go/src/runtime/signal_unix.go

814 lines
23 KiB
Go
Raw Normal View History

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
// sigTabT is the type of an entry in the global sigtable array.
// sigtable is inherently system dependent, and appears in OS-specific files,
// but sigTabT is the same for all Unixy systems.
// The sigtable array is indexed by a system signal number to get the flags
// and printable name of each signal.
type sigTabT struct {
flags int32
name string
}
//go:linkname os_sigpipe os.sigpipe
func os_sigpipe() {
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
systemstack(sigpipe)
}
func signame(sig uint32) string {
if sig >= uint32(len(sigtable)) {
return ""
}
return sigtable[sig].name
}
const (
_SIG_DFL uintptr = 0
_SIG_IGN uintptr = 1
)
// Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread).
// See sigfwdgo for more information on when the signals are forwarded.
//
// This is read by the signal handler; accesses should use
// atomic.Loaduintptr and atomic.Storeuintptr.
var fwdSig [_NSIG]uintptr
// handlingSig is indexed by signal number and is non-zero if we are
// currently handling the signal. Or, to put it another way, whether
// the signal handler is currently set to the Go signal handler or not.
// This is uint32 rather than bool so that we can use atomic instructions.
var handlingSig [_NSIG]uint32
// channels for synchronizing signal mask updates with the signal mask
// thread
var (
disableSigChan chan uint32
enableSigChan chan uint32
maskUpdatedChan chan struct{}
)
func init() {
// _NSIG is the number of signals on this operating system.
// sigtable should describe what to do for all the possible signals.
if len(sigtable) != _NSIG {
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
throw("bad sigtable len")
}
}
var signalsOK bool
// Initialize signals.
// Called by libpreinit so runtime may not be initialized.
//go:nosplit
//go:nowritebarrierrec
func initsig(preinit bool) {
if !preinit {
// It's now OK for signal handlers to run.
signalsOK = true
}
// For c-archive/c-shared this is called by libpreinit with
// preinit == true.
if (isarchive || islibrary) && !preinit {
return
}
for i := uint32(0); i < _NSIG; i++ {
t := &sigtable[i]
if t.flags == 0 || t.flags&_SigDefault != 0 {
continue
}
// We don't need to use atomic operations here because
// there shouldn't be any other goroutines running yet.
fwdSig[i] = getsig(i)
if !sigInstallGoHandler(i) {
// Even if we are not installing a signal handler,
// set SA_ONSTACK if necessary.
if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
setsigstack(i)
}
continue
}
handlingSig[i] = 1
setsig(i, funcPC(sighandler))
}
}
//go:nosplit
//go:nowritebarrierrec
func sigInstallGoHandler(sig uint32) bool {
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch sig {
case _SIGHUP, _SIGINT:
if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
return false
}
}
t := &sigtable[sig]
if t.flags&_SigSetStack != 0 {
return false
}
// When built using c-archive or c-shared, only install signal
// handlers for synchronous signals and SIGPIPE.
if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE {
return false
}
return true
}
// sigenable enables the Go signal handler to catch the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.enableSignal and signal_enable.
func sigenable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if sig == _SIGPROF {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
enableSigChan <- sig
<-maskUpdatedChan
if atomic.Cas(&handlingSig[sig], 0, 1) {
atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
setsig(sig, funcPC(sighandler))
}
}
}
// sigdisable disables the Go signal handler for the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.disableSignal and signal_disable.
func sigdisable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if sig == _SIGPROF {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
disableSigChan <- sig
<-maskUpdatedChan
// If initsig does not install a signal handler for a
// signal, then to go back to the state before Notify
// we should remove the one we installed.
if !sigInstallGoHandler(sig) {
atomic.Store(&handlingSig[sig], 0)
setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
}
}
}
// sigignore ignores the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.ignoreSignal and signal_ignore.
func sigignore(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if sig == _SIGPROF {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
atomic.Store(&handlingSig[sig], 0)
setsig(sig, _SIG_IGN)
}
}
// clearSignalHandlers clears all signal handlers that are not ignored
// back to the default. This is called by the child after a fork, so that
// we can enable the signal mask for the exec without worrying about
// running a signal handler in the child.
//go:nosplit
//go:nowritebarrierrec
func clearSignalHandlers() {
for i := uint32(0); i < _NSIG; i++ {
if atomic.Load(&handlingSig[i]) != 0 {
setsig(i, _SIG_DFL)
}
}
}
// setProcessCPUProfiler is called when the profiling timer changes.
