go/src/crypto/internal/fips140/ecdsa/ecdsa.go

504 lines
15 KiB
Go
Raw Normal View History

// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ecdsa
import (
"bytes"
"crypto/internal/fips140"
"crypto/internal/fips140/bigmod"
"crypto/internal/fips140/drbg"
"crypto/internal/fips140/nistec"
"errors"
"io"
"sync"
)
// PrivateKey and PublicKey are not generic to make it possible to use them
// in other types without instantiating them with a specific point type.
// They are tied to one of the Curve types below through the curveID field.
type PrivateKey struct {
pub PublicKey
d []byte // bigmod.(*Nat).Bytes output (same length as the curve order)
}
func (priv *PrivateKey) Bytes() []byte {
return priv.d
}
func (priv *PrivateKey) PublicKey() *PublicKey {
return &priv.pub
}
type PublicKey struct {
curve curveID
q []byte // uncompressed nistec Point.Bytes output
}
func (pub *PublicKey) Bytes() []byte {
return pub.q
}
type curveID string
const (
p224 curveID = "P-224"
p256 curveID = "P-256"
p384 curveID = "P-384"
p521 curveID = "P-521"
)
type Curve[P Point[P]] struct {
curve curveID
newPoint func() P
ordInverse func([]byte) ([]byte, error)
N *bigmod.Modulus
nMinus2 []byte
}
// Point is a generic constraint for the [nistec] Point types.
type Point[P any] interface {
*nistec.P224Point | *nistec.P256Point | *nistec.P384Point | *nistec.P521Point
Bytes() []byte
BytesX() ([]byte, error)
SetBytes([]byte) (P, error)
ScalarMult(P, []byte) (P, error)
ScalarBaseMult([]byte) (P, error)
Add(p1, p2 P) P
}
func precomputeParams[P Point[P]](c *Curve[P], order []byte) {
var err error
c.N, err = bigmod.NewModulus(order)
if err != nil {
panic(err)
}
two, _ := bigmod.NewNat().SetBytes([]byte{2}, c.N)
c.nMinus2 = bigmod.NewNat().ExpandFor(c.N).Sub(two, c.N).Bytes(c.N)
}
func P224() *Curve[*nistec.P224Point] { return _P224() }
var _P224 = sync.OnceValue(func() *Curve[*nistec.P224Point] {
c := &Curve[*nistec.P224Point]{
curve: p224,
newPoint: nistec.NewP224Point,
}
precomputeParams(c, p224Order)
return c
})
var p224Order = []byte{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
0x5c, 0x5c, 0x2a, 0x3d,
}
func P256() *Curve[*nistec.P256Point] { return _P256() }
var _P256 = sync.OnceValue(func() *Curve[*nistec.P256Point] {
c := &Curve[*nistec.P256Point]{
curve: p256,
newPoint: nistec.NewP256Point,
ordInverse: nistec.P256OrdInverse,
}
precomputeParams(c, p256Order)
return c
})
var p256Order = []byte{
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51}
func P384() *Curve[*nistec.P384Point] { return _P384() }
var _P384 = sync.OnceValue(func() *Curve[*nistec.P384Point] {
c := &Curve[*nistec.P384Point]{
curve: p384,
newPoint: nistec.NewP384Point,
}
precomputeParams(c, p384Order)
return c
})
var p384Order = []byte{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xc7, 0x63, 0x4d, 0x81, 0xf4, 0x37, 0x2d, 0xdf,
0x58, 0x1a, 0x0d, 0xb2, 0x48, 0xb0, 0xa7, 0x7a,
0xec, 0xec, 0x19, 0x6a, 0xcc, 0xc5, 0x29, 0x73}
func P521() *Curve[*nistec.P521Point] { return _P521() }
var _P521 = sync.OnceValue(func() *Curve[*nistec.P521Point] {
c := &Curve[*nistec.P521Point]{
curve: p521,
newPoint: nistec.NewP521Point,
}
precomputeParams(c, p521Order)
return c
})
var p521Order = []byte{0x01, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa,
0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f, 0x96, 0x6b,
0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09, 0xa5, 0xd0,
0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c, 0x47, 0xae,
0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38, 0x64, 0x09}
func NewPrivateKey[P Point[P]](c *Curve[P], D, Q []byte) (*PrivateKey, error) {
fips140.RecordApproved()
pub, err := NewPublicKey(c, Q)
if err != nil {
return nil, err
}
d, err := bigmod.NewNat().SetBytes(D, c.N)
if err != nil {
return nil, err
}
priv := &PrivateKey{pub: *pub, d: d.Bytes(c.N)}
if err := fipsPCT(c, priv); err != nil {
// This can happen if the application went out of its way to make an
// ecdsa.PrivateKey with a mismatching PublicKey.
