go/src/cmd/compile/internal/noder/stencil.go

894 lines
28 KiB
Go
Raw Normal View History

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"fmt"
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
"strings"
)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// For catching problems as we add more features
// TODO(danscales): remove assertions or replace with base.FatalfAt()
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
// stencil scans functions for instantiated generic function calls and creates the
// required instantiations for simple generic functions. It also creates
// instantiated methods for all fully-instantiated generic types that have been
// encountered already or new ones that are encountered during the stenciling
// process.
func (g *irgen) stencil() {
g.target.Stencils = make(map[*types.Sym]*ir.Func)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// Instantiate the methods of instantiated generic types that we have seen so far.
g.instantiateMethods()
// Don't use range(g.target.Decls) - we also want to process any new instantiated
// functions that are created during this loop, in order to handle generic
// functions calling other generic functions.
for i := 0; i < len(g.target.Decls); i++ {
decl := g.target.Decls[i]
// Look for function instantiations in bodies of non-generic
// functions or in global assignments (ignore global type and
// constant declarations).
switch decl.Op() {
case ir.ODCLFUNC:
if decl.Type().HasTParam() {
// Skip any generic functions
continue
}
// transformCall() below depends on CurFunc being set.
ir.CurFunc = decl.(*ir.Func)
case ir.OAS, ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV, ir.OASOP:
// These are all the various kinds of global assignments,
// whose right-hand-sides might contain a function
// instantiation.
default:
// The other possible ops at the top level are ODCLCONST
// and ODCLTYPE, which don't have any function
// instantiations.
continue
}
// For all non-generic code, search for any function calls using
// generic function instantiations. Then create the needed
// instantiated function if it hasn't been created yet, and change
// to calling that function directly.
modified := false
foundFuncInst := false
ir.Visit(decl, func(n ir.Node) {
if n.Op() == ir.OFUNCINST {
// We found a function instantiation that is not
// immediately called.
foundFuncInst = true
}
if n.Op() != ir.OCALL || n.(*ir.CallExpr).X.Op() != ir.OFUNCINST {
return
}
// We have found a function call using a generic function
// instantiation.
call := n.(*ir.CallExpr)
inst := call.X.(*ir.InstExpr)
// Replace the OFUNCINST with a direct reference to the
// new stenciled function
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
st := g.getInstantiationForNode(inst)
call.X = st.Nname
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
if inst.X.Op() == ir.OCALLPART {
// When we create an instantiation of a method
// call, we make it a function. So, move the
// receiver to be the first arg of the function
// call.
withRecv := make([]ir.Node, len(call.Args)+1)
dot := inst.X.(*ir.SelectorExpr)
withRecv[0] = dot.X
copy(withRecv[1:], call.Args)
call.Args = withRecv
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
}
// Transform the Call now, which changes OCALL
// to OCALLFUNC and does typecheckaste/assignconvfn.
transformCall(call)
modified = true
})
// If we found an OFUNCINST without a corresponding call in the
// above decl, then traverse the nodes of decl again (with
// EditChildren rather than Visit), where we actually change the
// OFUNCINST node to an ONAME for the instantiated function.
// EditChildren is more expensive than Visit, so we only do this
// in the infrequent case of an OFUNCINST without a corresponding
// call.
if foundFuncInst {
var edit func(ir.Node) ir.Node
edit = func(x ir.Node) ir.Node {
if x.Op() == ir.OFUNCINST {
// inst.X is either a function name node
// or a selector expression for a method.
inst := x.(*ir.InstExpr)
st := g.getInstantiationForNode(inst)
modified = true
if inst.X.Op() == ir.ONAME {
return st.Nname
}
assert(inst.X.Op() == ir.OCALLPART)
// Return a new selector expression referring
// to the newly stenciled function.
oldse := inst.X.(*ir.SelectorExpr)
newse := ir.NewSelectorExpr(oldse.Pos(), ir.OCALLPART, oldse.X, oldse.Sel)
newse.Selection = types.NewField(oldse.Pos(), st.Sym(), st.Type())
newse.Selection.Nname = st
typed(inst.Type(), newse)
return newse
}
ir.EditChildren(x, edit)
return x
}
edit(decl)
}
if base.Flag.W > 1 && modified {
ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
}
ir.CurFunc = nil
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// We may have seen new fully-instantiated generic types while
// instantiating any needed functions/methods in the above
// function. If so, instantiate all the methods of those types
// (which will then lead to more function/methods to scan in the loop).
