numTypes++
}
if numF > 0 {
numTypes++
}
writeUleb128(w, uint64(numTypes))
if numI > 0 {
writeUleb128(w, uint64(numI)) // number of locals
w.WriteByte(0x7E) // i64
}
if numF > 0 {
writeUleb128(w, uint64(numF)) // number of locals
w.WriteByte(0x7C) // f64
}
}
for p := s.Func.Text; p != nil; p = p.Link {
switch p.As {
case AGet:
if p.From.Type != obj.TYPE_REG {
panic("bad Get: argument is not a register")
}
reg := p.From.Reg
switch {
case reg >= REG_PC_F && reg <= REG_PAUSE:
w.WriteByte(0x23) // get_global
writeUleb128(w, uint64(reg-REG_PC_F))
case reg >= REG_R0 && reg <= REG_R15:
w.WriteByte(0x20) // get_local (i64)
writeUleb128(w, uint64(reg-REG_R0))
case reg >= REG_F0 && reg <= REG_F15:
w.WriteByte(0x20) // get_local (f64)
writeUleb128(w, uint64(numI+(reg-REG_F0)))
default:
panic("bad Get: invalid register")
}
continue
case ASet:
if p.To.Type != obj.TYPE_REG {
panic("bad Set: argument is not a register")
}
reg := p.To.Reg
switch {
case reg >= REG_PC_F && reg <= REG_PAUSE:
w.WriteByte(0x24) // set_global
writeUleb128(w, uint64(reg-REG_PC_F))
case reg >= REG_R0 && reg <= REG_F15:
if p.Link.As == AGet && p.Link.From.Reg == reg {
w.WriteByte(0x22) // tee_local
p = p.Link
} else {
w.WriteByte(0x21) // set_local
}
if reg <= REG_R15 {
writeUleb128(w, uint64(reg-REG_R0))
} else {
writeUleb128(w, uint64(numI+(reg-REG_F0)))
}
default:
panic("bad Set: invalid register")
}
continue
case ATee:
if p.To.Type != obj.TYPE_REG {
panic("bad Tee: argument is not a register")
}
reg := p.To.Reg
switch {
case reg >= REG_R0 && reg <= REG_R15:
w.WriteByte(0x22) // tee_local (i64)
writeUleb128(w, uint64(reg-REG_R0))
case reg >= REG_F0 && reg <= REG_F15:
w.WriteByte(0x22) // tee_local (f64)
writeUleb128(w, uint64(numI+(reg-REG_F0)))
default:
panic("bad Tee: invalid register")
}
continue
case ANot:
w.WriteByte(0x45) // i32.eqz
continue
case obj.AUNDEF:
w.WriteByte(0x00) // unreachable
continue
case obj.ANOP, obj.ATEXT, obj.AFUNCDATA, obj.APCDATA:
// ignore
continue
}
switch {
case p.As < AUnreachable || p.As > AF64ReinterpretI64:
panic(fmt.Sprintf("unexpected assembler op: %s", p.As))
case p.As < AEnd:
w.WriteByte(byte(p.As - AUnreachable + 0x00))
case p.As < ADrop:
w.WriteByte(byte(p.As - AEnd + 0x0B))
case p.As < AI32Load:
w.WriteByte(byte(p.As - ADrop + 0x1A))
default:
w.WriteByte(byte(p.As - AI32Load + 0x28))
}
switch p.As {
case ABlock, ALoop, AIf:
if p.From.Offset != 0 {
// block type, rarely used, e.g. for code compiled with emscripten
w.WriteByte(0x80 - byte(p.From.Offset))
continue
}
w.WriteByte(0x40)
case ABr, ABrIf:
if p.To.Type != obj.TYPE_CONST {
panic("bad Br/BrIf")
}
writeUleb128(w, uint64(p.To.Offset))
case ABrTable:
idxs := p.To.Val.([]uint64)
writeUleb128(w, uint64(len(idxs)-1))
for _, idx := range idxs {
writeUleb128(w, idx)
}
case ACall:
switch p.To.Type {
case obj.TYPE_CONST:
writeUleb128(w, uint64(p.To.Offset))
case obj.TYPE_MEM:
if p.To.Name != obj.NAME_EXTERN && p.To.Name != obj.NAME_STATIC {
fmt.Println(p.To)
panic("bad name for Call")
}
r := obj.Addrel(s)
r.Off = int32(w.Len())
r.Type = objabi.R_CALL
if p.Mark&WasmImport != 0 {
r.Type = objabi.R_WASMIMPORT
}
r.Sym = p.To.Sym
default:
panic("bad type for Call")
}
case ACallIndirect:
writeUleb128(w, uint64(p.To.Offset))
w.WriteByte(0x00) // reserved value
case AI32Const, AI64Const:
if p.From.Name == obj.NAME_EXTERN {
r := obj.Addrel(s)
r.Off = int32(w.Len())
r.Type = objabi.R_ADDR
r.Sym = p.From.Sym
r.Add = p.From.Offset
break
}
writeSleb128(w, p.From.Offset)
case AF64Const:
b := make([]byte, 8)
binary.LittleEndian.PutUint64(b, math.Float64bits(p.From.Val.(float64)))
w.Write(b)
case AI32Load, AI64Load, AF32Load, AF64Load, AI32Load8S, AI32Load8U, AI32Load16S, AI32Load16U, AI64Load8S, AI64Load8U, AI64Load16S, AI64Load16U, AI64Load32S, AI64Load32U:
if p.From.Offset < 0 {
panic("negative offset for *Load")
}
if p.From.Type != obj.TYPE_CONST {
panic("bad type for *Load")
}
if p.From.Offset > math.MaxUint32 {
ctxt.Diag("bad offset in %v", p)
}
writeUleb128(w, align(p.As))
writeUleb128(w, uint64(p.From.Offset))
case AI32Store, AI64Store, AF32Store, AF64Store, AI32Store8, AI32Store16, AI64Store8, AI64Store16, AI64Store32:
if p.To.Offset < 0 {
panic("negative offset")
}
if p.From.Offset > math.MaxUint32 {
ctxt.Diag("bad offset in %v", p)
}
writeUleb128(w, align(p.As))
writeUleb128(w, uint64(p.To.Offset))
case ACurrentMemory, AGrowMemory:
w.WriteByte(0x00)
}
}
w.WriteByte(0x0b) // end
s.P = w.Bytes()
}
func align(as obj.As) uint64 {
switch as {
case AI32Load8S, AI32Load8U, AI64Load8S, AI64Load8U, AI32Store8, AI64Store8:
return 0
case AI32Load16S, AI32Load16U, AI64Load16S, AI64Load16U, AI32Store16, AI64Store16:
return 1
case AI32Load, AF32Load, AI64Load32S, AI64Load32U, AI32Store, AF32Store, AI64Store32:
return 2
case AI64Load, AF64Load, AI64Store, AF64Store:
return 3
default:
panic("align: bad op")
}
}
func writeUleb128(w io.ByteWriter, v uint64) {
more := true
for more {
c := uint8(v & 0x7f)
v >>= 7
more = v != 0
if more {
c |= 0x80
}
w.WriteByte(c)
}
}
func writeSleb128(w io.ByteWriter, v int64) {
more := true
for more {
c := uint8(v & 0x7f)
s := uint8(v & 0x40)
v >>= 7
more = !((v == 0 && s == 0) || (v == -1 && s != 0))
if more {
c |= 0x80
}
w.WriteByte(c)
}
}