go/src/crypto/tls/handshake_server.go

811 lines
22 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"io"
"sync/atomic"
)
// serverHandshakeState contains details of a server handshake in progress.
// It's discarded once the handshake has completed.
type serverHandshakeState struct {
c *Conn
clientHello *clientHelloMsg
hello *serverHelloMsg
suite *cipherSuite
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
ecdheOk bool
ecSignOk bool
rsaDecryptOk bool
rsaSignOk bool
sessionState *sessionState
finishedHash finishedHash
masterSecret []byte
cert *Certificate
}
// serverHandshake performs a TLS handshake as a server.
func (c *Conn) serverHandshake() error {
// If this is the first server handshake, we generate a random key to
// encrypt the tickets with.
c.config.serverInitOnce.Do(func() { c.config.serverInit(nil) })
clientHello, err := c.readClientHello()
if err != nil {
return err
}
if c.vers == VersionTLS13 {
hs := serverHandshakeStateTLS13{
c: c,
clientHello: clientHello,
}
return hs.handshake()
}
hs := serverHandshakeState{
c: c,
clientHello: clientHello,
}
return hs.handshake()
}
func (hs *serverHandshakeState) handshake() error {
c := hs.c
if err := hs.processClientHello(); err != nil {
return err
}
// For an overview of TLS handshaking, see RFC 5246, Section 7.3.
c.buffering = true
if hs.checkForResumption() {
// The client has included a session ticket and so we do an abbreviated handshake.
if err := hs.doResumeHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
// ticketSupported is set in a resumption handshake if the
// ticket from the client was encrypted with an old session
// ticket key and thus a refreshed ticket should be sent.
if hs.hello.ticketSupported {
if err := hs.sendSessionTicket(); err != nil {
return err
}
}
if err := hs.sendFinished(c.serverFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = false
if err := hs.readFinished(nil); err != nil {
return err
}
c.didResume = true
} else {
// The client didn't include a session ticket, or it wasn't
// valid so we do a full handshake.
if err := hs.pickCipherSuite(); err != nil {
return err
}
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.readFinished(c.clientFinished[:]); err != nil {
return err
}
c.clientFinishedIsFirst = true
c.buffering = true
if err := hs.sendSessionTicket(); err != nil {
return err
}
if err := hs.sendFinished(nil); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
}
c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random)
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
}
// readClientHello reads a ClientHello message and selects the protocol version.
func (c *Conn) readClientHello() (*clientHelloMsg, error) {
msg, err := c.readHandshake()
if err != nil {
return nil, err
}
clientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return nil, unexpectedMessageError(clientHello, msg)
}
if c.config.GetConfigForClient != nil {
chi := clientHelloInfo(c, clientHello)
if newConfig, err := c.config.GetConfigForClient(chi); err != nil {
c.sendAlert(alertInternalError)
return nil, err
} else if newConfig != nil {
newConfig.serverInitOnce.Do(func() { newConfig.serverInit(c.config) })
c.config = newConfig
}
}
clientVersions := clientHello.supportedVersions
if len(clientHello.supportedVersions) == 0 {
clientVersions = supportedVersionsFromMax(clientHello.vers)
}
c.vers, ok = c.config.mutualVersion(clientVersions)
if !ok {
c.sendAlert(alertProtocolVersion)
return nil, fmt.Errorf("tls: client offered only unsupported versions: %x", clientVersions)
}
c.haveVers = true
c.in.version = c.vers
c.out.version = c.vers
return clientHello, nil
}
func (hs *serverHandshakeState) processClientHello() error {
c := hs.c
hs.hello = new(serverHelloMsg)
hs.hello.vers = c.vers
foundCompression := false
// We only support null compression, so check that the client offered it.
for _, compression := range hs.clientHello.compressionMethods {
if compression == compressionNone {
foundCompression = true
break
}
}
if !foundCompression {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client does not support uncompressed connections")
}
hs.hello.random = make([]byte, 32)
serverRandom := hs.hello.random
// Downgrade protection canaries. See RFC 8446, Section 4.1.3.