// It is called with prof.lock held. hz is the new timer, and is 0 if
// profiling is being disabled. Enable or disable the signal as
// required for -buildmode=c-archive.
func setProcessCPUProfiler(hz int32) {
if hz != 0 {
// Enable the Go signal handler if not enabled.
if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF))
setsig(_SIGPROF, funcPC(sighandler))
}
} else {
// If the Go signal handler should be disabled by default,
// disable it if it is enabled.
if !sigInstallGoHandler(_SIGPROF) {
if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
setsig(_SIGPROF, atomic.Loaduintptr(&fwdSig[_SIGPROF]))
}
}
}
}
// setThreadCPUProfiler makes any thread-specific changes required to
// implement profiling at a rate of hz.
func setThreadCPUProfiler(hz int32) {
var it itimerval
if hz == 0 {
setitimer(_ITIMER_PROF, &it, nil)
} else {
it.it_interval.tv_sec = 0
it.it_interval.set_usec(1000000 / hz)
it.it_value = it.it_interval
setitimer(_ITIMER_PROF, &it, nil)
}
_g_ := getg()
_g_.m.profilehz = hz
}
func sigpipe() {
if sigsend(_SIGPIPE) {
return
}
dieFromSignal(_SIGPIPE)
}
// sigtrampgo is called from the signal handler function, sigtramp,
// written in assembly code.
// This is called by the signal handler, and the world may be stopped.
//go:nosplit
//go:nowritebarrierrec
func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
if sigfwdgo(sig, info, ctx) {
return
}
g := getg()
if g == nil {
c := &sigctxt{info, ctx}
if sig == _SIGPROF {
sigprofNonGoPC(c.sigpc())
return
}
badsignal(uintptr(sig), c)
return
}
// If some non-Go code called sigaltstack, adjust.
setStack := false
var gsignalStack gsignalStack
sp := uintptr(unsafe.Pointer(&sig))
if sp < g.m.gsignal.stack.lo || sp >= g.m.gsignal.stack.hi {
if sp >= g.m.g0.stack.lo && sp < g.m.g0.stack.hi {
// The signal was delivered on the g0 stack.
// This can happen when linked with C code
// using the thread sanitizer, which collects
// signals then delivers them itself by calling
// the signal handler directly when C code,
// including C code called via cgo, calls a
// TSAN-intercepted function such as malloc.
st := stackt{ss_size: g.m.g0.stack.hi - g.m.g0.stack.lo}
setSignalstackSP(&st, g.m.g0.stack.lo)
setGsignalStack(&st, &gsignalStack)
g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig))
setStack = true
} else {
var st stackt
sigaltstack(nil, &st)
if st.ss_flags&_SS_DISABLE != 0 {
setg(nil)
needm(0)
noSignalStack(sig)
dropm()
}
stsp := uintptr(unsafe.Pointer(st.ss_sp))
if sp < stsp || sp >= stsp+st.ss_size {
setg(nil)
needm(0)
sigNotOnStack(sig)
dropm()
}
setGsignalStack(&st, &gsignalStack)
g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig))
setStack = true
}
}
setg(g.m.gsignal)
if g.stackguard0 == stackFork {
signalDuringFork(sig)
}
c := &sigctxt{info, ctx}
c.fixsigcode(sig)
sighandler(sig, info, ctx, g)
setg(g)
if setStack {
restoreGsignalStack(&gsignalStack)
}
}
// sigpanic turns a synchronous signal into a run-time panic.
// If the signal handler sees a synchronous panic, it arranges the
// stack to look like the function where the signal occurred called
// sigpanic, sets the signal's PC value to sigpanic, and returns from
// the signal handler. The effect is that the program will act as
// though the function that got the signal simply called sigpanic
// instead.
func sigpanic() {
g := getg()
if !canpanic(g) {
throw("unexpected signal during runtime execution")
}
switch g.sig {
case _SIGBUS:
if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 {
panicmem()
}
// Support runtime/debug.SetPanicOnFault.
if g.paniconfault {
panicmem()
}
print("unexpected fault address ", hex(g.sigcode1), "\n")
throw("fault")
case _SIGSEGV:
if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 {
panicmem()
}
// Support runtime/debug.SetPanicOnFault.
if g.paniconfault {
panicmem()
}
print("unexpected fault address ", hex(g.sigcode1), "\n")
throw("fault")
case _SIGFPE:
switch g.sigcode0 {
case _FPE_INTDIV:
panicdivide()
case _FPE_INTOVF:
panicoverflow()
}
panicfloat()
}
if g.sig >= uint32(len(sigtable)) {
// can't happen: we looked up g.sig in sigtable to decide to call sigpanic
throw("unexpected signal value")
}
panic(errorString(sigtable[g.sig].name))
}
// dieFromSignal kills the program with a signal.