return nil, err
}
return priv, nil
}
func NewPublicKey[P Point[P]](c *Curve[P], Q []byte) (*PublicKey, error) {
// SetBytes checks that Q is a valid point on the curve, and that its
// coordinates are reduced modulo p, fulfilling the requirements of SP
// 800-89, Section 5.3.2.
_, err := c.newPoint().SetBytes(Q)
if err != nil {
return nil, err
}
return &PublicKey{curve: c.curve, q: Q}, nil
}
// GenerateKey generates a new ECDSA private key pair for the specified curve.
func GenerateKey[P Point[P]](c *Curve[P], rand io.Reader) (*PrivateKey, error) {
fips140.RecordApproved()
k, Q, err := randomPoint(c, func(b []byte) error {
return drbg.ReadWithReader(rand, b)
})
if err != nil {
return nil, err
}
priv := &PrivateKey{
pub: PublicKey{
curve: c.curve,
q: Q.Bytes(),
},
d: k.Bytes(c.N),
}
if err := fipsPCT(c, priv); err != nil {
// This clearly can't happen, but FIPS 140-3 mandates that we check it.
panic(err)
}
return priv, nil
}
// randomPoint returns a random scalar and the corresponding point using a
// procedure equivalent to FIPS 186-5, Appendix A.2.2 (ECDSA Key Pair Generation
// by Rejection Sampling) and to Appendix A.3.2 (Per-Message Secret Number
// Generation of Private Keys by Rejection Sampling) or Appendix A.3.3
// (Per-Message Secret Number Generation for Deterministic ECDSA) followed by
// Step 5 of Section 6.4.1.
func randomPoint[P Point[P]](c *Curve[P], generate func([]byte) error) (k *bigmod.Nat, p P, err error) {
for {
b := make([]byte, c.N.Size())
if err := generate(b); err != nil {
return nil, nil, err
}
// Take only the leftmost bits of the generated random value. This is
// both necessary to increase the chance of the random value being in
// the correct range and to match the specification. It's unfortunate
// that we need to do a shift instead of a mask, but see the comment on
// rightShift.
//
// These are the most dangerous lines in the package and maybe in the
// library: a single bit of bias in the selection of nonces would likely
// lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
// Just to be safe, assert that this only happens for the one curve that
// doesn't have a round number of bits.
if c.curve != p521 {
panic("ecdsa: internal error: unexpectedly masking off bits")
}
b = rightShift(b, excess)
}
// FIPS 186-5, Appendix A.4.2 makes us check x <= N - 2 and then return
// x + 1. Note that it follows that 0 < x + 1 < N. Instead, SetBytes
// checks that k < N, and we explicitly check 0 != k. Since k can't be
// negative, this is strictly equivalent. None of this matters anyway
// because the chance of selecting zero is cryptographically negligible.
if k, err := bigmod.NewNat().SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
p, err := c.newPoint().ScalarBaseMult(k.Bytes(c.N))
return k, p, err
}
if testingOnlyRejectionSamplingLooped != nil {
testingOnlyRejectionSamplingLooped()
}
}
}
// testingOnlyRejectionSamplingLooped is called when rejection sampling in
// randomPoint rejects a candidate for being higher than the modulus.
var testingOnlyRejectionSamplingLooped func()
// Signature is an ECDSA signature, where r and s are represented as big-endian
// byte slices of the same length as the curve order.