maxVers := c.config.maxSupportedVersion()
if maxVers >= VersionTLS12 && c.vers < maxVers {
if c.vers == VersionTLS12 {
copy(serverRandom[24:], downgradeCanaryTLS12)
} else {
copy(serverRandom[24:], downgradeCanaryTLS11)
}
serverRandom = serverRandom[:24]
}
_, err := io.ReadFull(c.config.rand(), serverRandom)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if len(hs.clientHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: initial handshake had non-empty renegotiation extension")
}
hs.hello.secureRenegotiationSupported = hs.clientHello.secureRenegotiationSupported
hs.hello.compressionMethod = compressionNone
if len(hs.clientHello.serverName) > 0 {
c.serverName = hs.clientHello.serverName
}
if len(hs.clientHello.alpnProtocols) > 0 {
if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback {
hs.hello.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
}
}
hs.cert, err = c.config.getCertificate(clientHelloInfo(c, hs.clientHello))
if err != nil {
if err == errNoCertificates {
c.sendAlert(alertUnrecognizedName)
} else {
c.sendAlert(alertInternalError)
}
return err
}
if hs.clientHello.scts {
hs.hello.scts = hs.cert.SignedCertificateTimestamps
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
hs.ecdheOk = supportsECDHE(c.config, hs.clientHello.supportedCurves, hs.clientHello.supportedPoints)
if hs.ecdheOk {
// Although omitting the ec_point_formats extension is permitted, some
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
// old OpenSSL version will refuse to handshake if not present.
//
// Per RFC 4492, section 5.1.2, implementations MUST support the
// uncompressed point format. See golang.org/issue/31943.
hs.hello.supportedPoints = []uint8{pointFormatUncompressed}
}
if priv, ok := hs.cert.PrivateKey.(crypto.Signer); ok {
switch priv.Public().(type) {
case *ecdsa.PublicKey:
hs.ecSignOk = true
case ed25519.PublicKey:
hs.ecSignOk = true
case *rsa.PublicKey:
hs.rsaSignOk = true
default:
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: unsupported signing key type (%T)", priv.Public())
}
}
if priv, ok := hs.cert.PrivateKey.(crypto.Decrypter); ok {
switch priv.Public().(type) {
case *rsa.PublicKey:
hs.rsaDecryptOk = true
default:
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: unsupported decryption key type (%T)", priv.Public())
}
}
return nil
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
// supportsECDHE returns whether ECDHE key exchanges can be used with this
// pre-TLS 1.3 client.
func supportsECDHE(c *Config, supportedCurves []CurveID, supportedPoints []uint8) bool {
supportsCurve := false
for _, curve := range supportedCurves {
if c.supportsCurve(curve) {
supportsCurve = true
break
}
}
supportsPointFormat := false
for _, pointFormat := range supportedPoints {
if pointFormat == pointFormatUncompressed {
supportsPointFormat = true
break
}
}
return supportsCurve && supportsPointFormat
}
func (hs *serverHandshakeState) pickCipherSuite() error {
c := hs.c
var preferenceList, supportedList []uint16
if c.config.PreferServerCipherSuites {
preferenceList = c.config.cipherSuites()
supportedList = hs.clientHello.cipherSuites
} else {
preferenceList = hs.clientHello.cipherSuites
supportedList = c.config.cipherSuites()
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
hs.suite = selectCipherSuite(preferenceList, supportedList, hs.cipherSuiteOk)
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no cipher suite supported by both client and server")
}
for _, id := range hs.clientHello.cipherSuites {
if id == TLS_FALLBACK_SCSV {
// The client is doing a fallback connection. See RFC 7507.
if hs.clientHello.vers < c.config.maxSupportedVersion() {
c.sendAlert(alertInappropriateFallback)
return errors.New("tls: client using inappropriate protocol fallback")
}
break
}
}
return nil
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
func (hs *serverHandshakeState) cipherSuiteOk(c *cipherSuite) bool {
if c.flags&suiteECDHE != 0 {
if !hs.ecdheOk {
return false
}
if c.flags&suiteECSign != 0 {
if !hs.ecSignOk {
return false
}
} else if !hs.rsaSignOk {
return false
}
} else if !hs.rsaDecryptOk {
return false
}
if hs.c.vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
return false
}
return true
}
// checkForResumption reports whether we should perform resumption on this connection.