// This provides the expected exit status for the shell.
// This is only called with fatal signals expected to kill the process.
//go:nosplit
//go:nowritebarrierrec
func dieFromSignal(sig uint32) {
unblocksig(sig)
// Mark the signal as unhandled to ensure it is forwarded.
atomic.Store(&handlingSig[sig], 0)
raise(sig)
// That should have killed us. On some systems, though, raise
// sends the signal to the whole process rather than to just
// the current thread, which means that the signal may not yet
// have been delivered. Give other threads a chance to run and
// pick up the signal.
osyield()
osyield()
osyield()
// If that didn't work, try _SIG_DFL.
setsig(sig, _SIG_DFL)
raise(sig)
osyield()
osyield()
osyield()
// If we are still somehow running, just exit with the wrong status.
exit(2)
}
// raisebadsignal is called when a signal is received on a non-Go
// thread, and the Go program does not want to handle it (that is, the
// program has not called os/signal.Notify for the signal).
func raisebadsignal(sig uint32, c *sigctxt) {
if sig == _SIGPROF {
// Ignore profiling signals that arrive on non-Go threads.
return
}
var handler uintptr
if sig >= _NSIG {
handler = _SIG_DFL
} else {
handler = atomic.Loaduintptr(&fwdSig[sig])
}
// Reset the signal handler and raise the signal.
// We are currently running inside a signal handler, so the
// signal is blocked. We need to unblock it before raising the
// signal, or the signal we raise will be ignored until we return
// from the signal handler. We know that the signal was unblocked
// before entering the handler, or else we would not have received
// it. That means that we don't have to worry about blocking it
// again.
unblocksig(sig)
setsig(sig, handler)
// If we're linked into a non-Go program we want to try to
// avoid modifying the original context in which the signal
// was raised. If the handler is the default, we know it
// is non-recoverable, so we don't have to worry about
// re-installing sighandler. At this point we can just
// return and the signal will be re-raised and caught by
// the default handler with the correct context.
if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
return
}
raise(sig)
// Give the signal a chance to be delivered.
// In almost all real cases the program is about to crash,
// so sleeping here is not a waste of time.
usleep(1000)
// If the signal didn't cause the program to exit, restore the
// Go signal handler and carry on.
//
// We may receive another instance of the signal before we
// restore the Go handler, but that is not so bad: we know
// that the Go program has been ignoring the signal.
setsig(sig, funcPC(sighandler))
}
func crash() {
if GOOS == "darwin" {
// OS X core dumps are linear dumps of the mapped memory,
// from the first virtual byte to the last, with zeros in the gaps.
// Because of the way we arrange the address space on 64-bit systems,
// this means the OS X core file will be >128 GB and even on a zippy
// workstation can take OS X well over an hour to write (uninterruptible).
// Save users from making that mistake.
if GOARCH == "amd64" {
return
}
}
dieFromSignal(_SIGABRT)
}
// ensureSigM starts one global, sleeping thread to make sure at least one thread
// is available to catch signals enabled for os/signal.
func ensureSigM() {
if maskUpdatedChan != nil {
return
}
maskUpdatedChan = make(chan struct{})
disableSigChan = make(chan uint32)
enableSigChan = make(chan uint32)
go func() {
// Signal masks are per-thread, so make sure this goroutine stays on one
// thread.
LockOSThread()
defer UnlockOSThread()
// The sigBlocked mask contains the signals not active for os/signal,
// initially all signals except the essential. When signal.Notify()/Stop is called,
// sigenable/sigdisable in turn notify this thread to update its signal
// mask accordingly.
sigBlocked := sigset_all
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
sigdelset(&sigBlocked, i)
}
}
sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
for {
select {
case sig := <-enableSigChan:
if sig > 0 {
sigdelset(&sigBlocked, int(sig))
}
case sig := <-disableSigChan:
if sig > 0 {
sigaddset(&sigBlocked, int(sig))
}
}
sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
maskUpdatedChan <- struct{}{}
}
}()
}
// This is called when we receive a signal when there is no signal stack.