type Signature struct {
R, S []byte
}
// Sign signs a hash (which shall be the result of hashing a larger message with
// the hash function H) using the private key, priv. If the hash is longer than
// the bit-length of the private key's curve order, the hash will be truncated
// to that length.
func Sign[P Point[P], H fips140.Hash](c *Curve[P], h func() H, priv *PrivateKey, rand io.Reader, hash []byte) (*Signature, error) {
if priv.pub.curve != c.curve {
return nil, errors.New("ecdsa: private key does not match curve")
}
fips140.RecordApproved()
fipsSelfTest()
// Random ECDSA is dangerous, because a failure of the RNG would immediately
// leak the private key. Instead, we use a "hedged" approach, as specified
// in draft-irtf-cfrg-det-sigs-with-noise-04, Section 4. This has also the
// advantage of closely resembling Deterministic ECDSA.
Z := make([]byte, len(priv.d))
if err := drbg.ReadWithReader(rand, Z); err != nil {
return nil, err
}
// See https://github.com/cfrg/draft-irtf-cfrg-det-sigs-with-noise/issues/6
// for the FIPS compliance of this method. In short Z is entropy from the
// main DRBG, of length 3/2 of security_strength, so the nonce is optional
// per SP 800-90Ar1, Section 8.6.7, and the rest is a personalization
// string, which per SP 800-90Ar1, Section 8.7.1 may contain secret
// information.
drbg := newDRBG(h, Z, nil, blockAlignedPersonalizationString{priv.d, bits2octets(c, hash)})
return sign(c, priv, drbg, hash)
}
// SignDeterministic signs a hash (which shall be the result of hashing a
// larger message with the hash function H) using the private key, priv. If the
// hash is longer than the bit-length of the private key's curve order, the hash
// will be truncated to that length. This applies Deterministic ECDSA as
// specified in FIPS 186-5 and RFC 6979.
func SignDeterministic[P Point[P], H fips140.Hash](c *Curve[P], h func() H, priv *PrivateKey, hash []byte) (*Signature, error) {
if priv.pub.curve != c.curve {
return nil, errors.New("ecdsa: private key does not match curve")
}
fips140.RecordApproved()
fipsSelfTestDeterministic()
drbg := newDRBG(h, priv.d, bits2octets(c, hash), nil) // RFC 6979, Section 3.3
return sign(c, priv, drbg, hash)
}
// bits2octets as specified in FIPS 186-5, Appendix B.2.4 or RFC 6979,
// Section 2.3.4. See RFC 6979, Section 3.5 for the rationale.
func bits2octets[P Point[P]](c *Curve[P], hash []byte) []byte {
e := bigmod.NewNat()
hashToNat(c, e, hash)
return e.Bytes(c.N)
}
func signGeneric[P Point[P]](c *Curve[P], priv *PrivateKey, drbg *hmacDRBG, hash []byte) (*Signature, error) {
// FIPS 186-5, Section 6.4.1
k, R, err := randomPoint(c, func(b []byte) error {
drbg.Generate(b)
return nil
})
if err != nil {
return nil, err
}
// kInv = k⁻¹
kInv := bigmod.NewNat()
inverse(c, kInv, k)
Rx, err := R.BytesX()
if err != nil {
return nil, err
}
r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return nil, err
}
// The spec wants us to retry here, but the chance of hitting this condition
// on a large prime-order group like the NIST curves we support is
// cryptographically negligible. If we hit it, something is awfully wrong.
if r.IsZero() == 1 {
return nil, errors.New("ecdsa: internal error: r is zero")
}
e := bigmod.NewNat()
hashToNat(c, e, hash)
s, err := bigmod.NewNat().SetBytes(priv.d, c.N)
if err != nil {
return nil, err
}
s.Mul(r, c.N)
s.Add(e, c.N)
s.Mul(kInv, c.N)
// Again, the chance of this happening is cryptographically negligible.