g.instantiateMethods()
}
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// instantiateMethods instantiates all the methods of all fully-instantiated
// generic types that have been added to g.instTypeList.
func (g *irgen) instantiateMethods() {
for i := 0; i < len(g.instTypeList); i++ {
typ := g.instTypeList[i]
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
// Mark runtime type as needed, since this ensures that the
// compiler puts out the needed DWARF symbols, when this
// instantiated type has a different package from the local
// package.
typecheck.NeedRuntimeType(typ)
// Lookup the method on the base generic type, since methods may
// not be set on imported instantiated types.
baseSym := typ.OrigSym
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
baseType := baseSym.Def.(*ir.Name).Type()
for j, m := range typ.Methods().Slice() {
name := m.Nname.(*ir.Name)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
// Note: we are breaking an invariant here:
// m.Nname is now not equal m.Nname.Func.Nname.
// m.Nname has the type of a method, whereas m.Nname.Func.Nname has
// the type of a function, since it is an function instantiation.
name.Func = g.getInstantiation(baseNname, typ.RParams(), true)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
}
}
g.instTypeList = nil
}
// genericSym returns the name of the base generic type for the type named by
// sym. It simply returns the name obtained by removing everything after the
// first bracket ("[").
func genericTypeName(sym *types.Sym) string {
return sym.Name[0:strings.Index(sym.Name, "[")]
}
// getInstantiationForNode returns the function/method instantiation for a
// InstExpr node inst.
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
if meth, ok := inst.X.(*ir.SelectorExpr); ok {
return g.getInstantiation(meth.Selection.Nname.(*ir.Name), typecheck.TypesOf(inst.Targs), true)
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
} else {
return g.getInstantiation(inst.X.(*ir.Name), typecheck.TypesOf(inst.Targs), false)
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
}
// getInstantiation gets the instantiantion of the function or method nameNode
// with the type arguments targs. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *irgen) getInstantiation(nameNode *ir.Name, targs []*types.Type, isMeth bool) *ir.Func {
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
if nameNode.Func.Body == nil && nameNode.Func.Inl != nil {
// If there is no body yet but Func.Inl exists, then we can can
// import the whole generic body.
assert(nameNode.Func.Inl.Cost == 1 && nameNode.Sym().Pkg != types.LocalPkg)
typecheck.ImportBody(nameNode.Func)
assert(nameNode.Func.Inl.Body != nil)
nameNode.Func.Body = nameNode.Func.Inl.Body
nameNode.Func.Dcl = nameNode.Func.Inl.Dcl
}
sym := typecheck.MakeInstName(nameNode.Sym(), targs, isMeth)
st := g.target.Stencils[sym]
if st == nil {
// If instantiation doesn't exist yet, create it and add
// to the list of decls.
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
st = g.genericSubst(sym, nameNode, targs, isMeth)
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
// This ensures that the linker drops duplicates of this instantiation.
// All just works!
st.SetDupok(true)
g.target.Stencils[sym] = st
g.target.Decls = append(g.target.Decls, st)
if base.Flag.W > 1 {
ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
}
}
return st
}
// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
g *irgen
isMethod bool // If a method is being instantiated
newf *ir.Func // Func node for the new stenciled function
tparams []*types.Type
targs []*types.Type
// The substitution map from name nodes in the generic function to the
// name nodes in the new stenciled function.
vars map[*ir.Name]*ir.Name
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args targs. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. Otherwise the
// instantiated method would still need to be transformed by later compiler
// phases.
