go/src/cmd/compile/internal/abi/abiutils.go

576 lines
19 KiB
Go
Raw Normal View History

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package abi
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"sync"
)
//......................................................................
//
// Public/exported bits of the ABI utilities.
//
// ABIParamResultInfo stores the results of processing a given
// function type to compute stack layout and register assignments. For
// each input and output parameter we capture whether the param was
// register-assigned (and to which register(s)) or the stack offset
// for the param if is not going to be passed in registers according
// to the rules in the Go internal ABI specification (1.17).
type ABIParamResultInfo struct {
inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer.
outparams []ABIParamAssignment
offsetToSpillArea int64
spillAreaSize int64
inRegistersUsed int
outRegistersUsed int
config *ABIConfig // to enable String() method
}
func (a *ABIParamResultInfo) Config() *ABIConfig {
return a.config
}
func (a *ABIParamResultInfo) InParams() []ABIParamAssignment {
return a.inparams
}
func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment {
return a.outparams
}
func (a *ABIParamResultInfo) InRegistersUsed() int {
return a.inRegistersUsed
}
func (a *ABIParamResultInfo) OutRegistersUsed() int {
return a.outRegistersUsed
}
func (a *ABIParamResultInfo) InParam(i int) *ABIParamAssignment {
return &a.inparams[i]
}
func (a *ABIParamResultInfo) OutParam(i int) *ABIParamAssignment {
return &a.outparams[i]
}
func (a *ABIParamResultInfo) SpillAreaOffset() int64 {
return a.offsetToSpillArea
}
func (a *ABIParamResultInfo) SpillAreaSize() int64 {
return a.spillAreaSize
}
// RegIndex stores the index into the set of machine registers used by
// the ABI on a specific architecture for parameter passing. RegIndex
// values 0 through N-1 (where N is the number of integer registers
// used for param passing according to the ABI rules) describe integer
// registers; values N through M (where M is the number of floating
// point registers used). Thus if the ABI says there are 5 integer
// registers and 7 floating point registers, then RegIndex value of 4
// indicates the 5th integer register, and a RegIndex value of 11
// indicates the 7th floating point register.
type RegIndex uint8
// ABIParamAssignment holds information about how a specific param or
// result will be passed: in registers (in which case 'Registers' is
// populated) or on the stack (in which case 'Offset' is set to a
// non-negative stack offset. The values in 'Registers' are indices
// (as described above), not architected registers.
type ABIParamAssignment struct {
Type *types.Type
Name types.Object // should always be *ir.Name, used to match with a particular ssa.OpArg.
Registers []RegIndex
offset int32
}
// Offset returns the stack offset for addressing the parameter that "a" describes.
// This will panic if "a" describes a register-allocated parameter.
func (a *ABIParamAssignment) Offset() int32 {
if len(a.Registers) > 0 {
panic("Register allocated parameters have no offset")
}
return a.offset
}
// SpillOffset returns the offset *within the spill area* for the parameter that "a" describes.
// Registers will be spilled here; if a memory home is needed (for a pointer method e.g.)
// then that will be the address.
// This will panic if "a" describes a stack-allocated parameter.
func (a *ABIParamAssignment) SpillOffset() int32 {
if len(a.Registers) == 0 {
panic("Stack-allocated parameters have no spill offset")
}
return a.offset
}
// FrameOffset returns the location that a value would spill to, if any exists.
// For register-allocated inputs, that is their spill offset reserved for morestack
// (might as well use it, it is there); for stack-allocated inputs and outputs,
// that is their location on the stack. For register-allocated outputs, there is
// no defined spill area, so return -1.
func (a *ABIParamAssignment) FrameOffset(i *ABIParamResultInfo) int64 {
if len(a.Registers) == 0 || a.offset == -1 {
return int64(a.offset)
}
return int64(a.offset) + i.SpillAreaOffset()
}
// RegAmounts holds a specified number of integer/float registers.
type RegAmounts struct {
intRegs int
floatRegs int
}
// ABIConfig captures the number of registers made available
// by the ABI rules for parameter passing and result returning.
type ABIConfig struct {
// Do we need anything more than this?
offsetForLocals int64 // e.g., obj.(*Link).FixedFrameSize() -- extra linkage information on some architectures.
