go/src/cmd/compile/internal/ssa/rewrite.go

521 lines
12 KiB
Go
Raw Normal View History

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"math"
"os"
"path/filepath"
)
func applyRewrite(f *Func, rb func(*Block, *Config) bool, rv func(*Value, *Config) bool) {
// repeat rewrites until we find no more rewrites
var curb *Block
var curv *Value
defer func() {
if curb != nil {
curb.Fatalf("panic during rewrite of block %s\n", curb.LongString())
}
if curv != nil {
curv.Fatalf("panic during rewrite of value %s\n", curv.LongString())
// TODO(khr): print source location also
}
}()
config := f.Config
for {
change := false
for _, b := range f.Blocks {
if b.Control != nil && b.Control.Op == OpCopy {
for b.Control.Op == OpCopy {
b.SetControl(b.Control.Args[0])
}
}
curb = b
if rb(b, config) {
change = true
}
curb = nil
for _, v := range b.Values {
change = phielimValue(v) || change
// Eliminate copy inputs.
// If any copy input becomes unused, mark it
// as invalid and discard its argument. Repeat
// recursively on the discarded argument.
// This phase helps remove phantom "dead copy" uses
// of a value so that a x.Uses==1 rule condition
// fires reliably.
for i, a := range v.Args {
if a.Op != OpCopy {
continue
}
v.SetArg(i, copySource(a))
change = true
for a.Uses == 0 {
b := a.Args[0]
a.reset(OpInvalid)
a = b
}
}
// apply rewrite function
curv = v
if rv(v, config) {
change = true
}
curv = nil
}
}
if !change {
break
}
}
// remove clobbered values
for _, b := range f.Blocks {
j := 0
for i, v := range b.Values {
if v.Op == OpInvalid {
f.freeValue(v)
continue
}
if i != j {
b.Values[j] = v
}
j++
}
if j != len(b.Values) {
tail := b.Values[j:]
for j := range tail {
tail[j] = nil
}
b.Values = b.Values[:j]
}
}
}
// Common functions called from rewriting rules
func is64BitFloat(t Type) bool {
return t.Size() == 8 && t.IsFloat()
}
func is32BitFloat(t Type) bool {
return t.Size() == 4 && t.IsFloat()
}
func is64BitInt(t Type) bool {
return t.Size() == 8 && t.IsInteger()
}
func is32BitInt(t Type) bool {
return t.Size() == 4 && t.IsInteger()
}
func is16BitInt(t Type) bool {
return t.Size() == 2 && t.IsInteger()
}
func is8BitInt(t Type) bool {
return t.Size() == 1 && t.IsInteger()
}
func isPtr(t Type) bool {
return t.IsPtrShaped()
}
func isSigned(t Type) bool {
return t.IsSigned()
}
func typeSize(t Type) int64 {
return t.Size()
}
// mergeSym merges two symbolic offsets. There is no real merging of
// offsets, we just pick the non-nil one.
func mergeSym(x, y interface{}) interface{} {
if x == nil {
return y
}
if y == nil {
return x
}
panic(fmt.Sprintf("mergeSym with two non-nil syms %s %s", x, y))
}
func canMergeSym(x, y interface{}) bool {
return x == nil || y == nil
}
// canMergeLoad reports whether the load can be merged into target without
// invalidating the schedule.
func canMergeLoad(target, load *Value) bool {
if target.Block.ID != load.Block.ID {
// If the load is in a different block do not merge it.
return false
}
mem := load.Args[len(load.Args)-1]
// We need the load's memory arg to still be alive at target. That
// can't be the case if one of target's args depends on a memory
// state that is a successor of load's memory arg.