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []*types.Type, isMethod bool) *ir.Func {
var tparams []*types.Type
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if isMethod {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
// Get the type params from the method receiver (after skipping
// over any pointer)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
recvType := nameNode.Type().Recv().Type
recvType = deref(recvType)
tparams = recvType.RParams()
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
} else {
fields := nameNode.Type().TParams().Fields().Slice()
tparams = make([]*types.Type, len(fields))
for i, f := range fields {
tparams[i] = f.Type
}
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
}
gf := nameNode.Func
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// Pos of the instantiated function is same as the generic function
newf := ir.NewFunc(gf.Pos())
newf.Pragma = gf.Pragma // copy over pragmas from generic function to stenciled implementation.
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
newf.Nname.Func = newf
newf.Nname.Defn = newf
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
newsym.Def = newf.Nname
savef := ir.CurFunc
// transformCall/transformReturn (called during stenciling of the body)
// depend on ir.CurFunc being set.
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
ir.CurFunc = newf
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
assert(len(tparams) == len(targs))
subst := &subster{
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
g: g,
isMethod: isMethod,
newf: newf,
tparams: tparams,
targs: targs,
vars: make(map[*ir.Name]*ir.Name),
}
newf.Dcl = make([]*ir.Name, len(gf.Dcl))
for i, n := range gf.Dcl {
newf.Dcl[i] = subst.node(n).(*ir.Name)
}
// Replace the types in the function signature.
// Ugly: also, we have to insert the Name nodes of the parameters/results into
// the function type. The current function type has no Nname fields set,
// because it came via conversion from the types2 type.
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
oldt := nameNode.Type()
// We also transform a generic method type to the corresponding
// instantiated function type where the receiver is the first parameter.
newt := types.NewSignature(oldt.Pkg(), nil, nil,
subst.fields(ir.PPARAM, append(oldt.Recvs().FieldSlice(), oldt.Params().FieldSlice()...), newf.Dcl),
subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))
newf.Nname.SetType(newt)
ir.MarkFunc(newf.Nname)
newf.SetTypecheck(1)
newf.Nname.SetTypecheck(1)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
// Make sure name/type of newf is set before substituting the body.
newf.Body = subst.list(gf.Body)
ir.CurFunc = savef
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
return newf
}
// node is like DeepCopy(), but creates distinct ONAME nodes, and also descends
// into closures. It substitutes type arguments for type parameters in all the new
// nodes.
func (subst *subster) node(n ir.Node) ir.Node {
// Use closure to capture all state needed by the ir.EditChildren argument.
var edit func(ir.Node) ir.Node
edit = func(x ir.Node) ir.Node {
switch x.Op() {
case ir.OTYPE:
return ir.TypeNode(subst.typ(x.Type()))
case ir.ONAME:
name := x.(*ir.Name)
if v := subst.vars[name]; v != nil {
return v
}
m := ir.NewNameAt(name.Pos(), name.Sym())
if name.IsClosureVar() {
m.SetIsClosureVar(true)
}
t := x.Type()
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
if t == nil {
assert(name.BuiltinOp != 0)
} else {
newt := subst.typ(t)
m.SetType(newt)
}
m.BuiltinOp = name.BuiltinOp
m.Curfn = subst.newf
m.Class = name.Class
m.Func = name.Func
subst.vars[name] = m
m.SetTypecheck(1)
return m
case ir.OLITERAL, ir.ONIL:
if x.Sym() != nil {
return x
}
}
m := ir.Copy(x)
if _, isExpr := m.(ir.Expr); isExpr {
t := x.Type()
if t == nil {
// t can be nil only if this is a call that has no
// return values, so allow that and otherwise give
// an error.
