go/src/cmd/compile/internal/x86/ssa.go

859 lines
23 KiB
Go
Raw Normal View History

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86
import (
"fmt"
"math"
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa"
"cmd/internal/obj"
"cmd/internal/obj/x86"
)
// markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) {
flive := b.FlagsLiveAtEnd
if b.Control != nil && b.Control.Type.IsFlags() {
flive = true
}
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
if flive && v.Op == ssa.Op386MOVLconst {
// The "mark" is any non-nil Aux value.
v.Aux = v
}
if v.Type.IsFlags() {
flive = false
}
for _, a := range v.Args {
if a.Type.IsFlags() {
flive = true
}
}
}
}
// loadByType returns the load instruction of the given type.
func loadByType(t ssa.Type) obj.As {
// Avoid partial register write
if !t.IsFloat() && t.Size() <= 2 {
if t.Size() == 1 {
return x86.AMOVBLZX
} else {
return x86.AMOVWLZX
}
}
// Otherwise, there's no difference between load and store opcodes.
return storeByType(t)
}
// storeByType returns the store instruction of the given type.
func storeByType(t ssa.Type) obj.As {
width := t.Size()
if t.IsFloat() {
switch width {
case 4:
return x86.AMOVSS
case 8:
return x86.AMOVSD
}
} else {
switch width {
case 1:
return x86.AMOVB
case 2:
return x86.AMOVW
case 4:
return x86.AMOVL
}
}
panic("bad store type")
}
// moveByType returns the reg->reg move instruction of the given type.
func moveByType(t ssa.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return x86.AMOVSS
case 8:
return x86.AMOVSD
default:
panic(fmt.Sprintf("bad float register width %d:%s", t.Size(), t))
}
} else {
switch t.Size() {
case 1:
// Avoids partial register write
return x86.AMOVL
case 2:
return x86.AMOVL
case 4:
return x86.AMOVL
default:
panic(fmt.Sprintf("bad int register width %d:%s", t.Size(), t))
}
}
}
// opregreg emits instructions for
// dest := dest(To) op src(From)
// and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc).
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = dest
p.From.Reg = src
return p
}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
switch v.Op {
case ssa.Op386ADDL:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
switch {
case r == r1:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case r == r2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
default:
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r1
p.From.Scale = 1
p.From.Index = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
// 2-address opcode arithmetic
case ssa.Op386SUBL,
ssa.Op386MULL,
ssa.Op386ANDL,
ssa.Op386ORL,
ssa.Op386XORL,
ssa.Op386SHLL,
ssa.Op386SHRL, ssa.Op386SHRW, ssa.Op386SHRB,
ssa.Op386SARL, ssa.Op386SARW, ssa.Op386SARB,
ssa.Op386ADDSS, ssa.Op386ADDSD, ssa.Op386SUBSS, ssa.Op386SUBSD,
ssa.Op386MULSS, ssa.Op386MULSD, ssa.Op386DIVSS, ssa.Op386DIVSD,
ssa.Op386PXOR,
ssa.Op386ADCL,
ssa.Op386SBBL:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(s, v.Op.Asm(), r, v.Args[1].Reg())
case ssa.Op386ADDLcarry, ssa.Op386SUBLcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := v.Reg0()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
}
opregreg(s, v.Op.Asm(), r, v.Args[1].Reg())
case ssa.Op386ADDLconstcarry, ssa.Op386SUBLconstcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := v.Reg0()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386DIVL, ssa.Op386DIVW,
ssa.Op386DIVLU, ssa.Op386DIVWU,
ssa.Op386MODL, ssa.Op386MODW,
ssa.Op386MODLU, ssa.Op386MODWU:
// Arg[0] is already in AX as it's the only register we allow
// and AX is the only output
x := v.Args[1].Reg()
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW ||
v.Op == ssa.Op386MODL || v.Op == ssa.Op386MODW {
var c *obj.Prog
switch v.Op {
case ssa.Op386DIVL, ssa.Op386MODL:
c = s.Prog(x86.ACMPL)
j = s.Prog(x86.AJEQ)
s.Prog(x86.ACDQ) //TODO: fix
case ssa.Op386DIVW, ssa.Op386MODW:
c = s.Prog(x86.ACMPW)
j = s.Prog(x86.AJEQ)
s.Prog(x86.ACWD)
}
c.From.Type = obj.TYPE_REG
c.From.Reg = x
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j.To.Type = obj.TYPE_BRANCH
}
// for unsigned ints, we sign extend by setting DX = 0
// signed ints were sign extended above
if v.Op == ssa.Op386DIVLU || v.Op == ssa.Op386MODLU ||