func (hs *serverHandshakeState) checkForResumption() bool {
c := hs.c
if c.config.SessionTicketsDisabled {
return false
}
plaintext, usedOldKey := c.decryptTicket(hs.clientHello.sessionTicket)
if plaintext == nil {
return false
}
hs.sessionState = &sessionState{usedOldKey: usedOldKey}
ok := hs.sessionState.unmarshal(plaintext)
if !ok {
return false
}
// Never resume a session for a different TLS version.
if c.vers != hs.sessionState.vers {
return false
}
cipherSuiteOk := false
// Check that the client is still offering the ciphersuite in the session.
for _, id := range hs.clientHello.cipherSuites {
if id == hs.sessionState.cipherSuite {
cipherSuiteOk = true
break
}
}
if !cipherSuiteOk {
return false
}
// Check that we also support the ciphersuite from the session.
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
hs.suite = selectCipherSuite([]uint16{hs.sessionState.cipherSuite},
c.config.cipherSuites(), hs.cipherSuiteOk)
if hs.suite == nil {
return false
}
sessionHasClientCerts := len(hs.sessionState.certificates) != 0
needClientCerts := requiresClientCert(c.config.ClientAuth)
if needClientCerts && !sessionHasClientCerts {
return false
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
return false
}
return true
}
func (hs *serverHandshakeState) doResumeHandshake() error {
c := hs.c
hs.hello.cipherSuite = hs.suite.id
// We echo the client's session ID in the ServerHello to let it know
// that we're doing a resumption.
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.ticketSupported = hs.sessionState.usedOldKey
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
hs.finishedHash.discardHandshakeBuffer()
hs.finishedHash.Write(hs.clientHello.marshal())
hs.finishedHash.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
if err := c.processCertsFromClient(Certificate{
Certificate: hs.sessionState.certificates,
}); err != nil {
return err
}
hs.masterSecret = hs.sessionState.masterSecret
return nil
}
func (hs *serverHandshakeState) doFullHandshake() error {
c := hs.c
if hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 {
hs.hello.ocspStapling = true
}
hs.hello.ticketSupported = hs.clientHello.ticketSupported && !c.config.SessionTicketsDisabled
hs.hello.cipherSuite = hs.suite.id
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
hs.finishedHash = newFinishedHash(hs.c.vers, hs.suite)
if c.config.ClientAuth == NoClientCert {
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
// No need to keep a full record of the handshake if client
// certificates won't be used.
hs.finishedHash.discardHandshakeBuffer()
}
hs.finishedHash.Write(hs.clientHello.marshal())
hs.finishedHash.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
certMsg := new(certificateMsg)
certMsg.certificates = hs.cert.Certificate
hs.finishedHash.Write(certMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil {
return err
}
if hs.hello.ocspStapling {
certStatus := new(certificateStatusMsg)
certStatus.response = hs.cert.OCSPStaple
hs.finishedHash.Write(certStatus.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certStatus.marshal()); err != nil {
return err
}
}
keyAgreement := hs.suite.ka(c.vers)
skx, err := keyAgreement.generateServerKeyExchange(c.config, hs.cert, hs.clientHello, hs.hello)
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
if skx != nil {
hs.finishedHash.Write(skx.marshal())
if _, err := c.writeRecord(recordTypeHandshake, skx.marshal()); err != nil {
return err
}
}