//
// For example, it would be invalid to merge load into target in
// the following situation because newmem has killed oldmem
// before target is reached:
// load = read ... oldmem
// newmem = write ... oldmem
// arg0 = read ... newmem
// target = add arg0 load
//
// If the argument comes from a different block then we can exclude
// it immediately because it must dominate load (which is in the
// same block as target).
var args []*Value
for _, a := range target.Args {
if a != load && a.Block.ID == target.Block.ID {
args = append(args, a)
}
}
// memPreds contains memory states known to be predecessors of load's
// memory state. It is lazily initialized.
var memPreds map[*Value]bool
search:
for i := 0; len(args) > 0; i++ {
const limit = 100
if i >= limit {
// Give up if we have done a lot of iterations.
return false
}
v := args[len(args)-1]
args = args[:len(args)-1]
if target.Block.ID != v.Block.ID {
// Since target and load are in the same block
// we can stop searching when we leave the block.
continue search
}
if v.Op == OpPhi {
// A Phi implies we have reached the top of the block.
continue search
}
if v.Type.IsTuple() && v.Type.FieldType(1).IsMemory() {
// We could handle this situation however it is likely
// to be very rare.
return false
}
if v.Type.IsMemory() {
if memPreds == nil {
// Initialise a map containing memory states
// known to be predecessors of load's memory
// state.
memPreds = make(map[*Value]bool)
m := mem
const limit = 50
for i := 0; i < limit; i++ {
if m.Op == OpPhi {
break
}
if m.Block.ID != target.Block.ID {
break
}
if !m.Type.IsMemory() {
break
}
memPreds[m] = true
if len(m.Args) == 0 {
break
}
m = m.Args[len(m.Args)-1]
}
}
// We can merge if v is a predecessor of mem.
//
// For example, we can merge load into target in the
// following scenario:
// x = read ... v
// mem = write ... v
// load = read ... mem
// target = add x load
if memPreds[v] {
continue search
}
return false
}
if len(v.Args) > 0 && v.Args[len(v.Args)-1] == mem {
// If v takes mem as an input then we know mem
// is valid at this point.
continue search
}
for _, a := range v.Args {
if target.Block.ID == a.Block.ID {
args = append(args, a)
}
}
}
return true
}
// isArg returns whether s is an arg symbol
func isArg(s interface{}) bool {
_, ok := s.(*ArgSymbol)
return ok
}
// isAuto returns whether s is an auto symbol
func isAuto(s interface{}) bool {
_, ok := s.(*AutoSymbol)
return ok
}
// isSameSym returns whether sym is the same as the given named symbol
func isSameSym(sym interface{}, name string) bool {
s, ok := sym.(fmt.Stringer)
return ok && s.String() == name
}
// nlz returns the number of leading zeros.
func nlz(x int64) int64 {
// log2(0) == 1, so nlz(0) == 64
return 63 - log2(x)
}
// ntz returns the number of trailing zeros.
func ntz(x int64) int64 {
return 64 - nlz(^x&(x-1))
}
// nlo returns the number of leading ones.
func nlo(x int64) int64 {
return nlz(^x)
}
// nto returns the number of trailing ones.
func nto(x int64) int64 {
return ntz(^x)
}
// log2 returns logarithm in base of uint64(n), with log2(0) = -1.