// This can only happen if non-Go code calls sigaltstack to disable the
// signal stack.
func noSignalStack(sig uint32) {
println("signal", sig, "received on thread with no signal stack")
throw("non-Go code disabled sigaltstack")
}
// This is called if we receive a signal when there is a signal stack
// but we are not on it. This can only happen if non-Go code called
// sigaction without setting the SS_ONSTACK flag.
func sigNotOnStack(sig uint32) {
println("signal", sig, "received but handler not on signal stack")
throw("non-Go code set up signal handler without SA_ONSTACK flag")
}
// signalDuringFork is called if we receive a signal while doing a fork.
// We do not want signals at that time, as a signal sent to the process
// group may be delivered to the child process, causing confusion.
// This should never be called, because we block signals across the fork;
// this function is just a safety check. See issue 18600 for background.
func signalDuringFork(sig uint32) {
println("signal", sig, "received during fork")
throw("signal received during fork")
}
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
//go:norace
//go:nowritebarrierrec
func badsignal(sig uintptr, c *sigctxt) {
needm(0)
if !sigsend(uint32(sig)) {
// A foreign thread received the signal sig, and the
// Go code does not want to handle it.
raisebadsignal(uint32(sig), c)
}
dropm()
}
//go:noescape
func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
// Determines if the signal should be handled by Go and if not, forwards the
// signal to the handler that was installed before Go's. Returns whether the
// signal was forwarded.
// This is called by the signal handler, and the world may be stopped.
//go:nosplit
//go:nowritebarrierrec
func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
if sig >= uint32(len(sigtable)) {
return false
}
fwdFn := atomic.Loaduintptr(&fwdSig[sig])
flags := sigtable[sig].flags
// If we aren't handling the signal, forward it.
if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
// If the signal is ignored, doing nothing is the same as forwarding.
if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
return true
}
// We are not handling the signal and there is no other handler to forward to.
// Crash with the default behavior.
if fwdFn == _SIG_DFL {
setsig(sig, _SIG_DFL)
dieFromSignal(sig)
return false
}
sigfwd(fwdFn, sig, info, ctx)
return true
}
// If there is no handler to forward to, no need to forward.
if fwdFn == _SIG_DFL {
return false
}
c := &sigctxt{info, ctx}
// Only forward synchronous signals and SIGPIPE.
// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
// or pipe.
if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE {
return false
}
// Determine if the signal occurred inside Go code. We test that:
// (1) we were in a goroutine (i.e., m.curg != nil), and
// (2) we weren't in CGO.
g := getg()
if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo {
return false
}
// Signal not handled by Go, forward it.
if fwdFn != _SIG_IGN {
sigfwd(fwdFn, sig, info, ctx)
}
return true
}
// msigsave saves the current thread's signal mask into mp.sigmask.
// This is used to preserve the non-Go signal mask when a non-Go
// thread calls a Go function.
// This is nosplit and nowritebarrierrec because it is called by needm
// which may be called on a non-Go thread with no g available.
//go:nosplit
//go:nowritebarrierrec
func msigsave(mp *m) {
sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
}
// msigrestore sets the current thread's signal mask to sigmask.
// This is used to restore the non-Go signal mask when a non-Go thread
// calls a Go function.
// This is nosplit and nowritebarrierrec because it is called by dropm
// after g has been cleared.
//go:nosplit
//go:nowritebarrierrec
func msigrestore(sigmask sigset) {
sigprocmask(_SIG_SETMASK, &sigmask, nil)
}
// sigblock blocks all signals in the current thread's signal mask.
// This is used to block signals while setting up and tearing down g
// when a non-Go thread calls a Go function.
// The OS-specific code is expected to define sigset_all.
// This is nosplit and nowritebarrierrec because it is called by needm
// which may be called on a non-Go thread with no g available.
//go:nosplit
//go:nowritebarrierrec
func sigblock() {
sigprocmask(_SIG_SETMASK, &sigset_all, nil)
}
// unblocksig removes sig from the current thread's signal mask.
// This is nosplit and nowritebarrierrec because it is called from
// dieFromSignal, which can be called by sigfwdgo while running in the
// signal handler, on the signal stack, with no g available.