v.Op == ssa.Op386DIVWU || v.Op == ssa.Op386MODWU {
c := s.Prog(x86.AXORL)
c.From.Type = obj.TYPE_REG
c.From.Reg = x86.REG_DX
c.To.Type = obj.TYPE_REG
c.To.Reg = x86.REG_DX
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = x
// signed division, rest of the check for -1 case
if j != nil {
j2 := s.Prog(obj.AJMP)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW {
// n * -1 = -n
n = s.Prog(x86.ANEGL)
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_AX
} else {
// n % -1 == 0
n = s.Prog(x86.AXORL)
n.From.Type = obj.TYPE_REG
n.From.Reg = x86.REG_DX
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_DX
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.Op386HMULL, ssa.Op386HMULLU:
// the frontend rewrites constant division by 8/16/32 bit integers into
// HMUL by a constant
// SSA rewrites generate the 64 bit versions
// Arg[0] is already in AX as it's the only register we allow
// and DX is the only output we care about (the high bits)
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
// IMULB puts the high portion in AH instead of DL,
// so move it to DL for consistency
if v.Type.Size() == 1 {
m := s.Prog(x86.AMOVB)
m.From.Type = obj.TYPE_REG
m.From.Reg = x86.REG_AH
m.To.Type = obj.TYPE_REG
m.To.Reg = x86.REG_DX
}
case ssa.Op386MULLQU:
// AX * args[1], high 32 bits in DX (result[0]), low 32 bits in AX (result[1]).
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
case ssa.Op386AVGLU:
// compute (x+y)/2 unsigned.
// Do a 32-bit add, the overflow goes into the carry.
// Shift right once and pull the carry back into the 31st bit.
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(x86.AADDL)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p.From.Reg = v.Args[1].Reg()
p = s.Prog(x86.ARCRL)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386ADDLconst:
r := v.Reg()
a := v.Args[0].Reg()
if r == a {
if v.AuxInt == 1 {
p := s.Prog(x86.AINCL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
if v.AuxInt == -1 {
p := s.Prog(x86.ADECL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = a
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386MULLconst:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
// TODO: Teach doasm to compile the three-address multiply imul $c, r1, r2
// then we don't need to use resultInArg0 for these ops.
//p.From3 = new(obj.Addr)
//p.From3.Type = obj.TYPE_REG
//p.From3.Reg = v.Args[0].Reg()
case ssa.Op386SUBLconst,
ssa.Op386ADCLconst,
ssa.Op386SBBLconst,
ssa.Op386ANDLconst,
ssa.Op386ORLconst,
ssa.Op386XORLconst,
ssa.Op386SHLLconst,
ssa.Op386SHRLconst, ssa.Op386SHRWconst, ssa.Op386SHRBconst,
ssa.Op386SARLconst, ssa.Op386SARWconst, ssa.Op386SARBconst,
ssa.Op386ROLLconst, ssa.Op386ROLWconst, ssa.Op386ROLBconst:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386SBBLcarrymask:
r := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386LEAL1, ssa.Op386LEAL2, ssa.Op386LEAL4, ssa.Op386LEAL8:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
p := s.Prog(x86.ALEAL)
switch v.Op {
case ssa.Op386LEAL1:
p.From.Scale = 1
if i == x86.REG_SP {
r, i = i, r
}
case ssa.Op386LEAL2:
p.From.Scale = 2
case ssa.Op386LEAL4:
p.From.Scale = 4
case ssa.Op386LEAL8:
p.From.Scale = 8
}
p.From.Type = obj.TYPE_MEM
p.From.Reg = r
p.From.Index = i
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386LEAL:
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386CMPL, ssa.Op386CMPW, ssa.Op386CMPB,
ssa.Op386TESTL, ssa.Op386TESTW, ssa.Op386TESTB:
opregreg(s, v.Op.Asm(), v.Args[1].Reg(), v.Args[0].Reg())
case ssa.Op386UCOMISS, ssa.Op386UCOMISD:
// Go assembler has swapped operands for UCOMISx relative to CMP,
// must account for that right here.
opregreg(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg())
case ssa.Op386CMPLconst, ssa.Op386CMPWconst, ssa.Op386CMPBconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_CONST
p.To.Offset = v.AuxInt
case ssa.Op386TESTLconst, ssa.Op386TESTWconst, ssa.Op386TESTBconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[0].Reg()
case ssa.Op386MOVLconst:
x := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = x
// If flags are live at this instruction, suppress the
// MOV $0,AX -> XOR AX,AX optimization.