cmd/compile: improve tighten pass Move a value to the block which is the lowest common ancestor in the dominator tree of all of its uses. Make sure not to move a value into a loop. Makes the tighten pass on average (across go1 benchmarks) 40% slower. Still not a big contributor to overall compile time. Binary size is just a tad smaller. name old time/op new time/op delta BinaryTree17-12 2.77s ± 9% 2.76s ± 9% ~ (p=0.878 n=8+8) Fannkuch11-12 2.75s ± 1% 2.74s ± 1% ~ (p=0.232 n=8+7) FmtFprintfEmpty-12 48.9ns ± 9% 47.7ns ± 0% ~ (p=0.431 n=8+8) FmtFprintfString-12 143ns ± 8% 142ns ± 1% ~ (p=0.257 n=8+7) FmtFprintfInt-12 123ns ± 1% 122ns ± 1% -1.04% (p=0.026 n=7+8) FmtFprintfIntInt-12 195ns ± 7% 185ns ± 0% -5.32% (p=0.000 n=8+8) FmtFprintfPrefixedInt-12 194ns ± 4% 195ns ± 0% +0.81% (p=0.015 n=7+7) FmtFprintfFloat-12 267ns ± 0% 268ns ± 0% +0.37% (p=0.001 n=7+6) FmtManyArgs-12 800ns ± 0% 762ns ± 1% -4.78% (p=0.000 n=8+8) GobDecode-12 7.67ms ± 2% 7.60ms ± 2% ~ (p=0.234 n=8+8) GobEncode-12 6.55ms ± 0% 6.57ms ± 1% ~ (p=0.336 n=7+8) Gzip-12 237ms ± 0% 238ms ± 0% +0.40% (p=0.017 n=7+7) Gunzip-12 40.8ms ± 0% 40.2ms ± 0% -1.52% (p=0.000 n=7+8) HTTPClientServer-12 208µs ± 3% 209µs ± 3% ~ (p=0.955 n=8+7) JSONEncode-12 16.2ms ± 1% 17.2ms ±11% +5.80% (p=0.001 n=7+8) JSONDecode-12 57.3ms ±12% 55.5ms ± 3% ~ (p=0.867 n=8+7) Mandelbrot200-12 4.68ms ± 6% 4.46ms ± 1% ~ (p=0.442 n=8+8) GoParse-12 4.27ms ±44% 3.42ms ± 1% -19.95% (p=0.005 n=8+8) RegexpMatchEasy0_32-12 75.1ns ± 0% 75.8ns ± 1% +0.99% (p=0.002 n=7+7) RegexpMatchEasy0_1K-12 963ns ± 0% 1021ns ± 6% +5.98% (p=0.001 n=7+7) RegexpMatchEasy1_32-12 72.4ns ±11% 70.8ns ± 1% ~ (p=0.368 n=8+8) RegexpMatchEasy1_1K-12 394ns ± 1% 399ns ± 0% +1.23% (p=0.000 n=8+7) RegexpMatchMedium_32-12 114ns ± 0% 115ns ± 1% +0.63% (p=0.021 n=7+7) RegexpMatchMedium_1K-12 35.9µs ± 0% 37.6µs ± 1% +4.72% (p=0.000 n=7+8) RegexpMatchHard_32-12 1.93µs ± 2% 1.91µs ± 0% -0.91% (p=0.001 n=7+7) RegexpMatchHard_1K-12 60.2µs ± 3% 61.2µs ±10% ~ (p=0.442 n=8+8) Revcomp-12 404ms ± 1% 406ms ± 1% ~ (p=0.054 n=8+7) Template-12 64.6ms ± 1% 63.5ms ± 1% -1.66% (p=0.000 n=8+8) TimeParse-12 347ns ± 8% 309ns ± 0% -11.13% (p=0.000 n=8+7) TimeFormat-12 343ns ± 4% 331ns ± 0% -3.34% (p=0.000 n=8+7) Change-Id: Id6da1239ddd4d0cb074ff29cffb06302d1c6d08f Reviewed-on: https://go-review.googlesource.com/28712 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-09-07 14:04:31 -07:00
// Rounds down.
func log2(n int64) (l int64) {
l = -1
x := uint64(n)
for ; x >= 0x8000; x >>= 16 {
l += 16
}
if x >= 0x80 {
x >>= 8
l += 8
}
if x >= 0x8 {
x >>= 4
l += 4
}
if x >= 0x2 {
x >>= 2
l += 2
}
if x >= 0x1 {
l++
}
return
}
// isPowerOfTwo reports whether n is a power of 2.
func isPowerOfTwo(n int64) bool {
return n > 0 && n&(n-1) == 0
}
// is32Bit reports whether n can be represented as a signed 32 bit integer.
func is32Bit(n int64) bool {
return n == int64(int32(n))
}
// is16Bit reports whether n can be represented as a signed 16 bit integer.
func is16Bit(n int64) bool {
return n == int64(int16(n))
}
// isU16Bit reports whether n can be represented as an unsigned 16 bit integer.
func isU16Bit(n int64) bool {
return n == int64(uint16(n))
}
// isU32Bit reports whether n can be represented as an unsigned 32 bit integer.
func isU32Bit(n int64) bool {
return n == int64(uint32(n))
}
// is20Bit reports whether n can be represented as a signed 20 bit integer.
func is20Bit(n int64) bool {
return -(1<<19) <= n && n < (1<<19)
}
// b2i translates a boolean value to 0 or 1 for assigning to auxInt.
func b2i(b bool) int64 {
if b {
return 1
}
return 0
}
// i2f is used in rules for converting from an AuxInt to a float.