crypto/tls: disable RSA-PSS in TLS 1.2 again Signing with RSA-PSS can uncover faulty crypto.Signer implementations, and it can fail for (broken) small keys. We'll have to take that breakage eventually, but it would be nice for it to be opt-out at first. TLS 1.3 requires RSA-PSS and is opt-out in Go 1.13. Instead of making a TLS 1.3 opt-out influence a TLS 1.2 behavior, let's wait to add RSA-PSS to TLS 1.2 until TLS 1.3 is on without opt-out. Note that since the Client Hello is sent before a protocol version is selected, we have to advertise RSA-PSS there to support TLS 1.3. That means that we still support RSA-PSS on the client in TLS 1.2 for verifying server certificates, which is fine, as all issues arise on the signing side. We have to be careful not to pick (or consider available) RSA-PSS on the client for client certificates, though. We'd expect tests to change only in TLS 1.2: * the server won't pick PSS to sign the key exchange (Server-TLSv12-* w/ RSA, TestHandshakeServerRSAPSS); * the server won't advertise PSS in CertificateRequest (Server-TLSv12-ClientAuthRequested*, TestClientAuth); * and the client won't pick PSS for its CertificateVerify (Client-TLSv12-ClientCert-RSA-*, TestHandshakeClientCertRSAPSS, Client-TLSv12-Renegotiate* because "R" requests a client cert). Client-TLSv13-ClientCert-RSA-RSAPSS was updated because of a fix in the test. This effectively reverts 88343530720a52c96b21f2bd5488c8fb607605d7. Testing was made more complex by the undocumented semantics of OpenSSL's -[client_]sigalgs (see openssl/openssl#9172). Updates #32425 Change-Id: Iaddeb2df1f5c75cd090cc8321df2ac8e8e7db349 Reviewed-on: https://go-review.googlesource.com/c/go/+/182339 Reviewed-by: Adam Langley <agl@golang.org>
2019-06-13 18:33:33 -04:00
var certReq *certificateRequestMsg
if c.config.ClientAuth >= RequestClientCert {
// Request a client certificate
crypto/tls: disable RSA-PSS in TLS 1.2 again Signing with RSA-PSS can uncover faulty crypto.Signer implementations, and it can fail for (broken) small keys. We'll have to take that breakage eventually, but it would be nice for it to be opt-out at first. TLS 1.3 requires RSA-PSS and is opt-out in Go 1.13. Instead of making a TLS 1.3 opt-out influence a TLS 1.2 behavior, let's wait to add RSA-PSS to TLS 1.2 until TLS 1.3 is on without opt-out. Note that since the Client Hello is sent before a protocol version is selected, we have to advertise RSA-PSS there to support TLS 1.3. That means that we still support RSA-PSS on the client in TLS 1.2 for verifying server certificates, which is fine, as all issues arise on the signing side. We have to be careful not to pick (or consider available) RSA-PSS on the client for client certificates, though. We'd expect tests to change only in TLS 1.2: * the server won't pick PSS to sign the key exchange (Server-TLSv12-* w/ RSA, TestHandshakeServerRSAPSS); * the server won't advertise PSS in CertificateRequest (Server-TLSv12-ClientAuthRequested*, TestClientAuth); * and the client won't pick PSS for its CertificateVerify (Client-TLSv12-ClientCert-RSA-*, TestHandshakeClientCertRSAPSS, Client-TLSv12-Renegotiate* because "R" requests a client cert). Client-TLSv13-ClientCert-RSA-RSAPSS was updated because of a fix in the test. This effectively reverts 88343530720a52c96b21f2bd5488c8fb607605d7. Testing was made more complex by the undocumented semantics of OpenSSL's -[client_]sigalgs (see openssl/openssl#9172). Updates #32425 Change-Id: Iaddeb2df1f5c75cd090cc8321df2ac8e8e7db349 Reviewed-on: https://go-review.googlesource.com/c/go/+/182339 Reviewed-by: Adam Langley <agl@golang.org>
2019-06-13 18:33:33 -04:00
certReq = new(certificateRequestMsg)
certReq.certificateTypes = []byte{
byte(certTypeRSASign),
byte(certTypeECDSASign),
}
if c.vers >= VersionTLS12 {
certReq.hasSignatureAlgorithm = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms
}
// An empty list of certificateAuthorities signals to
// the client that it may send any certificate in response
// to our request. When we know the CAs we trust, then
// we can send them down, so that the client can choose
// an appropriate certificate to give to us.