_, isCallExpr := m.(*ir.CallExpr)
_, isStructKeyExpr := m.(*ir.StructKeyExpr)
if !isCallExpr && !isStructKeyExpr && x.Op() != ir.OPANIC &&
x.Op() != ir.OCLOSE {
base.Fatalf(fmt.Sprintf("Nil type for %v", x))
}
} else if x.Op() != ir.OCLOSURE {
m.SetType(subst.typ(x.Type()))
}
}
ir.EditChildren(m, edit)
cmd/compile: replace calls to typecheck with transform functions For additions, compares, and slices, create transform functions that do just the transformations for those nodes by the typecheck package (given that the code has been fully typechecked by types2). For nodes that have no args with typeparams, we call these transform functions directly in noder2. But for nodes that have args with typeparams, we have to delay and call the tranform functions during stenciling, since we don't know the specific types involved. We indicate that a node still needs transformation by setting Typecheck to a new value 3. This value means the current type of the node has been set (via types2), but the node may still need transformation. Had to export typcheck.IsCmp and typecheck.Assignop from the typecheck package. Added new tests list2.go (required delaying compare typecheck/transform because of != compare in checkList) and adder.go (requires delaying add typecheck/transform, since it can do addition for numbers or strings). There are several more transformation functions needed for expressions (indexing, calls, etc.) and several more complicated ones needed for statements (mainly various kinds of assignments). Change-Id: I7d89d13a4108308ea0304a4b815ab60b40c59b0a Reviewed-on: https://go-review.googlesource.com/c/go/+/303091 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-18 14:36:39 -07:00
if x.Typecheck() == 3 {
// These are nodes whose transforms were delayed until
// their instantiated type was known.
m.SetTypecheck(1)
cmd/compile: replace calls to typecheck with transform functions For additions, compares, and slices, create transform functions that do just the transformations for those nodes by the typecheck package (given that the code has been fully typechecked by types2). For nodes that have no args with typeparams, we call these transform functions directly in noder2. But for nodes that have args with typeparams, we have to delay and call the tranform functions during stenciling, since we don't know the specific types involved. We indicate that a node still needs transformation by setting Typecheck to a new value 3. This value means the current type of the node has been set (via types2), but the node may still need transformation. Had to export typcheck.IsCmp and typecheck.Assignop from the typecheck package. Added new tests list2.go (required delaying compare typecheck/transform because of != compare in checkList) and adder.go (requires delaying add typecheck/transform, since it can do addition for numbers or strings). There are several more transformation functions needed for expressions (indexing, calls, etc.) and several more complicated ones needed for statements (mainly various kinds of assignments). Change-Id: I7d89d13a4108308ea0304a4b815ab60b40c59b0a Reviewed-on: https://go-review.googlesource.com/c/go/+/303091 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-18 14:36:39 -07:00
if typecheck.IsCmp(x.Op()) {
transformCompare(m.(*ir.BinaryExpr))
} else {
switch x.Op() {
case ir.OSLICE, ir.OSLICE3:
transformSlice(m.(*ir.SliceExpr))
case ir.OADD:
m = transformAdd(m.(*ir.BinaryExpr))
case ir.OINDEX:
transformIndex(m.(*ir.IndexExpr))
case ir.OAS2:
as2 := m.(*ir.AssignListStmt)
transformAssign(as2, as2.Lhs, as2.Rhs)
case ir.OAS:
as := m.(*ir.AssignStmt)
lhs, rhs := []ir.Node{as.X}, []ir.Node{as.Y}
transformAssign(as, lhs, rhs)
case ir.OASOP:
as := m.(*ir.AssignOpStmt)
transformCheckAssign(as, as.X)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
case ir.ORETURN:
transformReturn(m.(*ir.ReturnStmt))
case ir.OSEND:
transformSend(m.(*ir.SendStmt))
default:
base.Fatalf("Unexpected node with Typecheck() == 3")
}
cmd/compile: replace calls to typecheck with transform functions For additions, compares, and slices, create transform functions that do just the transformations for those nodes by the typecheck package (given that the code has been fully typechecked by types2). For nodes that have no args with typeparams, we call these transform functions directly in noder2. But for nodes that have args with typeparams, we have to delay and call the tranform functions during stenciling, since we don't know the specific types involved. We indicate that a node still needs transformation by setting Typecheck to a new value 3. This value means the current type of the node has been set (via types2), but the node may still need transformation. Had to export typcheck.IsCmp and typecheck.Assignop from the typecheck package. Added new tests list2.go (required delaying compare typecheck/transform because of != compare in checkList) and adder.go (requires delaying add typecheck/transform, since it can do addition for numbers or strings). There are several more transformation functions needed for expressions (indexing, calls, etc.) and several more complicated ones needed for statements (mainly various kinds of assignments). Change-Id: I7d89d13a4108308ea0304a4b815ab60b40c59b0a Reviewed-on: https://go-review.googlesource.com/c/go/+/303091 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-18 14:36:39 -07:00
}
}
switch x.Op() {
case ir.OLITERAL:
t := m.Type()
if t != x.Type() {
// types2 will give us a constant with a type T,
// if an untyped constant is used with another
// operand of type T (in a provably correct way).