regAmounts RegAmounts
regsForTypeCache map[*types.Type]int
}
// NewABIConfig returns a new ABI configuration for an architecture with
// iRegsCount integer/pointer registers and fRegsCount floating point registers.
func NewABIConfig(iRegsCount, fRegsCount int, offsetForLocals int64) *ABIConfig {
return &ABIConfig{offsetForLocals: offsetForLocals, regAmounts: RegAmounts{iRegsCount, fRegsCount}, regsForTypeCache: make(map[*types.Type]int)}
}
// Copy returns a copy of an ABIConfig for use in a function's compilation so that access to the cache does not need to be protected with a mutex.
func (a *ABIConfig) Copy() *ABIConfig {
b := *a
b.regsForTypeCache = make(map[*types.Type]int)
return &b
}
// NumParamRegs returns the number of parameter registers used for a given type,
// without regard for the number available.
func (a *ABIConfig) NumParamRegs(t *types.Type) int {
var n int
if n, ok := a.regsForTypeCache[t]; ok {
return n
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
n = 2
} else {
n = (int(t.Size()) + types.RegSize - 1) / types.RegSize
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
n = a.NumParamRegs(t.Elem()) * int(t.NumElem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
n += a.NumParamRegs(f.Type)
}
case types.TSLICE:
n = a.NumParamRegs(synthSlice)
case types.TSTRING:
n = a.NumParamRegs(synthString)
case types.TINTER:
n = a.NumParamRegs(synthIface)
}
}
a.regsForTypeCache[t] = n
return n
}
// preAllocateParams gets the slice sizes right for inputs and outputs.
func (a *ABIParamResultInfo) preAllocateParams(hasRcvr bool, nIns, nOuts int) {
if hasRcvr {
nIns++
}
a.inparams = make([]ABIParamAssignment, 0, nIns)
a.outparams = make([]ABIParamAssignment, 0, nOuts)
}
// ABIAnalyzeTypes takes an optional receiver type, arrays of ins and outs, and returns an ABIParamResultInfo,
// based on the given configuration. This is the same result computed by config.ABIAnalyze applied to the
// corresponding method/function type, except that all the embedded parameter names are nil.
// This is intended for use by ssagen/ssa.go:(*state).rtcall, for runtime functions that lack a parsed function type.
func (config *ABIConfig) ABIAnalyzeTypes(rcvr *types.Type, ins, outs []*types.Type) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
result.preAllocateParams(rcvr != nil, len(ins), len(outs))
// Receiver
if rcvr != nil {
result.inparams = append(result.inparams,
s.assignParamOrReturn(rcvr, nil, false))
}
// Inputs
for _, t := range ins {
result.inparams = append(result.inparams,
s.assignParamOrReturn(t, nil, false))
}
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
for _, t := range outs {
result.outparams = append(result.outparams, s.assignParamOrReturn(t, nil, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
return result
}
// ABIAnalyze takes a function type 't' and an ABI rules description
// 'config' and analyzes the function to determine how its parameters
// and results will be passed (in registers or on the stack), returning
// an ABIParamResultInfo object that holds the results of the analysis.