if c.config.ClientCAs != nil {
certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
}
hs.finishedHash.Write(certReq.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certReq.marshal()); err != nil {
return err
}
}
helloDone := new(serverHelloDoneMsg)
hs.finishedHash.Write(helloDone.marshal())
if _, err := c.writeRecord(recordTypeHandshake, helloDone.marshal()); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
var pub crypto.PublicKey // public key for client auth, if any
msg, err := c.readHandshake()
if err != nil {
return err
}
// If we requested a client certificate, then the client must send a
// certificate message, even if it's empty.
if c.config.ClientAuth >= RequestClientCert {
certMsg, ok := msg.(*certificateMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
hs.finishedHash.Write(certMsg.marshal())
if err := c.processCertsFromClient(Certificate{
Certificate: certMsg.certificates,
}); err != nil {
return err
}
if len(certMsg.certificates) != 0 {
pub = c.peerCertificates[0].PublicKey
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
// Get client key exchange
ckx, ok := msg.(*clientKeyExchangeMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(ckx, msg)
}
hs.finishedHash.Write(ckx.marshal())
preMasterSecret, err := keyAgreement.processClientKeyExchange(c.config, hs.cert, ckx, c.vers)
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.clientHello.random, hs.hello.random)
if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.clientHello.random, hs.masterSecret); err != nil {
c.sendAlert(alertInternalError)
return err
}
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
// If we received a client cert in response to our certificate request message,
// the client will send us a certificateVerifyMsg immediately after the
// clientKeyExchangeMsg. This message is a digest of all preceding
// handshake-layer messages that is signed using the private key corresponding
// to the client's certificate. This allows us to verify that the client is in
// possession of the private key of the certificate.
if len(c.peerCertificates) > 0 {
msg, err = c.readHandshake()
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
var sigType uint8
var sigHash crypto.Hash
if c.vers >= VersionTLS12 {
if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, certReq.supportedSignatureAlgorithms) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client certificate used with invalid signature algorithm")
}
sigType, sigHash, err = typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
if err != nil {
return c.sendAlert(alertInternalError)
}
} else {
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(pub)
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
}
crypto/tls: refactor certificate and signature algorithm logic This refactors a lot of the certificate support logic to make it cleaner and reusable where possible. These changes will make the following CLs much simpler. In particular, the heavily overloaded pickSignatureAlgorithm is gone. That function used to cover both signing and verifying side, would work both for pre-signature_algorithms TLS 1.0/1.1 and TLS 1.2, and returned sigalg, type and hash. Now, TLS 1.0/1.1 and 1.2 are differentiated at the caller, as they have effectively completely different logic. TLS 1.0/1.1 simply use legacyTypeAndHashFromPublicKey as they employ a fixed hash function and signature algorithm for each public key type. TLS 1.2 is instead routed through selectSignatureScheme (on the signing side) or isSupportedSignatureAlgorithm (on the verifying side) and typeAndHashFromSignatureScheme, like TLS 1.3. On the signing side, signatureSchemesForCertificate was already version aware (for PKCS#1 v1.5 vs PSS support), so selectSignatureScheme just had to learn the Section 7.4.1.4.1 defaults for a missing signature_algorithms to replace pickSignatureAlgorithm. On the verifying side, pickSignatureAlgorithm was also checking the public key type, while isSupportedSignatureAlgorithm + typeAndHashFromSignatureScheme are not, but that check was redundant with the one in verifyHandshakeSignature. There should be no major change in behavior so far. A few minor changes came from the refactor: we now correctly require signature_algorithms in TLS 1.3 when using a certificate; we won't use Ed25519 in TLS 1.2 if the client didn't send signature_algorithms; and we don't send ec_points_format in the ServerHello (a compatibility measure) if we are not doing ECDHE anyway because there are no mutually supported curves. The tests also got simpler because they test simpler functions. The caller logic switching between TLS 1.0/1.1 and 1.2 is tested by the transcript tests. Updates #32426 Change-Id: Ice9dcaea78d204718f661f8d60efdb408ba41577 Reviewed-on: https://go-review.googlesource.com/c/go/+/205061 Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-01 19:00:33 -04:00
signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash, hs.masterSecret)
if err := verifyHandshakeSignature(sigType, pub, sigHash, signed, certVerify.signature); err != nil {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid signature by the client certificate: " + err.Error())
}
hs.finishedHash.Write(certVerify.marshal())
}
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *serverHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 09:13:38 -07:00
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher interface{}
var clientHash, serverHash macFunction
if hs.suite.aead == nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */)
clientHash = hs.suite.mac(c.vers, clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */)
serverHash = hs.suite.mac(c.vers, serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, clientCipher, clientHash)
c.out.prepareCipherSpec(c.vers, serverCipher, serverHash)
return nil
}
func (hs *serverHandshakeState) readFinished(out []byte) error {
c := hs.c
if err := c.readChangeCipherSpec(); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
clientFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientFinished, msg)
}
verify := hs.finishedHash.clientSum(hs.masterSecret)
if len(verify) != len(clientFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client's Finished message is incorrect")
}
hs.finishedHash.Write(clientFinished.marshal())
copy(out, verify)
return nil
}
func (hs *serverHandshakeState) sendSessionTicket() error {
if !hs.hello.ticketSupported {
return nil
}
c := hs.c
m := new(newSessionTicketMsg)
var certsFromClient [][]byte
for _, cert := range c.peerCertificates {
certsFromClient = append(certsFromClient, cert.Raw)
}
state := sessionState{
vers: c.vers,
cipherSuite: hs.suite.id,
masterSecret: hs.masterSecret,
certificates: certsFromClient,
}
var err error
m.ticket, err = c.encryptTicket(state.marshal())
if err != nil {
return err
}
hs.finishedHash.Write(m.marshal())
if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeState) sendFinished(out []byte) error {
c := hs.c
if _, err := c.writeRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil {
return err
}
finished := new(finishedMsg)
finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret)
hs.finishedHash.Write(finished.marshal())
if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil {
return err
}
c.cipherSuite = hs.suite.id
copy(out, finished.verifyData)
return nil
}
// processCertsFromClient takes a chain of client certificates either from a
// Certificates message or from a sessionState and verifies them. It returns
// the public key of the leaf certificate.
func (c *Conn) processCertsFromClient(certificate Certificate) error {
certificates := certificate.Certificate
certs := make([]*x509.Certificate, len(certificates))
var err error
for i, asn1Data := range certificates {
if certs[i], err = x509.ParseCertificate(asn1Data); err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to parse client certificate: " + err.Error())
}
}
if len(certs) == 0 && requiresClientCert(c.config.ClientAuth) {
c.sendAlert(alertBadCertificate)
return errors.New("tls: client didn't provide a certificate")
}
if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 {
opts := x509.VerifyOptions{
Roots: c.config.ClientCAs,
CurrentTime: c.config.time(),
Intermediates: x509.NewCertPool(),
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
chains, err := certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to verify client certificate: " + err.Error())
}
c.verifiedChains = chains
}
if c.config.VerifyPeerCertificate != nil {
if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if len(certs) == 0 {
return nil
}
switch certs[0].PublicKey.(type) {
case *ecdsa.PublicKey, *rsa.PublicKey, ed25519.PublicKey:
default:
c.sendAlert(alertUnsupportedCertificate)
return fmt.Errorf("tls: client certificate contains an unsupported public key of type %T", certs[0].PublicKey)
}
c.peerCertificates = certs
c.ocspResponse = certificate.OCSPStaple
c.scts = certificate.SignedCertificateTimestamps
return nil
}
func clientHelloInfo(c *Conn, clientHello *clientHelloMsg) *ClientHelloInfo {
supportedVersions := clientHello.supportedVersions
if len(clientHello.supportedVersions) == 0 {
supportedVersions = supportedVersionsFromMax(clientHello.vers)
}
return &ClientHelloInfo{
CipherSuites: clientHello.cipherSuites,
ServerName: clientHello.serverName,
SupportedCurves: clientHello.supportedCurves,
SupportedPoints: clientHello.supportedPoints,
SignatureSchemes: clientHello.supportedSignatureAlgorithms,
SupportedProtos: clientHello.alpnProtocols,
SupportedVersions: supportedVersions,
Conn: c.conn,
config: c.config,
}
}