if v.Aux != nil {
p.Mark |= x86.PRESERVEFLAGS
}
case ssa.Op386MOVSSconst, ssa.Op386MOVSDconst:
x := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.Op386MOVSSconst1, ssa.Op386MOVSDconst1:
var literal string
if v.Op == ssa.Op386MOVSDconst1 {
literal = fmt.Sprintf("$f64.%016x", uint64(v.AuxInt))
} else {
literal = fmt.Sprintf("$f32.%08x", math.Float32bits(float32(math.Float64frombits(uint64(v.AuxInt)))))
}
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
p.From.Sym = obj.Linklookup(gc.Ctxt, literal, 0)
p.From.Sym.Set(obj.AttrLocal, true)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSSconst2, ssa.Op386MOVSDconst2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSSload, ssa.Op386MOVSDload, ssa.Op386MOVLload, ssa.Op386MOVWload, ssa.Op386MOVBload, ssa.Op386MOVBLSXload, ssa.Op386MOVWLSXload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSDloadidx8:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.From.Scale = 8
p.From.Index = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVLloadidx4, ssa.Op386MOVSSloadidx4:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.From.Scale = 4
p.From.Index = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVWloadidx2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.From.Scale = 2
p.From.Index = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVBloadidx1, ssa.Op386MOVWloadidx1, ssa.Op386MOVLloadidx1, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
if i == x86.REG_SP {
r, i = i, r
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = r
p.From.Scale = 1
p.From.Index = i
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSSstore, ssa.Op386MOVSDstore, ssa.Op386MOVLstore, ssa.Op386MOVWstore, ssa.Op386MOVBstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.Op386MOVSDstoreidx8:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
p.To.Scale = 8
p.To.Index = v.Args[1].Reg()
gc.AddAux(&p.To, v)
case ssa.Op386MOVSSstoreidx4, ssa.Op386MOVLstoreidx4:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
p.To.Scale = 4
p.To.Index = v.Args[1].Reg()
gc.AddAux(&p.To, v)
case ssa.Op386MOVWstoreidx2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
p.To.Scale = 2
p.To.Index = v.Args[1].Reg()
gc.AddAux(&p.To, v)
case ssa.Op386MOVBstoreidx1, ssa.Op386MOVWstoreidx1, ssa.Op386MOVLstoreidx1, ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
if i == x86.REG_SP {
r, i = i, r
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = r
p.To.Scale = 1
p.To.Index = i
gc.AddAux(&p.To, v)
case ssa.Op386MOVLstoreconst, ssa.Op386MOVWstoreconst, ssa.Op386MOVBstoreconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off())
case ssa.Op386MOVLstoreconstidx1, ssa.Op386MOVLstoreconstidx4, ssa.Op386MOVWstoreconstidx1, ssa.Op386MOVWstoreconstidx2, ssa.Op386MOVBstoreconstidx1:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val()
r := v.Args[0].Reg()
i := v.Args[1].Reg()
switch v.Op {
case ssa.Op386MOVBstoreconstidx1, ssa.Op386MOVWstoreconstidx1, ssa.Op386MOVLstoreconstidx1:
p.To.Scale = 1
if i == x86.REG_SP {
r, i = i, r
}
case ssa.Op386MOVWstoreconstidx2:
p.To.Scale = 2
case ssa.Op386MOVLstoreconstidx4:
p.To.Scale = 4
}
p.To.Type = obj.TYPE_MEM
p.To.Reg = r
p.To.Index = i
gc.AddAux2(&p.To, v, sc.Off())
case ssa.Op386MOVWLSX, ssa.Op386MOVBLSX, ssa.Op386MOVWLZX, ssa.Op386MOVBLZX,
ssa.Op386CVTSL2SS, ssa.Op386CVTSL2SD,
ssa.Op386CVTTSS2SL, ssa.Op386CVTTSD2SL,
ssa.Op386CVTSS2SD, ssa.Op386CVTSD2SS:
opregreg(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg())
case ssa.Op386DUFFZERO:
p := s.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_ADDR
p.To.Sym = gc.Duffzero
p.To.Offset = v.AuxInt
case ssa.Op386DUFFCOPY:
p := s.Prog(obj.ADUFFCOPY)
p.To.Type = obj.TYPE_ADDR
p.To.Sym = gc.Duffcopy
p.To.Offset = v.AuxInt
case ssa.OpCopy, ssa.Op386MOVLconvert: // TODO: use MOVLreg for reg->reg copies instead of OpCopy?