func (config *ABIConfig) ABIAnalyze(t *types.Type) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
ft := t.FuncType()
result.preAllocateParams(t.NumRecvs() != 0, ft.Params.NumFields(), ft.Results.NumFields())
// Receiver
// TODO(register args) ? seems like "struct" and "fields" is not right anymore for describing function parameters
if t.NumRecvs() != 0 {
r := ft.Receiver.FieldSlice()[0]
result.inparams = append(result.inparams,
s.assignParamOrReturn(r.Type, r.Nname, false))
}
// Inputs
ifsl := ft.Params.FieldSlice()
for _, f := range ifsl {
result.inparams = append(result.inparams,
s.assignParamOrReturn(f.Type, f.Nname, false))
}
[dev.regabi] cmd/compile: move type size calculations into package types [generated] To break up package gc, we need to put these calculations somewhere lower in the import graph, either an existing or new package. Package types already needs this code and is using hacks to get it without an import cycle. We can remove the hacks and set up for the new package gc by moving the code into package types itself. [git-generate] cd src/cmd/compile/internal/gc rf ' # Remove old import cycle hacks in gc. rm TypecheckInit:/types.Widthptr =/-0,/types.Dowidth =/+0 \ ../ssa/export_test.go:/types.Dowidth =/-+ ex { import "cmd/compile/internal/types" types.Widthptr -> Widthptr types.Dowidth -> dowidth } # Disable CalcSize in tests instead of base.Fatalf sub dowidth:/base.Fatalf\("dowidth without betypeinit"\)/ \ // Assume this is a test. \ return # Move size calculation into cmd/compile/internal/types mv Widthptr PtrSize mv Widthreg RegSize mv slicePtrOffset SlicePtrOffset mv sliceLenOffset SliceLenOffset mv sliceCapOffset SliceCapOffset mv sizeofSlice SliceSize mv sizeofString StringSize mv skipDowidthForTracing SkipSizeForTracing mv dowidth CalcSize mv checkwidth CheckSize mv widstruct calcStructOffset mv sizeCalculationDisabled CalcSizeDisabled mv defercheckwidth DeferCheckSize mv resumecheckwidth ResumeCheckSize mv typeptrdata PtrDataSize mv \ PtrSize RegSize SlicePtrOffset SkipSizeForTracing typePos align.go PtrDataSize \ size.go mv size.go cmd/compile/internal/types ' : # Remove old import cycle hacks in types. cd ../types rf ' ex { Widthptr -> PtrSize Dowidth -> CalcSize } rm Widthptr Dowidth ' Change-Id: Ib96cdc6bda2617235480c29392ea5cfb20f60cd8 Reviewed-on: https://go-review.googlesource.com/c/go/+/279234 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:39:45 -05:00
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
ofsl := ft.Results.FieldSlice()
for _, f := range ofsl {
result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type, f.Nname, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Fill in the frame offsets for receiver, inputs, results
k := 0
if t.NumRecvs() != 0 {
config.updateOffset(result, ft.Receiver.FieldSlice()[0], result.inparams[0], false)
k++
}
for i, f := range ft.Params.FieldSlice() {
config.updateOffset(result, f, result.inparams[k+i], false)
}
for i, f := range ft.Results.FieldSlice() {
config.updateOffset(result, f, result.outparams[i], true)
}
return result
}
func (config *ABIConfig) updateOffset(result *ABIParamResultInfo, f *types.Field, a ABIParamAssignment, isReturn bool) {
if !isReturn || len(a.Registers) == 0 {
// TODO in next CL, assign
if f.Offset+config.offsetForLocals != a.FrameOffset(result) {
if config.regAmounts.intRegs == 0 && config.regAmounts.floatRegs == 0 {
panic(fmt.Errorf("Expected node offset %d != abi offset %d", f.Offset, a.FrameOffset(result)))
}
}
}
}
//......................................................................
//
// Non-public portions.
// regString produces a human-readable version of a RegIndex.
func (c *RegAmounts) regString(r RegIndex) string {
if int(r) < c.intRegs {
return fmt.Sprintf("I%d", int(r))
} else if int(r) < c.intRegs+c.floatRegs {
return fmt.Sprintf("F%d", int(r)-c.intRegs)
}
return fmt.Sprintf("<?>%d", r)
}
// toString method renders an ABIParamAssignment in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamAssignment) toString(config *ABIConfig) string {
regs := "R{"
offname := "spilloffset" // offset is for spill for register(s)
if len(ri.Registers) == 0 {
offname = "offset" // offset is for memory arg
}
for _, r := range ri.Registers {
regs += " " + config.regAmounts.regString(r)
}
return fmt.Sprintf("%s } %s: %d typ: %v", regs, offname, ri.offset, ri.Type)
}
// toString method renders an ABIParamResultInfo in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamResultInfo) String() string {
res := ""
for k, p := range ri.inparams {
res += fmt.Sprintf("IN %d: %s\n", k, p.toString(ri.config))
}
for k, r := range ri.outparams {
res += fmt.Sprintf("OUT %d: %s\n", k, r.toString(ri.config))
}
res += fmt.Sprintf("offsetToSpillArea: %d spillAreaSize: %d",
ri.offsetToSpillArea, ri.spillAreaSize)
return res
}
// assignState holds intermediate state during the register assigning process
// for a given function signature.