//go:nosplit
//go:nowritebarrierrec
func unblocksig(sig uint32) {
var set sigset
sigaddset(&set, int(sig))
sigprocmask(_SIG_UNBLOCK, &set, nil)
}
// minitSignals is called when initializing a new m to set the
// thread's alternate signal stack and signal mask.
func minitSignals() {
minitSignalStack()
minitSignalMask()
}
// minitSignalStack is called when initializing a new m to set the
// alternate signal stack. If the alternate signal stack is not set
// for the thread (the normal case) then set the alternate signal
// stack to the gsignal stack. If the alternate signal stack is set
// for the thread (the case when a non-Go thread sets the alternate
// signal stack and then calls a Go function) then set the gsignal
// stack to the alternate signal stack. Record which choice was made
// in newSigstack, so that it can be undone in unminit.
func minitSignalStack() {
_g_ := getg()
var st stackt
sigaltstack(nil, &st)
if st.ss_flags&_SS_DISABLE != 0 {
signalstack(&_g_.m.gsignal.stack)
_g_.m.newSigstack = true
} else {
setGsignalStack(&st, nil)
_g_.m.newSigstack = false
}
}
// minitSignalMask is called when initializing a new m to set the
// thread's signal mask. When this is called all signals have been
// blocked for the thread. This starts with m.sigmask, which was set
// either from initSigmask for a newly created thread or by calling
// msigsave if this is a non-Go thread calling a Go function. It
// removes all essential signals from the mask, thus causing those
// signals to not be blocked. Then it sets the thread's signal mask.
// After this is called the thread can receive signals.
func minitSignalMask() {
nmask := getg().m.sigmask
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
sigdelset(&nmask, i)
}
}
sigprocmask(_SIG_SETMASK, &nmask, nil)
}
// unminitSignals is called from dropm, via unminit, to undo the
// effect of calling minit on a non-Go thread.
//go:nosplit
func unminitSignals() {
if getg().m.newSigstack {
st := stackt{ss_flags: _SS_DISABLE}
sigaltstack(&st, nil)
} else {
// We got the signal stack from someone else. Clear it
// so we don't get confused.
getg().m.gsignal.stack = stack{}
}
}
// gsignalStack saves the fields of the gsignal stack changed by
// setGsignalStack.
type gsignalStack struct {
stack stack
stackguard0 uintptr
stackguard1 uintptr
stktopsp uintptr
}
// setGsignalStack sets the gsignal stack of the current m to an
// alternate signal stack returned from the sigaltstack system call.
// It saves the old values in *old for use by restoreGsignalStack.
// This is used when handling a signal if non-Go code has set the
// alternate signal stack.
//go:nosplit
//go:nowritebarrierrec
func setGsignalStack(st *stackt, old *gsignalStack) {
g := getg()
if old != nil {
old.stack = g.m.gsignal.stack
old.stackguard0 = g.m.gsignal.stackguard0
old.stackguard1 = g.m.gsignal.stackguard1
old.stktopsp = g.m.gsignal.stktopsp
}
stsp := uintptr(unsafe.Pointer(st.ss_sp))
g.m.gsignal.stack.lo = stsp
g.m.gsignal.stack.hi = stsp + st.ss_size
g.m.gsignal.stackguard0 = stsp + _StackGuard
g.m.gsignal.stackguard1 = stsp + _StackGuard
}
// restoreGsignalStack restores the gsignal stack to the value it had
// before entering the signal handler.
//go:nosplit
//go:nowritebarrierrec
func restoreGsignalStack(st *gsignalStack) {
gp := getg().m.gsignal
gp.stack = st.stack
gp.stackguard0 = st.stackguard0
gp.stackguard1 = st.stackguard1
gp.stktopsp = st.stktopsp
}
// signalstack sets the current thread's alternate signal stack to s.
//go:nosplit
func signalstack(s *stack) {
st := stackt{ss_size: s.hi - s.lo}
setSignalstackSP(&st, s.lo)
sigaltstack(&st, nil)
}
// setsigsegv is used on darwin/arm{,64} to fake a segmentation fault.
//go:nosplit
func setsigsegv(pc uintptr) {
g := getg()
g.sig = _SIGSEGV
g.sigpc = pc
g.sigcode0 = _SEGV_MAPERR
g.sigcode1 = 0 // TODO: emulate si_addr
}