if s.IsZero() == 1 {
return nil, errors.New("ecdsa: internal error: s is zero")
}
return &Signature{r.Bytes(c.N), s.Bytes(c.N)}, nil
}
// inverse sets kInv to the inverse of k modulo the order of the curve.
func inverse[P Point[P]](c *Curve[P], kInv, k *bigmod.Nat) {
if c.ordInverse != nil {
kBytes, err := c.ordInverse(k.Bytes(c.N))
// Some platforms don't implement ordInverse, and always return an error.
if err == nil {
_, err := kInv.SetBytes(kBytes, c.N)
if err != nil {
panic("ecdsa: internal error: ordInverse produced an invalid value")
}
return
}
}
// Calculate the inverse of s in GF(N) using Fermat's method
// (exponentiation modulo P - 2, per Euler's theorem)
kInv.Exp(k, c.nMinus2, c.N)
}
// hashToNat sets e to the left-most bits of hash, according to
// FIPS 186-5, Section 6.4.1, point 2 and Section 6.4.2, point 3.
func hashToNat[P Point[P]](c *Curve[P], e *bigmod.Nat, hash []byte) {
// ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
// an integer modulo N. This is the absolute worst of all worlds: we still
// have to reduce, because the result might still overflow N, but to take
// the left-most bits for P-521 we have to do a right shift.
if size := c.N.Size(); len(hash) >= size {
hash = hash[:size]
if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
hash = rightShift(hash, excess)
}
}
_, err := e.SetOverflowingBytes(hash, c.N)
if err != nil {
panic("ecdsa: internal error: truncated hash is too long")
}
}
// rightShift implements the right shift necessary for bits2int, which takes the
// leftmost bits of either the hash or HMAC_DRBG output.
//
// Note how taking the rightmost bits would have been as easy as masking the
// first byte, but we can't have nice things.
func rightShift(b []byte, shift int) []byte {
if shift <= 0 || shift >= 8 {
panic("ecdsa: internal error: shift can only be by 1 to 7 bits")
}
b = bytes.Clone(b)
for i := len(b) - 1; i >= 0; i-- {
b[i] >>= shift
if i > 0 {
b[i] |= b[i-1] << (8 - shift)
}
}
return b
}
// Verify verifies the signature, sig, of hash (which should be the result of
// hashing a larger message) using the public key, pub. If the hash is longer
// than the bit-length of the private key's curve order, the hash will be
// truncated to that length.
//
// The inputs are not considered confidential, and may leak through timing side
// channels, or if an attacker has control of part of the inputs.
func Verify[P Point[P]](c *Curve[P], pub *PublicKey, hash []byte, sig *Signature) error {
if pub.curve != c.curve {
return errors.New("ecdsa: public key does not match curve")
}
fips140.RecordApproved()
fipsSelfTest()
return verify(c, pub, hash, sig)
}
func verifyGeneric[P Point[P]](c *Curve[P], pub *PublicKey, hash []byte, sig *Signature) error {
// FIPS 186-5, Section 6.4.2
Q, err := c.newPoint().SetBytes(pub.q)
if err != nil {
return err
}
r, err := bigmod.NewNat().SetBytes(sig.R, c.N)
if err != nil {
return err
}
if r.IsZero() == 1 {
return errors.New("ecdsa: invalid signature: r is zero")
}
s, err := bigmod.NewNat().SetBytes(sig.S, c.N)
if err != nil {
return err
}
if s.IsZero() == 1 {
return errors.New("ecdsa: invalid signature: s is zero")
}
e := bigmod.NewNat()
hashToNat(c, e, hash)
// w = s⁻¹
w := bigmod.NewNat()
inverse(c, w, s)
// p₁ = [e * s⁻¹]G
p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N))
if err != nil {
return err
}
// p₂ = [r * s⁻¹]Q
p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N))
if err != nil {
return err
}
// BytesX returns an error for the point at infinity.
Rx, err := p1.Add(p1, p2).BytesX()
if err != nil {
return err
}
v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return err
}
if v.Equal(r) != 1 {
return errors.New("ecdsa: signature did not verify")
}
return nil
}