func i2f(i int64) float64 {
return math.Float64frombits(uint64(i))
}
// i2f32 is used in rules for converting from an AuxInt to a float32.
func i2f32(i int64) float32 {
return float32(math.Float64frombits(uint64(i)))
}
// f2i is used in the rules for storing a float in AuxInt.
func f2i(f float64) int64 {
return int64(math.Float64bits(f))
}
// uaddOvf returns true if unsigned a+b would overflow.
func uaddOvf(a, b int64) bool {
return uint64(a)+uint64(b) < uint64(a)
}
// isSamePtr reports whether p1 and p2 point to the same address.
func isSamePtr(p1, p2 *Value) bool {
if p1 == p2 {
return true
}
if p1.Op != p2.Op {
return false
}
switch p1.Op {
case OpOffPtr:
return p1.AuxInt == p2.AuxInt && isSamePtr(p1.Args[0], p2.Args[0])
case OpAddr:
// OpAddr's 0th arg is either OpSP or OpSB, which means that it is uniquely identified by its Op.
// Checking for value equality only works after [z]cse has run.
return p1.Aux == p2.Aux && p1.Args[0].Op == p2.Args[0].Op
case OpAddPtr:
return p1.Args[1] == p2.Args[1] && isSamePtr(p1.Args[0], p2.Args[0])
}
return false
}
// moveSize returns the number of bytes an aligned MOV instruction moves
func moveSize(align int64, c *Config) int64 {
switch {
case align%8 == 0 && c.IntSize == 8:
return 8
case align%4 == 0:
return 4
case align%2 == 0:
return 2
}
return 1
}
// mergePoint finds a block among a's blocks which dominates b and is itself
// dominated by all of a's blocks. Returns nil if it can't find one.
// Might return nil even if one does exist.
func mergePoint(b *Block, a ...*Value) *Block {
// Walk backward from b looking for one of the a's blocks.
// Max distance
d := 100
for d > 0 {
for _, x := range a {
if b == x.Block {
goto found
}
}
if len(b.Preds) > 1 {
// Don't know which way to go back. Abort.
return nil
}
b = b.Preds[0].b
d--
}
return nil // too far away
found:
// At this point, r is the first value in a that we find by walking backwards.
// if we return anything, r will be it.
r := b
// Keep going, counting the other a's that we find. They must all dominate r.
na := 0
for d > 0 {
for _, x := range a {
if b == x.Block {
na++
}
}
if na == len(a) {
// Found all of a in a backwards walk. We can return r.
return r
}
if len(b.Preds) > 1 {
return nil
}
b = b.Preds[0].b
d--
}
return nil // too far away
}
// clobber invalidates v. Returns true.
// clobber is used by rewrite rules to:
// A) make sure v is really dead and never used again.
// B) decrement use counts of v's args.
func clobber(v *Value) bool {
v.reset(OpInvalid)
// Note: leave v.Block intact. The Block field is used after clobber.
return true
}
// noteRule is an easy way to track if a rule is matched when writing
// new ones. Make the rule of interest also conditional on
// noteRule("note to self: rule of interest matched")
// and that message will print when the rule matches.
func noteRule(s string) bool {
println(s)
return true
}
// warnRule generates a compiler debug output with string s when
// cond is true and the rule is fired.
func warnRule(cond bool, v *Value, s string) bool {
if cond {
v.Block.Func.Config.Warnl(v.Line, "removed nil check")
}
return true
}
// logRule logs the use of the rule s. This will only be enabled if
// rewrite rules were generated with the -log option, see gen/rulegen.go.
func logRule(s string) {
if ruleFile == nil {
// Open a log file to write log to. We open in append
// mode because all.bash runs the compiler lots of times,
// and we want the concatenation of all of those logs.
// This means, of course, that users need to rm the old log
// to get fresh data.
// TODO: all.bash runs compilers in parallel. Need to synchronize logging somehow?
w, err := os.OpenFile(filepath.Join(os.Getenv("GOROOT"), "src", "rulelog"),
os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
if err != nil {
panic(err)
}
ruleFile = w
}
_, err := fmt.Fprintf(ruleFile, "rewrite %s\n", s)
if err != nil {
panic(err)
}
}
var ruleFile *os.File