// When we substitute in the type args during
// stenciling, we now know the real type of the
// constant. We may then need to change the
// BasicLit.val to be the correct type (e.g.
// convert an int64Val constant to a floatVal
// constant).
m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
m = typecheck.DefaultLit(m, t)
}
case ir.OXDOT:
// A method value/call via a type param will have been
// left as an OXDOT. When we see this during stenciling,
// finish the transformation, now that we have the
// instantiated receiver type. We need to do this now,
// since the access/selection to the method for the real
// type is very different from the selection for the type
// param. m will be transformed to an OCALLPART node. It
// will be transformed to an ODOTMETH or ODOTINTER node if
// we find in the OCALL case below that the method value
// is actually called.
transformDot(m.(*ir.SelectorExpr), false)
m.SetTypecheck(1)
case ir.OCALL:
call := m.(*ir.CallExpr)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
switch call.X.Op() {
case ir.OTYPE:
// Transform the conversion, now that we know the
// type argument.
m = transformConvCall(m.(*ir.CallExpr))
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
case ir.OCALLPART:
// Redo the transformation of OXDOT, now that we
// know the method value is being called. Then
// transform the call.
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
transformDot(call.X.(*ir.SelectorExpr), true)
transformCall(call)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
case ir.ODOT, ir.ODOTPTR:
// An OXDOT for a generic receiver was resolved to
// an access to a field which has a function
// value. Transform the call to that function, now
// that the OXDOT was resolved.
transformCall(call)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
case ir.ONAME:
name := call.X.Name()
if name.BuiltinOp != ir.OXXX {
switch name.BuiltinOp {
case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
// Transform these builtins now that we
// know the type of the args.
m = transformBuiltin(call)
default:
base.FatalfAt(call.Pos(), "Unexpected builtin op")
}
} else {
// This is the case of a function value that was a
// type parameter (implied to be a function via a
// structural constraint) which is now resolved.
transformCall(call)
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
}
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
case ir.OCLOSURE:
transformCall(call)
case ir.OFUNCINST:
// A call with an OFUNCINST will get transformed
// in stencil() once we have created & attached the
// instantiation to be called.
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
default:
base.FatalfAt(call.Pos(), fmt.Sprintf("Unexpected op with CALL during stenciling: %v", call.X.Op()))
}
case ir.OCLOSURE:
x := x.(*ir.ClosureExpr)
// Need to duplicate x.Func.Nname, x.Func.Dcl, x.Func.ClosureVars, and
// x.Func.Body.
oldfn := x.Func
newfn := ir.NewFunc(oldfn.Pos())
if oldfn.ClosureCalled() {
newfn.SetClosureCalled(true)
}
newfn.SetIsHiddenClosure(true)
m.(*ir.ClosureExpr).Func = newfn
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// Closure name can already have brackets, if it derives
// from a generic method
newsym := typecheck.MakeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod)
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
newfn.Nname.Func = newfn
newfn.Nname.Defn = newfn
ir.MarkFunc(newfn.Nname)
newfn.OClosure = m.(*ir.ClosureExpr)
saveNewf := subst.newf
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
ir.CurFunc = newfn
subst.newf = newfn
newfn.Dcl = subst.namelist(oldfn.Dcl)
newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
typed(newfn.Nname.Type(), m)
newfn.SetTypecheck(1)
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
// Make sure type of closure function is set before doing body.