type assignState struct {
rTotal RegAmounts // total reg amounts from ABI rules
rUsed RegAmounts // regs used by params completely assigned so far
pUsed RegAmounts // regs used by the current param (or pieces therein)
stackOffset int64 // current stack offset
spillOffset int64 // current spill offset
}
// align returns a rounded up to t's alignment
func align(a int64, t *types.Type) int64 {
return alignTo(a, int(t.Align))
}
// alignTo returns a rounded up to t, where t must be 0 or a power of 2.
func alignTo(a int64, t int) int64 {
if t == 0 {
return a
}
return types.Rnd(a, int64(t))
}
// stackSlot returns a stack offset for a param or result of the
// specified type.
func (state *assignState) stackSlot(t *types.Type) int64 {
rv := align(state.stackOffset, t)
state.stackOffset = rv + t.Width
return rv
}
// allocateRegs returns a set of register indices for a parameter or result
// that we've just determined to be register-assignable. The number of registers
// needed is assumed to be stored in state.pUsed.
func (state *assignState) allocateRegs() []RegIndex {
regs := []RegIndex{}
// integer
for r := state.rUsed.intRegs; r < state.rUsed.intRegs+state.pUsed.intRegs; r++ {
regs = append(regs, RegIndex(r))
}
state.rUsed.intRegs += state.pUsed.intRegs
// floating
for r := state.rUsed.floatRegs; r < state.rUsed.floatRegs+state.pUsed.floatRegs; r++ {
regs = append(regs, RegIndex(r+state.rTotal.intRegs))
}
state.rUsed.floatRegs += state.pUsed.floatRegs
return regs
}
// regAllocate creates a register ABIParamAssignment object for a param
// or result with the specified type, as a final step (this assumes
// that all of the safety/suitability analysis is complete).
func (state *assignState) regAllocate(t *types.Type, name types.Object, isReturn bool) ABIParamAssignment {
spillLoc := int64(-1)
if !isReturn {
// Spill for register-resident t must be aligned for storage of a t.
spillLoc = align(state.spillOffset, t)
state.spillOffset = spillLoc + t.Size()
}
return ABIParamAssignment{
Type: t,
Name: name,
Registers: state.allocateRegs(),
offset: int32(spillLoc),
}
}
// stackAllocate creates a stack memory ABIParamAssignment object for
// a param or result with the specified type, as a final step (this
// assumes that all of the safety/suitability analysis is complete).
func (state *assignState) stackAllocate(t *types.Type, name types.Object) ABIParamAssignment {
return ABIParamAssignment{
Type: t,
Name: name,
offset: int32(state.stackSlot(t)),
}
}
// intUsed returns the number of integer registers consumed
// at a given point within an assignment stage.
func (state *assignState) intUsed() int {
return state.rUsed.intRegs + state.pUsed.intRegs
}
// floatUsed returns the number of floating point registers consumed at
// a given point within an assignment stage.
func (state *assignState) floatUsed() int {
return state.rUsed.floatRegs + state.pUsed.floatRegs
}
// regassignIntegral examines a param/result of integral type 't' to
// determines whether it can be register-assigned. Returns TRUE if we
// can register allocate, FALSE otherwise (and updates state
// accordingly).
func (state *assignState) regassignIntegral(t *types.Type) bool {
[dev.regabi] cmd/compile: move type size calculations into package types [generated] To break up package gc, we need to put these calculations somewhere lower in the import graph, either an existing or new package. Package types already needs this code and is using hacks to get it without an import cycle. We can remove the hacks and set up for the new package gc by moving the code into package types itself. [git-generate] cd src/cmd/compile/internal/gc rf ' # Remove old import cycle hacks in gc. rm TypecheckInit:/types.Widthptr =/-0,/types.Dowidth =/+0 \ ../ssa/export_test.go:/types.Dowidth =/-+ ex { import "cmd/compile/internal/types" types.Widthptr -> Widthptr types.Dowidth -> dowidth } # Disable CalcSize in tests instead of base.Fatalf sub dowidth:/base.Fatalf\("dowidth without betypeinit"\)/ \ // Assume this is a test. \ return # Move size calculation into cmd/compile/internal/types mv Widthptr PtrSize mv Widthreg RegSize mv slicePtrOffset SlicePtrOffset mv sliceLenOffset SliceLenOffset mv sliceCapOffset SliceCapOffset mv sizeofSlice SliceSize mv sizeofString StringSize mv skipDowidthForTracing SkipSizeForTracing mv dowidth CalcSize mv checkwidth CheckSize mv widstruct calcStructOffset mv sizeCalculationDisabled CalcSizeDisabled mv defercheckwidth DeferCheckSize mv resumecheckwidth ResumeCheckSize mv typeptrdata PtrDataSize mv \ PtrSize RegSize SlicePtrOffset SkipSizeForTracing typePos align.go PtrDataSize \ size.go mv size.go cmd/compile/internal/types ' : # Remove old import cycle hacks in types. cd ../types rf ' ex { Widthptr -> PtrSize Dowidth -> CalcSize } rm Widthptr Dowidth ' Change-Id: Ib96cdc6bda2617235480c29392ea5cfb20f60cd8 Reviewed-on: https://go-review.googlesource.com/c/go/+/279234 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 00:39:45 -05:00
regsNeeded := int(types.Rnd(t.Width, int64(types.PtrSize)) / int64(types.PtrSize))
if t.IsComplex() {
regsNeeded = 2
}
// Floating point and complex.