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x != y {
opregreg(s, moveByType(v.Type), y, x)
}
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v)
case ssa.Op386LoweredGetClosurePtr:
// Closure pointer is DX.
gc.CheckLoweredGetClosurePtr(v)
case ssa.Op386LoweredGetG:
r := v.Reg()
// See the comments in cmd/internal/obj/x86/obj6.go
// near CanUse1InsnTLS for a detailed explanation of these instructions.
if x86.CanUse1InsnTLS(gc.Ctxt) {
[dev.ssa] cmd/compile: fix PIC for SSA-generated code Access to globals requires a 2-instruction sequence on PIC 386. MOVL foo(SB), AX is translated by the obj package into: CALL getPCofNextInstructionInTempRegister(SB) MOVL (&foo-&thisInstruction)(tmpReg), AX The call returns the PC of the next instruction in a register. The next instruction then offsets from that register to get the address required. The tricky part is the allocation of the temp register. The legacy compiler always used CX, and forbid the register allocator from allocating CX when in PIC mode. We can't easily do that in SSA because CX is actually a required register for shift instructions. (I think the old backend got away with this because the register allocator never uses CX, only codegen knows that shifts must use CX.) Instead, we allow the temp register to be anything. When the destination of the MOV (or LEA) is an integer register, we can use that register. Otherwise, we make sure to compile the operation using an LEA to reference the global. So MOVL AX, foo(SB) is never generated directly. Instead, SSA generates: LEAL foo(SB), DX MOVL AX, (DX) which is then rewritten by the obj package to: CALL getPcInDX(SB) LEAL (&foo-&thisInstruction)(DX), AX MOVL AX, (DX) So this CL modifies the obj package to use different thunks to materialize the pc into different registers. We use the registers that regalloc chose so that SSA can still allocate the full set of registers. Change-Id: Ie095644f7164a026c62e95baf9d18a8bcaed0bba Reviewed-on: https://go-review.googlesource.com/25442 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-08-03 13:00:49 -07:00
// MOVL (TLS), r
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = x86.REG_TLS
p.To.Type = obj.TYPE_REG
p.To.Reg = r
} else {
[dev.ssa] cmd/compile: fix PIC for SSA-generated code Access to globals requires a 2-instruction sequence on PIC 386. MOVL foo(SB), AX is translated by the obj package into: CALL getPCofNextInstructionInTempRegister(SB) MOVL (&foo-&thisInstruction)(tmpReg), AX The call returns the PC of the next instruction in a register. The next instruction then offsets from that register to get the address required. The tricky part is the allocation of the temp register. The legacy compiler always used CX, and forbid the register allocator from allocating CX when in PIC mode. We can't easily do that in SSA because CX is actually a required register for shift instructions. (I think the old backend got away with this because the register allocator never uses CX, only codegen knows that shifts must use CX.) Instead, we allow the temp register to be anything. When the destination of the MOV (or LEA) is an integer register, we can use that register. Otherwise, we make sure to compile the operation using an LEA to reference the global. So MOVL AX, foo(SB) is never generated directly. Instead, SSA generates: LEAL foo(SB), DX MOVL AX, (DX) which is then rewritten by the obj package to: CALL getPcInDX(SB) LEAL (&foo-&thisInstruction)(DX), AX MOVL AX, (DX) So this CL modifies the obj package to use different thunks to materialize the pc into different registers. We use the registers that regalloc chose so that SSA can still allocate the full set of registers. Change-Id: Ie095644f7164a026c62e95baf9d18a8bcaed0bba Reviewed-on: https://go-review.googlesource.com/25442 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-08-03 13:00:49 -07:00
// MOVL TLS, r
// MOVL (r)(TLS*1), r
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_TLS
p.To.Type = obj.TYPE_REG
p.To.Reg = r
q := s.Prog(x86.AMOVL)
q.From.Type = obj.TYPE_MEM
q.From.Reg = r
q.From.Index = x86.REG_TLS
q.From.Scale = 1
q.To.Type = obj.TYPE_REG
q.To.Reg = r
}
case ssa.Op386CALLstatic, ssa.Op386CALLclosure, ssa.Op386CALLinter:
s.Call(v)
case ssa.Op386NEGL,
ssa.Op386BSWAPL,
ssa.Op386NOTL:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386BSFL, ssa.Op386BSFW,
ssa.Op386BSRL, ssa.Op386BSRW,
ssa.Op386SQRTSD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386SETEQ, ssa.Op386SETNE,
ssa.Op386SETL, ssa.Op386SETLE,
ssa.Op386SETG, ssa.Op386SETGE,
ssa.Op386SETGF, ssa.Op386SETGEF,
ssa.Op386SETB, ssa.Op386SETBE,
ssa.Op386SETORD, ssa.Op386SETNAN,
ssa.Op386SETA, ssa.Op386SETAE:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386SETNEF:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
q := s.Prog(x86.ASETPS)
q.To.Type = obj.TYPE_REG
q.To.Reg = x86.REG_AX
opregreg(s, x86.AORL, v.Reg(), x86.REG_AX)
case ssa.Op386SETEQF:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
q := s.Prog(x86.ASETPC)
q.To.Type = obj.TYPE_REG
q.To.Reg = x86.REG_AX
opregreg(s, x86.AANDL, v.Reg(), x86.REG_AX)
case ssa.Op386InvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
case ssa.Op386FlagEQ, ssa.Op386FlagLT_ULT, ssa.Op386FlagLT_UGT, ssa.Op386FlagGT_ULT, ssa.Op386FlagGT_UGT:
v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
case ssa.Op386REPSTOSL:
s.Prog(x86.AREP)
s.Prog(x86.ASTOSL)
case ssa.Op386REPMOVSL:
s.Prog(x86.AREP)
s.Prog(x86.AMOVSL)
case ssa.Op386LoweredNilCheck:
// Issue a load which will fault if the input is nil.
// TODO: We currently use the 2-byte instruction TESTB AX, (reg).
// Should we use the 3-byte TESTB $0, (reg) instead? It is larger
// but it doesn't have false dependency on AX.
// Or maybe allocate an output register and use MOVL (reg),reg2 ?
// That trades clobbering flags for clobbering a register.
p := s.Prog(x86.ATESTB)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
if gc.Debug_checknil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
gc.Warnl(v.Pos, "generated nil check")
}
case ssa.Op386FCHS:
v.Fatalf("FCHS in non-387 mode")
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var blockJump = [...]struct {
asm, invasm obj.As
}{
ssa.Block386EQ: {x86.AJEQ, x86.AJNE},
ssa.Block386NE: {x86.AJNE, x86.AJEQ},
ssa.Block386LT: {x86.AJLT, x86.AJGE},
ssa.Block386GE: {x86.AJGE, x86.AJLT},
ssa.Block386LE: {x86.AJLE, x86.AJGT},
ssa.Block386GT: {x86.AJGT, x86.AJLE},
ssa.Block386ULT: {x86.AJCS, x86.AJCC},
ssa.Block386UGE: {x86.AJCC, x86.AJCS},
ssa.Block386UGT: {x86.AJHI, x86.AJLS},
ssa.Block386ULE: {x86.AJLS, x86.AJHI},
ssa.Block386ORD: {x86.AJPC, x86.AJPS},
ssa.Block386NAN: {x86.AJPS, x86.AJPC},
}
var eqfJumps = [2][2]gc.FloatingEQNEJump{
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1]
}
var nefJumps = [2][2]gc.FloatingEQNEJump{
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1]
}
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in rax:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := s.Prog(x86.ATESTL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_AX
p = s.Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit:
s.Prog(obj.AUNDEF) // tell plive.go that we never reach here
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = b.Aux.(*obj.LSym)
case ssa.Block386EQF:
gc.SSAGenFPJump(s, b, next, &eqfJumps)
case ssa.Block386NEF:
gc.SSAGenFPJump(s, b, next, &nefJumps)
case ssa.Block386EQ, ssa.Block386NE,
ssa.Block386LT, ssa.Block386GE,
ssa.Block386LE, ssa.Block386GT,
ssa.Block386ULT, ssa.Block386UGT,
ssa.Block386ULE, ssa.Block386UGE:
jmp := blockJump[b.Kind]
likely := b.Likely
var p *obj.Prog
switch next {
case b.Succs[0].Block():
p = s.Prog(jmp.invasm)
likely *= -1
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
case b.Succs[1].Block():
p = s.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
default:
p = s.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
q := s.Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: q, B: b.Succs[1].Block()})
}
// liblink reorders the instruction stream as it sees fit.
// Pass along what we know so liblink can make use of it.
// TODO: Once we've fully switched to SSA,
// make liblink leave our output alone.
switch likely {
case ssa.BranchUnlikely:
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
case ssa.BranchLikely:
p.From.Type = obj.TYPE_CONST
p.From.Offset = 1
}
default:
b.Fatalf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString())
}
}