newfn.Body = subst.list(oldfn.Body)
subst.newf = saveNewf
ir.CurFunc = saveNewf
subst.g.target.Decls = append(subst.g.target.Decls, newfn)
}
return m
}
return edit(n)
}
func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
s := make([]*ir.Name, len(l))
for i, n := range l {
s[i] = subst.node(n).(*ir.Name)
if n.Defn != nil {
s[i].Defn = subst.node(n.Defn)
}
if n.Outer != nil {
s[i].Outer = subst.node(n.Outer).(*ir.Name)
}
}
return s
}
func (subst *subster) list(l []ir.Node) []ir.Node {
s := make([]ir.Node, len(l))
for i, n := range l {
s[i] = subst.node(n)
}
return s
}
// tstruct substitutes type params in types of the fields of a structure type. For
// each field, if Nname is set, tstruct also translates the Nname using
// subst.vars, if Nname is in subst.vars. To always force the creation of a new
// (top-level) struct, regardless of whether anything changed with the types or
// names of the struct's fields, set force to true.
func (subst *subster) tstruct(t *types.Type, force bool) *types.Type {
if t.NumFields() == 0 {
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if t.HasTParam() {
// For an empty struct, we need to return a new type,
// since it may now be fully instantiated (HasTParam
// becomes false).
return types.NewStruct(t.Pkg(), nil)
}
return t
}
var newfields []*types.Field
if force {
newfields = make([]*types.Field, t.NumFields())
}
for i, f := range t.Fields().Slice() {
t2 := subst.typ(f.Type)
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
newfields = make([]*types.Field, t.NumFields())
for j := 0; j < i; j++ {
newfields[j] = t.Field(j)
}
}
if newfields != nil {
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// TODO(danscales): make sure this works for the field
// names of embedded types (which should keep the name of
// the type param, not the instantiated type).
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
if f.Nname != nil {
// f.Nname may not be in subst.vars[] if this is
// a function name or a function instantiation type
// that we are translating
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
v := subst.vars[f.Nname.(*ir.Name)]
// Be careful not to put a nil var into Nname,
// since Nname is an interface, so it would be a
// non-nil interface.
if v != nil {
newfields[i].Nname = v
}
}
}
}
if newfields != nil {
return types.NewStruct(t.Pkg(), newfields)
}
return t
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// tinter substitutes type params in types of the methods of an interface type.
func (subst *subster) tinter(t *types.Type) *types.Type {
if t.Methods().Len() == 0 {
return t
}
var newfields []*types.Field
for i, f := range t.Methods().Slice() {
t2 := subst.typ(f.Type)
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
newfields = make([]*types.Field, t.Methods().Len())
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
for j := 0; j < i; j++ {
newfields[j] = t.Methods().Index(j)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
}
}
if newfields != nil {
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
}
}
if newfields != nil {
return types.NewInterface(t.Pkg(), newfields)
}
return t
}
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
// typ computes the type obtained by substituting any type parameter in t with the
// corresponding type argument in subst. If t contains no type parameters, the
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// result is t; otherwise the result is a new type. It deals with recursive types
// by using TFORW types and finding partially or fully created types via sym.Def.
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
func (subst *subster) typ(t *types.Type) *types.Type {
if !t.HasTParam() && t.Kind() != types.TFUNC {
// Note: function types need to be copied regardless, as the
// types of closures may contain declarations that need
// to be copied. See #45738.
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
return t
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if t.Kind() == types.TTYPEPARAM {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
for i, tp := range subst.tparams {
if tp == t {
return subst.targs[i]
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
}
}
// If t is a simple typeparam T, then t has the name/symbol 'T'
// and t.Underlying() == t.
//
// However, consider the type definition: 'type P[T any] T'. We
// might use this definition so we can have a variant of type T
// that we can add new methods to. Suppose t is a reference to
// P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
// because P[T] is defined as T. If we look at t.Underlying(), it
// is different, because the name of t.Underlying() is 'T' rather
// than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
// In this case, we do the needed recursive substitution in the
// case statement below.
if t.Underlying() == t {
// t is a simple typeparam that didn't match anything in tparam
return t
}
// t is a more complex typeparam (e.g. P[T], as above, whose
// definition is just T).
assert(t.Sym() != nil)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
}
var newsym *types.Sym
var neededTargs []*types.Type
var forw *types.Type
if t.Sym() != nil {
// Translate the type params for this type according to
// the tparam/targs mapping from subst.
neededTargs = make([]*types.Type, len(t.RParams()))
for i, rparam := range t.RParams() {
neededTargs[i] = subst.typ(rparam)
}
// For a named (defined) type, we have to change the name of the
// type as well. We do this first, so we can look up if we've
// already seen this type during this substitution or other
// definitions/substitutions.
genName := genericTypeName(t.Sym())
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
newsym = t.Sym().Pkg.Lookup(typecheck.InstTypeName(genName, neededTargs))
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if newsym.Def != nil {
// We've already created this instantiated defined type.
return newsym.Def.Type()
}
// In order to deal with recursive generic types, create a TFORW
// type initially and set the Def field of its sym, so it can be
// found if this type appears recursively within the type.