if t.IsFloat() || t.IsComplex() {
if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
// not enough regs
return false
}
state.pUsed.floatRegs += regsNeeded
return true
}
// Non-floating point
if regsNeeded+state.intUsed() > state.rTotal.intRegs {
// not enough regs
return false
}
state.pUsed.intRegs += regsNeeded
return true
}
// regassignArray processes an array type (or array component within some
// other enclosing type) to determine if it can be register assigned.
// Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignArray(t *types.Type) bool {
nel := t.NumElem()
if nel == 0 {
return true
}
if nel > 1 {
// Not an array of length 1: stack assign
return false
}
// Visit element
return state.regassign(t.Elem())
}
// regassignStruct processes a struct type (or struct component within
// some other enclosing type) to determine if it can be register
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignStruct(t *types.Type) bool {
for _, field := range t.FieldSlice() {
if !state.regassign(field.Type) {
return false
}
}
return true
}
// synthOnce ensures that we only create the synth* fake types once.
var synthOnce sync.Once
// synthSlice, synthString, and syncIface are synthesized struct types
// meant to capture the underlying implementations of string/slice/interface.
var synthSlice *types.Type
var synthString *types.Type
var synthIface *types.Type
// setup performs setup for the register assignment utilities, manufacturing
// a small set of synthesized types that we'll need along the way.
func setup() {
synthOnce.Do(func() {
fname := types.BuiltinPkg.Lookup
nxp := src.NoXPos
unsp := types.Types[types.TUNSAFEPTR]
ui := types.Types[types.TUINTPTR]
synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("ptr"), unsp),
types.NewField(nxp, fname("len"), ui),
types.NewField(nxp, fname("cap"), ui),
})
synthString = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("data"), unsp),
types.NewField(nxp, fname("len"), ui),
})
synthIface = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("f1"), unsp),
types.NewField(nxp, fname("f2"), unsp),
})
})
}
// regassign examines a given param type (or component within some
// composite) to determine if it can be register assigned. Returns
// TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassign(pt *types.Type) bool {
typ := pt.Kind()
if pt.IsScalar() || pt.IsPtrShaped() {
return state.regassignIntegral(pt)
}
switch typ {
case types.TARRAY:
return state.regassignArray(pt)
case types.TSTRUCT:
return state.regassignStruct(pt)
case types.TSLICE:
return state.regassignStruct(synthSlice)
case types.TSTRING:
return state.regassignStruct(synthString)
case types.TINTER:
return state.regassignStruct(synthIface)
default:
panic("not expected")
}
}
// assignParamOrReturn processes a given receiver, param, or result
// of field f to determine whether it can be register assigned.
// The result of the analysis is recorded in the result
// ABIParamResultInfo held in 'state'.
func (state *assignState) assignParamOrReturn(pt *types.Type, n types.Object, isReturn bool) ABIParamAssignment {
state.pUsed = RegAmounts{}
if pt.Width == types.BADWIDTH {
panic("should never happen")
} else if pt.Width == 0 {
return state.stackAllocate(pt, n)
} else if state.regassign(pt) {
return state.regAllocate(pt, n, isReturn)
} else {
return state.stackAllocate(pt, n)
}
}