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
forw = typecheck.NewIncompleteNamedType(t.Pos(), newsym)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
//println("Creating new type by sub", newsym.Name, forw.HasTParam())
forw.SetRParams(neededTargs)
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
// Copy the OrigSym from the re-instantiated type (which is the sym of
// the base generic type).
assert(t.OrigSym != nil)
forw.OrigSym = t.OrigSym
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
}
var newt *types.Type
switch t.Kind() {
case types.TTYPEPARAM:
if t.Sym() == newsym {
// The substitution did not change the type.
return t
}
// Substitute the underlying typeparam (e.g. T in P[T], see
// the example describing type P[T] above).
newt = subst.typ(t.Underlying())
assert(newt != t)
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
case types.TARRAY:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
newt = types.NewArray(newelem, t.NumElem())
}
case types.TPTR:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
newt = types.NewPtr(newelem)
}
case types.TSLICE:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
newt = types.NewSlice(newelem)
}
case types.TSTRUCT:
newt = subst.tstruct(t, false)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if newt == t {
newt = nil
}
case types.TFUNC:
newrecvs := subst.tstruct(t.Recvs(), false)
newparams := subst.tstruct(t.Params(), false)
newresults := subst.tstruct(t.Results(), false)
if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
// If any types have changed, then the all the fields of
// of recv, params, and results must be copied, because they have
// offset fields that are dependent, and so must have an
// independent copy for each new signature.
var newrecv *types.Field
if newrecvs.NumFields() > 0 {
if newrecvs == t.Recvs() {
newrecvs = subst.tstruct(t.Recvs(), true)
}
newrecv = newrecvs.Field(0)
}
if newparams == t.Params() {
newparams = subst.tstruct(t.Params(), true)
}
if newresults == t.Results() {
newresults = subst.tstruct(t.Results(), true)
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
}
case types.TINTER:
newt = subst.tinter(t)
if newt == t {
newt = nil
}
case types.TMAP:
newkey := subst.typ(t.Key())
newval := subst.typ(t.Elem())
if newkey != t.Key() || newval != t.Elem() {
newt = types.NewMap(newkey, newval)
}
case types.TCHAN:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewChan(newelem, t.ChanDir())
if !newt.HasTParam() {
// TODO(danscales): not sure why I have to do this
// only for channels.....
types.CheckSize(newt)
}
}
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
if newt == nil {
// Even though there were typeparams in the type, there may be no
// change if this is a function type for a function call (which will
// have its own tparams/targs in the function instantiation).
return t
}
if t.Sym() == nil {
// Not a named type, so there was no forwarding type and there are
// no methods to substitute.
assert(t.Methods().Len() == 0)
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
return newt
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
forw.SetUnderlying(newt)
newt = forw
if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
// Fill in the method info for the new type.
var newfields []*types.Field
newfields = make([]*types.Field, t.Methods().Len())
for i, f := range t.Methods().Slice() {
t2 := subst.typ(f.Type)
oldsym := f.Nname.Sym()
newsym := typecheck.MakeInstName(oldsym, subst.targs, true)
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
var nname *ir.Name
if newsym.Def != nil {
nname = newsym.Def.(*ir.Name)
} else {
nname = ir.NewNameAt(f.Pos, newsym)
nname.SetType(t2)
newsym.Def = nname
}
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
newfields[i].Nname = nname
}
newt.Methods().Set(newfields)
if !newt.HasTParam() {
// Generate all the methods for a new fully-instantiated type.
subst.g.instTypeList = append(subst.g.instTypeList, newt)
}
}
return newt
}
// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
[dev.typeparams] cmd/compile: support generic types (with stenciling of method calls) A type may now have a type param in it, either because it has been composed from a function type param, or it has been declared as or derived from a reference to a generic type. No objects or types with type params can be exported yet. No generic type has a runtime descriptor (but will likely eventually be associated with a dictionary). types.Type now has an RParam field, which for a Named type can specify the type params (in order) that must be supplied to fully instantiate the type. Also, there is a new flag HasTParam to indicate if there is a type param (TTYPEPARAM) anywhere in the type. An instantiated generic type (whether fully instantiated or re-instantiated to new type params) is a defined type, even though there was no explicit declaration. This allows us to handle recursive instantiated types (and improves printing of types). To avoid the need to transform later in the compiler, an instantiation of a method of a generic type is immediately represented as a function with the method as the first argument. Added 5 tests on generic types to test/typeparams, including list.go, which tests recursive generic types. Change-Id: Ib7ff27abd369a06d1c8ea84edc6ca1fd74bbb7c2 Reviewed-on: https://go-review.googlesource.com/c/go/+/292652 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-02-11 10:50:20 -08:00
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
// Find the starting index in dcl of declarations of the class (either
// PPARAM or PPARAMOUT).
var i int
for i = range dcl {
if dcl[i].Class == class {
break
}
}
// Create newfields nodes that are copies of the oldfields nodes, but
// with substitution for any type params, and with Nname set to be the node in
// Dcl for the corresponding PPARAM or PPARAMOUT.
newfields := make([]*types.Field, len(oldfields))
for j := range oldfields {
newfields[j] = oldfields[j].Copy()
newfields[j].Type = subst.typ(oldfields[j].Type)
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
// A PPARAM field will be missing from dcl if its name is
// unspecified or specified as "_". So, we compare the dcl sym
[dev.typeparams] cmd/compile: get export/import of generic types & functions working The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-04-13 15:37:36 -07:00
// with the field sym (or sym of the field's Nname node). (Unnamed
// results still have a name like ~r2 in their Nname node.) If
// they don't match, this dcl (if there is one left) must apply to
// a later field.
if i < len(dcl) && (dcl[i].Sym() == oldfields[j].Sym ||
(oldfields[j].Nname != nil && dcl[i].Sym() == oldfields[j].Nname.Sym())) {
newfields[j].Nname = dcl[i]
i++
}
}
return newfields
}
cmd/compile: get instantiated generic types working with interfaces Get instantiatiated generic types working with interfaces, including typechecking assignments to interfaces and instantiating all the methods properly. To get it all working, this change includes: - Add support for substituting in interfaces in subster.typ() - Fill in the info for the methods for all instantiated generic types, so those methods will be available for later typechecking (by the old typechecker) when assigning an instantiated generic type to an interface. We also want those methods available so we have the list when we want to instantiate all methods of an instantiated type. We have both for instantiated types encountered during the initial noder phase, and for instantiated types created during stenciling of a function/method. - When we first create a fully-instantiated generic type (whether during initial noder2 pass or while instantiating a method/function), add it to a list so that all of its methods will also be instantiated. This is needed so that an instantiated type can be assigned to an interface. - Properly substitute type names in the names of instantiated methods. - New accessor methods for types.Type.RParam. - To deal with generic types which are empty structs (or just don't use their type params anywhere), we want to set HasTParam if a named type has any type params that are not fully instantiated, even if the type param is not used in the type. - In subst.typ() and elsewhere, always set sym.Def for a new forwarding type we are creating, so we always create a single unique type for each generic type instantiation. This handles recursion within a type, and also recursive relationships across many types or methods. We remove the seen[] hashtable, which was serving the same purpose, but for subst.typ() only. We now handle all kinds of recursive types. - We don't seem to need to force types.CheckSize() on created/substituted generic types anymore, so commented out for now. - Add an RParams accessor to types2.Signature, and also a new exported types2.AsSignature() function. Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632 Reviewed-on: https://go-review.googlesource.com/c/go/+/298449 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-03 13:33:27 -08:00
// defer does a single defer of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
if t.IsPtr() {
return t.Elem()
}
return t
}